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3. Matrix iterative methods

Matrix iterative methods are especially useful for the solution of linear systems involving
large sparse matrices (i.e., many zero entries).

A large class of such methods can be defined as follows: Write A = N − P , where N and
P are matrices of the same order as A, which we shall choose to have appropriate properties.
The system Ax = b is then written Nx = Px + b and we define a simple iteration scheme
by:

Nxk+1 = Pxk + b, k = 0, 1, . . . ,

where x0 denotes an initial guess. We assume that detN 6= 0, so that the iteration scheme
produces a unique sequence of vectors {xk}. We also choose the matrix N so that the system
of equations Ny = z is easily solved (e.g., N may be diagonal or upper or lower triangular).

To describe some examples of this procedure, we write A = L+U+D where L denotes the
matrix whose elements below the main diagonal are equal to those of A, with the remaining
elements chosen to be zero. The matrix U is an upper triangular matrix that coincides with
the upper triangular elements of A, and D is a diagonal matrix that coincides with the
diagonal entries of A.

The Jacobi method (or method of simultaneous displacements) chooses N = D, P =
−(L+ U) so

xk+1 = −D−1(L+ U)xk +D−1b, k = 0, 1, . . . ,

where we have assumed the diagonal entries of A are non-zero (otherwise interchange rows
and columns to get an equivalent system with this property).

In terms of components, we have
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We note from these equations that some components of xk+1 are known, but not used, while
computing the remaining components. The Gauss-Seidel method (or method of successive
displacements) is a modification of the Jacobi method in which all the latest components are
used, as they are computed. This scheme is:
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The splitting of A that gives this procedure is N = L+D, P = −U , so that

xk+1 = −(L+D)−1Uxk + (L+D)−1b, k = 0, 1, . . . ,

To consider the convergence of schemes of this form, i.e.,

xk+1 = N−1Pxk +N−1b, k = 0, 1, . . . ,
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we set M = N−1P . Since Nx = Px + b, we have x = N−1Px + N−1b. Define the error
vector ek = x− xk. Then, subtracting equations, we have

ek+1 = N−1Pxk ≡ Mek.

Iterating this equation, we get

ek+1 = Mek = M2ek−1 = · · · = Mk+1e0,

so ek = Mke0. Thus, a sufficient condition for convergence of the iteration schemes, i.e.,
that limk→∞ ek = 0 is that limk→∞ Mk = 0. If the method is to converge for all choices of
e0, then this condition is also necessary. A matrix M that satisfies this condition is called a
convergent matrix. The basic results characterizing convergent matrices are the following.

Theorem 5. The matrix M is convergent if and only if all the eigenvalues of M are less
than one in absolute value, i.e., ρ(M) < 1.

A sufficient condition for convergence, that is often easier to apply is:

Theorem 6. The matrix M is convergent if for any matrix norm, ‖M‖ < 1.

Hence, if M = (mij), then M will be convergent if

‖M‖∞ = max
i

n
∑

j=1

|mij| < 1 or ‖M‖1 = max
j

n
∑

i=1

|mij| < 1.

A simple application of this result is the following:

Theorem 7. If A is strictly diagonally dominant, then Jacobi’s method converges.

Proof. By hypothesis,

|aii| >
n

∑

j=1

j 6=i

|aij|, i = 1, . . . , n.

Hence,
n

∑

j=1

j 6=i

|aij|/|aii| < 1, i = 1, . . . , n.

Recall that for Jacobi’s method, the iteration matrix M = −D−1(L+U), i.e., mij = −aij/aii
when i 6= j and mij = 0 when i = j. Hence,

‖M‖∞ = max
1≤i≤n

n
∑

j=1

|mij| = max
1≤i≤n

n
∑

j=1

j 6=i

|aij|/|aii| < 1.

�

Although the proof is more complicated (we use an induction argument), one can also
show:
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Theorem 8. If A is strictly diagonally dominant, then the Gauss-Seidel method converges.

