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13. FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS

We consider the parabolic problem: Find u = u(z,t) satisfying

ut——( )+qu—, a<xr<b 0<t<T,

P 9w
u(a,t) =0, ( ) =0, 0<t<T, u(z,0) =(x), a<az<b.

Let V? = {v € H'(a,b) : v(a) = v(b) = 0}. A variational formulation of this problem is to
seek u such that u(x,0) = ¢(x), and for each fixed t > 0, u € V? satisfies

(Ou/0t,v) + a(u,v) = (f,v), veV°,

where (-, ) denotes the L? inner product on (a,b) and now

13.1. Continuous time Galerkin scheme. We first consider an approximation in which
we discretize by finite elements in the spatial variable, but keep time continuous. Thus, we
choose a finite dimensional subspace VY C V? and look for an approximation u; such that
up(z,0) = ¥p(z,0) (where ¢, an approximation to 1) and for each fixed ¢t > 0, u;, € V)
satisfies

(Oup/0r, v) + alup,v) = (f,v), veVy.
To see what is involved in solving this problem, we write up(x,t) = > 7", a;(t)¢;(x), where
{#;}72, is a basis for V9. Inserting this into the variational equations, and choosing v to be
each of the basis functions ¢;, we get

Z ( ¢]7¢z +Zaj ¢j7¢’5) (f7¢z)7 1=1,...,m.
j=1

Let
M;; = (¢jv¢i)> Az’j = G(ij, bi), Fi = (f, ¢), a=(ag,... 7am)T'
Our equations then have the form
Md'(t) + Aa = F,

a first order system of ordinary differential equations. If we write 5, in the form Z;n:l Bidj,
then we immediately get the initial condition that «;(0) = ;. A simple example is when
V} is chosen to be the space of continuous piecewise linear functions on a uniform mesh of
width h on [a,b], and v, is chosen to be the interpolant of ¢ in this space. In that case,

Bj =v(a+jh).
The following error estimate is known for this semidiscrete approximation.

Theorem 36. If V), consists of piecewise polynomials of degree < r, the initial approximation
Uy, satisfies || — Yp|lre < Ch |11, and u is sufficiently smooth, then fort >0,

t
lu(t) = un(Dllz < O+ [nwnrﬂ + [ s ds] .
0
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13.2. Fully discrete schemes: Finite Differences in Time. One way to get a fully
discrete scheme is to combine the use of finite elements to discretize the spatial variable
with a finite difference approximation in time. For example, if we approximate u; by the
backward Euler approximation, we get the scheme: Find U™ € V)?, satisfying U%(z) = ()
and forn =0,1,..., N — 1 (with T = Nk),

(U™ = U™ /k,v) +a(U™,0) = (f*H o) ve VL.

Using the matrices defined previously, and defining U"(x) = > " af¢;(x), the discrete
variational formulation above corresponds to the linear system

(M + kA)a"t = Ma™ + kF™ n=0,1,....

Another choice is the Crank-Nicholson-Galerkin method, which has the form: Find U" € V}?,
satisfying U%(z) = ¢, (z) and for n =0,1,..., N — 1,

([U™ — U™ /k,v) + a([U™™ + U™ /2,0) = ([f" + f"/2), ve V.
In this case, we get the linear system

(M + 2kA)a™ = (M — 2kA)a” + k(F"T + F™) /2,  n=0,1,....
For the backward Euler method, we have the following error estimate (¢, = nk).

Theorem 37. Under the assumptions of the previous theorem, we have

in

tn
Jutn) = 0"l < O [0l + [ )]+ [ o) ds, 00,
0 0

13.3. Fully discrete schemes: Finite Elements in Time. Instead of obtaining a fully
discrete method by discretizing in time using finite differences, we now consider two methods
for discretizing in time using finite elements. The first is the continuous Galerkin method:
We let 0 =ty <ty < ---ty =T be a partition of [0, 7] and let Si be a finite element space
consisting of continuous piecewise polynomials of degree < ¢ in the time variable ¢. Then
define W}, ;. to be the tensor product space W, = Vi, ® Si. For example, if ¢ = 1 and we
consider the time slab Q x [t,,_1,t,], we can write a function in W} in the form

w™ = [(t =ty 1) [KJop () + [(tn — 0) /K]0y~ ().
We then define UMF ¢ Wi, such that
T T
/ (U, 0p) + a(UMF,0,)] dt = / (f,v)dt, for all v € Wy
0 0

While this appears to be a global problem in time, in fact it is a marching scheme, i.e., we
can compute UM on [t,_1,t,], n =1,2,..., N, successively by solving

tn tn
/ [(U]F w) + a(UM* w)) dt = / (f,w)dt, forall we Vi, @ P [ta_1,t,]),
tn—1 th—1
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where P97'([t,_1,t,]) denotes the set of polynomials of degree < ¢ — 1 on the interval
[tn—1,ts]. To see this, consider the case of ¢ = 1, piecewise linear in time. If we choose

v (z), 0<t<t,,
=1 [(tn — O)/kJ" N (x) + [(t = ta1) /K" (2), tn1 <t <t,,
v"(x), t>t,,

then v, = [v™(x) — v Y(2)]/k for t,,_; <t < t, and zero elsewhere. Hence, the integral from
0 to T reduces to an integral over [t,_1,t,] and by choosing v"(x) and v"~!(z) appropriately,
we can get any function w € V}, ® P°.

Notice also that in the case of ¢ = 1, if we write
UM = [(t = o) /KU () + [(ta — 8)/K]U; ™ (2),
then

tn k
/ (U, w) + a(U"F,w)] dt = (U} (z) = Uy~ (x), w) + 50U (@), w) + a(Uy™ (), w)),
tn—1
so we get a type of Crank-Nicholson-Galerkin scheme, where the right hand side is averaged.

A second possibility is to use the discontinuous Galerkin approach. Let
wh = tgg}+w(t), w' = tl}gl_ w(t), and [w"] = w} —w”.

We now define S, as the set of all discontinuous piecewise polynomials of degree < ¢ on the
mesh on [0,7] and Wy, =V}, ® Si. Then we seek U € W), as the solution of

Z/t (U, w) +a(Uw)]dt + Y (U™ wi ™) + (U2, w)

n=1

tn
= (¢, w}) +/ (fyw)dt, forall we Wyy.
0

Since the finite element space is discontinuous in time, we can choose w so that it is non-zero
only on the subinterval [t,_1,t,]. We again get a time marching scheme that determines U
successively on [t,_1,t,] by solving

tn tn
/ [(Up, w) + a(U,w)] dt + (U2 wi ™) = (U wl ) —1—/ (f,w)dt, for all w e Wyy.
th—1 tn—1
On the first subinterval, we will have
t1 t1
[ W)+ o e+ (03 0) = @ut) + [ (fow)dr
to 0

Note that the true solution will satisfy these equations, since v’} ™! = u™ "

In the continuous scheme, we have a single value for U at t = t,,. In the discontinuous
scheme, we have two values, one from the minus side and one from the plus side. So, if we
choose ¢ = 1, then on the subinterval [t,_1,t,], we are writing

U =[(t = tar /KU (2) + [(ta — 1) /R]U} ™ (2).



