
6 MATH 574 LECTURE NOTES

1.2. Choleski decomposition. We next look at a simplification of the LU decomposition
algorithm in the case when A is symmetric, i.e., we seek a factorization of the form A = LLT ,
known as Choleski decomposition.

We first observe that not even every symmetric, nonsingular matrix has an LU factoriza-
tion. Suppose

A =

(

0 1
1 0

)

= LU =

(

l11 0
l21 l22

) (

u11 u12

0 u22

)

.

Then we would need to have

l11u11 = 0, l11u12 = 1, l21u11 = 1, l21u12 + l22u22 = 0.

But l11u11 = 0 implies that either l11 = 0 or u11 = 0. Then either l11u12 or l21u11 cannot be
equal to one.

However, if A is symmetric and positive definite (i.e., xT Ax > 0 if xT x > 0), then such a
factorization is possible with U = LT , i.e., A = LLT . As done for the LU decomposition,
the elements of L may be determined row by row by equating corresponding elements in the
equation A = LLT , i.e.,

aij =

j
∑

k=1

likljk, j = 1, · · · , i.

This gives

lij = [aij −

j−1
∑

k=1

likljk]/ljj, j = 1, · · · , i − 1, lii =

[

aii −
i−1
∑

k=1

l2ik

]1/2

.

There is also an alternative decomposition that avoids the calculation of square roots, i.e.,
A = L̃DL̃T , where D is a positive diagonal matrix and L̃ is a unit lower triangular matrix.
The relation between the two decompositions is that Dii = l2ii and L = L̃D1/2. Then

LLT = L̃D1/2[L̃D1/2]T = L̃D1/2[D1/2]T L̃T = L̃DL̃T ,

since D1/2 is a diagonal matrix and hence symmetric.

1.3. Advantages of partial pivoting. We consider the following example, taken from
Forsythe and Moler: Computer Solutions of Linear Algebraic Systems (Prentice-Hall, 1967).

1.00 × 10−4x1 + 1.00x2 = 1.00, 1.00x1 + 1.00x2 = 2.00,

whose exact solution is given by x1 = 1.00010001 · · · , x2 = 0.999099 · · · . We now compute
the solution by Gaussian elimination using 3-digit arithmetic. Subtract 1.00× 104 times the
first equation from the second. Then the second equation becomes αx2 = β, where

α = 1.00 − 1.00 × 104 × 1.00 = 0.0001 × 104 − 1.00 × 104 = −1.00 × 104,

β = 2.00 − 1.00 × 104 × 1.00 = 0.0002 × 104 − 1.00 × 104 = −1.00 × 104,

using 3-digit arithmetic. Hence the computed solution is x2 = 1 and x1 = 0.

Now consider the same problem with pivoting. Since the largest entry in the first column
occurs in the second equation, we would use the second equation to eliminate the x1 entry
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in the first equation, i.e., we multiply the second equation by 10−4 and subtract it from the
first equation. Then the first equation becomes:

(1 − 10−4)x2 = 1 − 2 × 10−4.

In 3-digit arithmetic, this is x2 = 1. Hence, the computed solution is x2 = 1, x1 = 1.

When considering a pivoting strategy, a related issue is the concept of scaling of a matrix.
The idea is that the solution x of Ax = b is also the solution of Ãx = b̃, where Ã and b̃ are
obtained from A and b by multiplying any row of A and the corresponding element of b by
a non-zero constant. Hence, choosing the largest element of a column as a pivot without
normalizing the rows in some way is a problem, since almost any pivot selection could be
achieved by some scaling. One technique to avoid this confusion is to choose scaling factors
k(i) such that each row of A has its largest element (in absolute value) equal to one. In
fact, we don’t actually multiply the matrix by the scaling factors, since this could introduce
roundoff errors. Instead, we leave A unscaled, but choose the pivots as if the entries had
been scaled, i.e., choose intr such that

|k(intr)lintr,r| = max
i≥r

|k(i)lir|.

2. Matrix and vector norms

To analyze numerical methods for problems in linear algebra, it is helpful to define various
ways of comparing the sizes of vectors and matrices. We do this by defining the concept of a
norm and then give concrete examples of norms of vectors and matrices that are convenient
for various applications.

Definition: A norm in R
n is a function that assigns to each x in R

n, a non-negative number
‖x‖ (called the norm of x) satisfying: (i) ‖x‖ = 0 if and only if x = 0, (ii) ‖αx‖ = |α|‖x‖
for each x ∈ R

n and every constant α, and (iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for each x and y in R
n.

The examples we will use are the p-norms defined by ‖x‖p = (
∑n

i=1
|xi|

p)1/p, where x =
(x1, · · · , xn). In particular, we shall use

‖x‖1 =
n

∑

i=1

|xi|, ‖x‖2 = (
n

∑

i=1

|xi|
2)1/2, ‖x‖∞ = max

1≤i≤n
|xi| max norm.

For the 1, 2,∞ norms, the sets {x = (x1, x2) : ‖x‖ ≤ 1} are shown in the figure below.
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We will also need the concept of a matrix norm. In addition to satisfying properties (i),
(ii), and (iii), we would also like to have the property: (iv) ‖AB‖ ≤ ‖A‖‖B‖. There is a
very natural way this can be done. Set

(2.1) ‖A‖ = max
x 6=0

‖Ax‖

‖x‖
,

where ‖x‖ denotes some vector norm of x. It is clear from the definition that for any
y 6= 0 ∈ Rn,

‖Ay‖

‖y‖
≤ max

x 6=0

‖Ax‖

‖x‖
= ‖A‖.

Hence,
‖Ay‖ ≤ ‖A‖‖y‖,

and this result holds for y = 0 as well. We can then show that property (iv) follows from
this result.

‖AB‖ = max
x 6=0

‖ABx‖

‖x‖
≤ max

x 6=0

‖A‖‖Bx‖

‖x‖
≤ ‖A‖‖B‖.

For each of the examples of vector norms given above, we can also derive concrete formulas
for the corresponding matrix norms. We omit the derivation and just give the results.

‖A‖1 = max
1≤j≤n

n
∑

i=1

|aij| maximum column sum

‖A‖∞ = max
1≤i≤n

n
∑

j=1

|aij| maximum row sum

‖A‖2 = [ρ(A∗A)]1/2 spectral norm

where ρ(A) = maxs |λs(A)| and λs(A) denotes the sth eigenvalue of A. Here A∗ = ĀT , where
Ā denotes the complex conjugate and the superscript T denotes the transpose.

There is sometimes confusion between the spectral radius ρ(A) and the spectral norm,
defined above. Some relationships are given by the following.

a) If A is Hermitian, i.e., A∗ = A, then ‖A‖2 = ρ(A).

b) For any matrix norm defined by (2.1), ρ(A) ≤ ‖A‖2.

It is easy to see (a) in the case when A is real and symmetric. Then A∗ = A, and since
the eigenvalues of A2 are the square of the eigenvalues of A, we find that ‖A‖2 = ρ(A).

Remark: Although ‖x‖2 is called the Euclidean norm of the vector x, ‖A‖2 is the spectral
norm, rather than the Euclidean norm of the matrix A. There is also a norm, defined by
‖A‖F = (

∑n
i,j=1

(aij)
2)1/2, that is called the Frobenius norm.