Some other convergence results for these methods are:

Theorem 9. (i) If A is Hermitian and positive definite, then the Gauss-Seidel method
converges. (ii) If A is Hermitian and A and 2D−A are positive definite, then Jacobi’s method
converges. (iii) If A is irreducible and weakly diagonally dominant, then the Gauss-Seidel
method and Jacobi’s method converge. (iv) If A is an L-matrix (i.e., aii > 0, i = 1, . . . , n
and aij ≤ 0, i 6= j, i, j = 1, . . . , n, then the Gauss-Seidel method converges if and only if the
Jacobi method converges. If both converge, then the Gauss-Seidel method converges faster,
i.e., ρ(GS) < ρ(J), where ρ(A) denotes the spectral radius of the matrix A.

We next consider a method for accelerating the convergence of iterative methods. We
define the iteration:
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where ω is a real parameter called the relaxation factor. Note ω = 1 gives the Gauss-Seidel
method. The choice ω < 1 is called under-relaxation, while ω > 1 is called over-relaxation.
The usual strategy is to choose ω > 1 and the resulting method is called SOR (successive
over-relaxation). Note that we may also write these equations as:
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In matrix form, we have

(D + Lω)xk+1 = (1− ω)Dxk + ω[b− Uxk],

which we may rewrite as

xk+1 = (D + Lω)−1[(1− ω)D − ωU ]xk + ω(D + Lω)−1b.

The motivation for this method comes from the proof of convergence of the general iteration
scheme. Recall, we showed that ek+1 = Mek, where M is the iteration matrix. Hence,
‖ek+1‖ ≤ ‖M‖‖ek‖, so we would like ‖M‖ as small as possible to reduce the error as much
as possible at each iteration.

When M is symmetric and ‖ · ‖ = ‖ · ‖2, then ‖M‖ = ρ(M) = maxi |λi|. In this case,
we would like to choose ω to minimize ρ(M). However, the best choice of ω depends on A
and is difficult to calculate except in some special cases. However, there are some known
convergence results.

Theorem 10. If SOR converges, then 0 < ω < 2.

Proof. The iteration matrix for SOR is given by

M = (D + Lω)−1[(1− ω)D − ωU ] = (D[I +D−1Lω])−1[(1− ω)D − ωU ]

= (I +D−1Lω)−1D−1[(1− ω)D − ωU ] = (I +D−1Lω)−1[(1− ω)I − ωD−1U ].
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We will need the following facts about determinants.

detAB = detA detB, detA = λ1λ2 · · ·λn, det(L+D) = det(D + U) = d11 · · · dnn.

Now
ρ(M) = max

i
|λi| ≥ |λ1λ2 · · ·λn|

1/n = | detM |1/n.

But

detM = det[(I +D−1Lω)−1] · det[(1− ω)I − ωD−1U ]

=
det[(1− ω)I − ωD−1U ]

det[(I +D−1Lω)]
= 1 · (1− ω)n = (1− ω)n,

where we have used the fact that (I+D−1Lω) and [(1−ω)I−ωD−1U ] are triangular matrices.
So

ρ(M) ≥ | detM |1/n = |(1− ω)n|1/n = |1− ω|.

Hence ρ(M) > 1 unless 0 < ω < 2 and so if SOR converges, then 0 < ω < 2. �

Theorem 11. If 0 < ω < 2 and A is real and positive definite, then SOR converges.

The usual choice is 1 < ω < 2.

We can also define symmetric versions of the Jacobi, Gauss-Seidel, and SOR methods.
For example, if we first define a backward version of the Gauss-Seidel method, i.e.,

xk+1 = −(U +D)−1Lxk + (U +D)−1b,

then a symmetric version can be defined by combining the forward and backward versions
as follows.

xk+1/2 = −(L+D)−1Uxk + (L+D)−1b, xk+1 = −(U +D)−1Lxk+1/2 + (U +D)−1b.

Eliminating xk+1/2, we get

xk+1 = (U +D)−1L(L+D)−1Uxk + (U +D)−1[I − L(L+D)−1]b.

Symmetric versions of the other methods are defined in a similar way.


