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13. Finite element methods for parabolic problems

We consider the parabolic problem: Find u = u(x, t) satisfying

ut −
∂

∂x
(p
∂u

∂x
) + qu = f, a < x < b, 0 < t ≤ T,

u(a, t) = 0, u(b, t) = 0, 0 < t ≤ T, u(x, 0) = ψ(x), a < x < b.

Let V 0 = {v ∈ H1(a, b) : v(a) = v(b) = 0}. A variational formulation of this problem is to
seek u such that u(x, 0) = ψ(x), and for each fixed t > 0, u ∈ V 0 satisfies

(∂u/∂t, v) + a(u, v) = (f, v), v ∈ V 0,

where (·, ·) denotes the L2 inner product on (a, b) and now

a(u, v) =

∫ b

a

[

p
∂u

∂x

∂v

∂x
+ quv

]

dx.

13.1. Continuous time Galerkin scheme. We first consider an approximation in which
we discretize by finite elements in the spatial variable, but keep time continuous. Thus, we
choose a finite dimensional subspace V 0

h ⊂ V 0 and look for an approximation uh such that
uh(x, 0) = ψh(x, 0) (where ψh an approximation to ψ) and for each fixed t > 0, uh ∈ V 0

h

satisfies
(∂uh/∂t, v) + a(uh, v) = (f, v), v ∈ V 0

h .

To see what is involved in solving this problem, we write uh(x, t) =
∑m

j=1
αj(t)φj(x), where

{φj}
m
j=1 is a basis for V 0

h . Inserting this into the variational equations, and choosing v to be
each of the basis functions φi, we get

m
∑

j=1

α′

j(t)(φj, φi) +
m
∑

j=1

αj(t)a(φj, φi) = (f, φi), i = 1, . . . ,m.

Let
Mij = (φj, φi), Aij = a(φj, φi), Fi = (f, φi), α = (α1, . . . , αm)

T .

Our equations then have the form

Mα′(t) + Aα = F,

a first order system of ordinary differential equations. If we write ψh in the form
∑m

j=1
βjφj,

then we immediately get the initial condition that αj(0) = βj. A simple example is when
Vh is chosen to be the space of continuous piecewise linear functions on a uniform mesh of
width h on [a, b], and ψh is chosen to be the interpolant of ψ in this space. In that case,
βj = ψ(a+ jh).

The following error estimate is known for this semidiscrete approximation.

Theorem 36. If Vh consists of piecewise polynomials of degree ≤ r, the initial approximation

ψh satisfies ‖ψ − ψh‖L2 ≤ Chr+1‖ψ‖r+1, and u is sufficiently smooth, then for t ≥ 0,

‖u(t)− uh(t)‖L2 ≤ Chr+1

[

‖ψ‖r+1 +

∫ t

0

‖ut‖r+1 ds

]

.
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13.2. Fully discrete schemes: Finite Differences in Time. One way to get a fully
discrete scheme is to combine the use of finite elements to discretize the spatial variable
with a finite difference approximation in time. For example, if we approximate ut by the
backward Euler approximation, we get the scheme: Find Un ∈ V 0

h , satisfying U
0(x) = ψh(x)

and for n = 0, 1, . . . , N − 1 (with T = Nk),

([Un+1 − Un]/k, v) + a(Un+1, v) = (fn+1, v) v ∈ V 0

h .

Using the matrices defined previously, and defining Un(x) =
∑m

j=1
αn
j φj(x), the discrete

variational formulation above corresponds to the linear system

(M + kA)αn+1 =Mαn + kF n+1, n = 0, 1, . . . .

Another choice is the Crank-Nicholson-Galerkin method, which has the form: Find Un ∈ V 0
h ,

satisfying U0(x) = ψh(x) and for n = 0, 1, . . . , N − 1,

([Un+1 − Un]/k, v) + a([Un+1 + Un]/2, v) = ([fn+1 + fn]/2), v ∈ V 0

h .

In this case, we get the linear system

(M + 1

2
kA)αn+1 = (M − 1

2
kA)αn + k(F n+1 + F n)/2, n = 0, 1, . . . .

For the backward Euler method, we have the following error estimate (tn = nk).

Theorem 37. Under the assumptions of the previous theorem, we have

‖u(tn)− Un‖ ≤ Chr+1

[

‖ψ‖r+1 +

∫ tn

0

‖ut(s)‖r+1

]

+ k

∫ tn

0

‖utt(s)‖ ds, n ≥ 0.

