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11. Finite difference methods for the heat equation

We consider the approximation of the initial boundary value problem for the heat equation
in one space dimension, i.e., Find u(x, t) satisfying

Lu ≡
∂u

∂t
− σ

∂2u

∂x2
= f(x, t), a < x < b, t > 0,

u(a, t) = 0, u(b, t) = 0, t > 0 u(x, 0) = ψ(x), a < x < b.

To approximate problems of this type by finite difference methods, we place a mesh on the
rectangle [a, b]× [0, T ] of width h in the x direction and width k in the t direction. We then
replace the differential equation by a difference equation and look for an approximation to
u(x, t) at the mesh points. From the study of two-point boundary value problems, we know
that a simple approximation to ∂2u/∂x2(x, t) is given by

∂2u

∂x2
(x, t) = [u(x+ h, t)− 2u(x, t) + u(x− h, t)]/h2 +O(h2).

If we approximate ∂u/∂t(x, t) by the forward difference approximation

∂u

∂t
(x, t) = [u(x, t+ k)− u(x, t)]/k +O(k)

and define Un
j to be an approximation to the true solution u(a+ jh, nk), then we are led to

the difference equation

[Un+1
j − Un

j ]/k = σ[Un
j+1 − 2Un

j + Un
j−1]/h

2 + fn
j ,

where fn
j = f(a + jh, nk). This is an example of an explicit scheme, i.e., a scheme that

involves only one point at the advanced time level. Since ψ(x) is given, u is known at
the initial time level. Hence, we have a marching scheme in time, whose solution is easily
computed.

By contrast, an implicit scheme is one that involves more than one point at the advanced
time level. A simple example is obtained by considering the equation at time t+ k and then
using a backward difference approximation to ∂u/∂t(x, t + k). This leads to the difference
equation:

[Un+1
j − Un

j ]/k = σ[Un+1
j+1 − 2Un+1

j + Un+1
j−1 ]/h

2 + fn+1
j .

This equation can no longer be solved explicitly, since there are now 3 unknown values at
time t + k. Instead, we must use an equation at each mesh point (a + jh, (n + 1)k) at the
advanced time level and solve a linear system of equations to simultaneously determine an
approximation to u at each spatial mesh point at this time level. For example, if h = (b−a)/N
with N = 4, then the unknowns at t = k would be U1

1 , U
1
2 , U

1
3 . The values U1

0 = U1
4 = 0 are

known boundary values and the values U0
j = ψ(a+ jh) = ψj are the given initial values. So

in this case, we get the following system of 3 equations for the 3 unknowns.

(U1
1 − U0

1 )/k = σ[U1
2 − 2U1

1 + U1
0 ]/h

2 + f 1
1 ,

(U1
2 − U0

2 )/k = σ[U1
3 − 2U1

2 + U1
1 ]/h

2 + f 1
2 ,

(U1
3 − U0

3 )/k = σ[U1
4 − 2U1

3 + U1
2 ]/h

2 + f 1
3 .
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In matrix form, we get after multiplication by k and setting λ = σk/h2,




1 + 2λ −λ 0
−λ 1 + 2λ −λ
0 −λ 1 + 2λ









U1
1

U1
2

U1
3



 =





U0
1 + kf 1

1

U0
2 + kf 1

2

U0
3 + kf 1

3



 .

This is a tridiagonal system and hence easy to solve.

If we average the two formulas, we get the Crank-Nicholson scheme, i.e.,

Un+1
j − Un

j

k
=

σ

2h2
[

Un+1
j+1 − 2Un+1

j + Un+1
j−1 + Un

j+1 − 2Un
j + Un

j−1

]

+
1

2

[

fn+1
j + fn

j

]

.

More generally, we could take a weighted average to get

Un+1
j − Un

j

k
=

σ

h2
{

(1− θ)[Un+1
j+1 − 2Un+1

j + Un+1
j−1 ] + θ[Un

j+1 − 2Un
j + Un

j−1]
}

+ (1− θ)fn+1
j + θfn

j , 0 ≤ θ ≤ 1.

All these are examples of two level schemes, i.e., there are only two time levels represented in
the formula. Note that by taking θ = 0, 1/2, or 1, we reproduce the three previous formulas.

An example of a 3-level scheme is obtained by replacing ∂u/∂t(x, t) by the centered dif-
ference approximation [u(x, t+ k)− u(x, t− k)]/(2k). This leads to the difference method

[Un+1
j − Un−1

j ]/2k = σ[Un
j+1 − 2Un

j + Un
j−1]/h

2 + fn
j .

As we shall see later, this scheme is not a good one. Another example of a 3-level scheme is
one by Dufort and Frankel (1953).

[Un+1
j − Un−1

j ]/2k = σ[Un
j+1 − Un+1

j − Un−1
j + Un

j−1]/h
2 + fn

j .

12. Analysis of some basic schemes for the heat equation

To analyze these schemes, recall some of the ideas from the analysis of finite difference
methods for two-point boundary value problems, e.g.,

Lu ≡ −u′′ = f a < x < b, u(a) = ga, u(b) = gb.