13.3. Fully discrete schemes: Finite Elements in Time. Instead of obtaining a fully
discrete method by discretizing in time using finite differences, we now consider two methods
for discretizing in time using finite elements. The first is the continuous Galerkin method:
We let 0 = t0 < t1 < · · · tN = T be a partition of [0, T ] and let Sk be a finite element space
consisting of continuous piecewise polynomials of degree ≤ q in the time variable t. Then
define Wh,k to be the tensor product space Wh,k = Vh ⊗ Sk. For example, if q = 1 and we
consider the time slab Ω× [tn−1, tn], we can write a function in Wh,k in the form

whk = [(t− tn−1)/k]v
n
h(x) + [(tn − t)/k]vn−1

h (x).

We then define Uh,k ∈ Wh,k such that

∫ T

0

[(Uh,k
t , vt) + a(Uh,k, vt)] dt =

∫ T

0

(f, vt) dt, for all v ∈ Wh,k.

While this appears to be a global problem in time, in fact it is a marching scheme, i.e., we
can compute Uh,k on [tn−1, tn], n = 1, 2, . . . , N , successively by solving

∫ tn

tn−1

[(Uh,k
t , w) + a(Uh,k, w)] dt =

∫ tn

tn−1

(f, w) dt, for all w ∈ Vh ⊗ P q−1([tn−1, tn]),
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where P q−1([tn−1, tn]) denotes the set of polynomials of degree ≤ q − 1 on the interval
[tn−1, tn]. To see this, consider the case of q = 1, piecewise linear in time. If we choose

v =











vn−1(x), 0 ≤ t ≤ tn−1

[(tn − t)/k]vn−1(x) + [(t− tn−1)/k]v
n(x), tn−1 ≤ t ≤ tn,

vn(x), t ≥ tn,

then vt = [vn(x)− vn−1(x)]/k for tn−1 ≤ t ≤ tn and zero elsewhere. Hence, the integral from
0 to T reduces to an integral over [tn−1, tn] and by choosing vn(x) and vn−1(x) appropriately,
we can get any function w ∈ Vh ⊗ P 0.

Notice also that in the case of q = 1, if we write

Uh,k = [(t− tn−1)/k]U
n
h (x) + [(tn − t)/k]Un−1

h (x),

then
∫ tn

tn−1

[(Uh,k
t , w) + a(Uh,k, w)] dt = (Un

h (x)− Un−1

h (x), w) +
k

2
[a(Un

h (x), w) + a(Un−1

h (x), w)],

so we get a type of Crank-Nicholson-Galerkin scheme, where the right hand side is averaged.

A second possibility is to use the discontinuous Galerkin approach. Let

wn
+ = lim

t→tn+
w(t), wn

−
= lim

t→tn−
w(t), and [wn] = wn

+ − wn
−
.

We now define Sk as the set of all discontinuous piecewise polynomials of degree ≤ q on the
mesh on [0, T ] and Wh,k = Vh ⊗ Sk. Then we seek U ∈ Wh,k as the solution of

N
∑

n=1

∫ tn

tn−1

[(Ut, w) + a(U,w)] dt+
N
∑

n=1

([Un−1], wn−1

+ ) + (U0

−
, w0

+)

= (ψ,w0

+) +

∫ tN

0

(f, w) dt, for all w ∈ Wh,k.

Since the finite element space is discontinuous in time, we can choose w so that it is non-zero
only on the subinterval [tn−1, tn]. We again get a time marching scheme that determines U
successively on [tn−1, tn] by solving
∫ tn

tn−1

[(Ut, w)+ a(U,w)] dt+(Un−1

+ , wn−1

+ ) = (Un−1

−
, wn−1

+ )+

∫ tn

tn−1

(f, w) dt, for all w ∈ Wh,k.

On the first subinterval, we will have
∫ t1

t0

[(Ut, w) + a(U,w)] dt+ (U0

+, w
0

+) = (ψ,w0

+) +

∫ t1

0

(f, w) dt.

Note that the true solution will satisfy these equations, since un−1
+ = un−1

−
.

In the continuous scheme, we have a single value for U at t = tn. In the discontinuous
scheme, we have two values, one from the minus side and one from the plus side. So, if we
choose q = 1, then on the subinterval [tn−1, tn], we are writing

U = [(t− tn−1/k]U
n
−
(x) + [(tn − t)/k]Un−1

+ (x).