To analyze this problem, we first established the stability result that for all mesh functions
v,

max
0≤j≤N

|vj| ≤ max(|v0|, |vN |) +
(b− a)2

2
max

1≤j≤N−1
|Lhvj|.

We then applied this result to the error u− uj, and used the fact that

Lhu− Lhuj = Lhu− f(xj) = Lhu− Lu.

The last term is the consistency error, i.e., the local truncation error of the method. Inserting
a bound for this quantity, we obtained an error estimate.
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We now consider a similar approach to analyze the class of θ methods discussed above for
the heat equation, first deriving a stability result for this class of difference schemes. Define

Lh,kU
n
j =

Un+1
j − Un

j

k
−

σ

h2
{

(1− θ)[Un+1
j+1 − 2Un+1

j + Un+1
j−1 ] + θ[Un

j+1 − 2Un
j + Un

j−1]
}

.

Let b− a = Jh and

Ω0,m

h,k = {(a+ jh, nk), 1 ≤ j ≤ J − 1, 0 ≤ n ≤ m− 1}.

Theorem 35. Let V n
j be a function defined on the mesh points (a+ jh, nk). For 0 ≤ θ ≤ 1,

0 ≤ σk/h2 ≤ 1/(2θ), and Nk = T ,

max
0≤j≤J

|V n
j | ≤ max

0≤j≤J
|V 0

j |+ T max
Ω

0,N

h,k

|Lh,kV
n
j |, 0 ≤ n ≤ N.

Proof. Letting λ = σk/h2, and multiplying by k, we get from the definition of Lh,k,

[1 + 2λ(1− θ)]V n+1
j = λ(1− θ)[V n+1

j+1 + V n+1
j−1 ] + [1− 2λθ]V n

j + λθ[V n
j+1 + V n

j−1] + kLh,kV
n
j .

Let W n = max0≤j≤J |V
n
j |. Now for 0 ≤ θ ≤ 1, if 0 ≤ λ ≤ 1/(2θ), then

1 + 2λ(1− θ), λ(1− θ), 1− 2λθ, λθ

are all non-negative. Hence

[1 + 2λ(1− θ)]|V n+1
j | ≤ λ(1− θ)[|V n+1

j+1 |+ |V n+1
j−1 ]|

+ [1− 2λθ]|V n
j |+ λθ[|V n

j+1|+ |V n
j−1|] + k|Lh,kV

n
j |

≤ 2λ(1− θ)W n+1 +W n + k max
1≤j≤J−1

|Lh,kV
n
j |.

Since U0 = UJ = 0, taking the maximum over all 1 ≤ j ≤ J − 1 gives

[1 + 2λ(1− θ)]W n+1 ≤ 2λ(1− θ)W n+1 +W n + k max
1≤j≤J−1

|Lh,kV
n
j |.

Hence

W n+1 ≤ W n + k max
1≤j≤J−1

|Lh,kV
n
j |.

Iterating this equation, we obtain

Wm ≤ W 0 + k
m−1
∑

n=0

max
1≤j≤J−1

|Lh,kV
n
j | ≤ W 0 +mkmax

Ω
0,m

h,k

|Lh,kV
n
j |.

Finally, for 0 ≤ m ≤ N , where Nk = T , we get

Wm ≤ W 0 + T max
Ω

0,N

h,k

|Lh,kV
n
j |,

which is just a restatement of the theorem. �

Note that to obtain this stability result, we have assumed that 0 ≤ σk/h2 ≤ 1/(2θ).
For the purely implicit scheme, θ = 0, this is no restriction, so we say the method is
unconditionally stable. For the purely explicit scheme, θ = 1, and we get the stability
condition 0 ≤ σk/h2 ≤ 1/2.
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To obtain an error estimate, we apply the stability result to V n
j = u(a + jh, nk) − Un

j ,
where u is the exact solution of the original initial boundary value problem for the heat
equation. Then u − U = 0 at boundary mesh points and at mesh points for which t = 0.
Hence, if we let

ΩN
h,k = {(a+ jh, nk), 0 ≤ j ≤ J, 0 ≤ n ≤ N − 1},

then we easily conclude from the theorem that

max
ΩN

h,k

|u− U | ≤ T max
Ω

0,N

h,k

|Lh,k(u− U)|.

If we let LE
h,k and LI

h,k denote the difference operators corresponding to the explicit and

implicit methods defined above, then Lh,k = (1−θ)LI
h,k+θL

E
h,k. Hence, for (x, t) = (a+jh, nk)

a mesh point, we have

Lh,k(u− U)(x, t) = (1− θ)LI
h,ku(x, t) + θLE

h,ku(x, t)− (1− θ)fn+1 − θfn

= (1− θ)LI
h,ku(x, t) + θLE

h,ku(x, t)− (1− θ)Lu(x, t+ k)− θLu(x, t)

= (1− θ)[LI
h,ku(x, t)− Lu(x, t+ k)] + θ[LE

h,ku(x, t)− Lu(x, t)],

which can be bounded by the local truncation error of these methods. For the purely explicit
method or purely implicit method, this local truncation error is of order O(k) +O(h2). For
the Crank-Nicholson method, one can show that the local truncation error is O(k2)+O(h2).


