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3. MATRIX ITERATIVE METHODS

Matrix iterative methods are especially useful for the solution of linear systems involving
large sparse matrices (i.e., many zero entries).

A large class of such methods can be defined as follows: Write A = N — P, where N and
P are matrices of the same order as A, which we shall choose to have appropriate properties.
The system Ax = b is then written Nz = Px + b and we define a simple iteration scheme
by:

NzMt = Pk +p, k=0,1,...,

where 2° denotes an initial guess. We assume that det N # 0, so that the iteration scheme
produces a unique sequence of vectors {z*}. We also choose the matrix N so that the system
of equations Ny = z is easily solved (e.g., N may be diagonal or upper or lower triangular).

To describe some examples of this procedure, we write A = L+ U+ D where L denotes the
matrix whose elements below the main diagonal are equal to those of A, with the remaining
elements chosen to be zero. The matrix U is an upper triangular matrix that coincides with
the upper triangular elements of A, and D is a diagonal matrix that coincides with the
diagonal entries of A.

The Jacobi method (or method of simultaneous displacements) chooses N = D, P =
—(L+U) so
" = D YL 4+ U)a® 4+ D7, k=0,1,...,
where we have assumed the diagonal entries of A are non-zero (otherwise interchange rows
and columns to get an equivalent system with this property).

In terms of components, we have

n
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We note from these equations that some components of z¥*! are known, but not used, while
computing the remaining components. The Gauss-Seidel method (or method of successive
displacements) is a modification of the Jacobi method in which all the latest components are

used, as they are computed. This scheme is:
1 i—1 n
k1 k41 k .
x€; —a—“[bl—ZaUaz‘j — Z CLijl’j:|, 2—1,...,?7,.
j=1 J=i+1
The splitting of A that gives this procedure is N = L + D, P = —U, so that
2" = (L + D) 'Uz* + (L + D)™ 'b, k=01,...,

To consider the convergence of schemes of this form, i.e.,

o = N71pgk 4 N1y, k=0,1,...,
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we set M = N-'P. Since Nx = Pz + b, we have v = N 'Px + N~'b. Define the error
vector e¥ = x — z*. Then, subtracting equations, we have

ekl = NPk = Mek.
[terating this equation, we get
eF Tl = Mek = M2ebl = ... = MO

so e¥ = MP"e®. Thus, a sufficient condition for convergence of the iteration schemes, i.e.,
that limj_,. € = 0 is that limy_,oo M* = 0. If the method is to converge for all choices of
e?, then this condition is also necessary. A matrix M that satisfies this condition is called a
convergent matrix. The basic results characterizing convergent matrices are the following.

Theorem 5. The matriz M is convergent if and only if all the eigenvalues of M are less
than one in absolute value, i.e., p(M) < 1.

A sufficient condition for convergence, that is often easier to apply is:

Theorem 6. The matriz M is convergent if for any matriz norm, ||M| < 1.

Hence, if M = (m;;), then M will be convergent if

n n
1M || :miaXZ\mijy <1 or |M|; :m]aXijy < 1.
=1 i=1

A simple application of this result is the following:

Theorem 7. If A is strictly diagonally dominant, then Jacobi’s method converges.

Proof. By hypothesis,

n
|CLZ‘7;|>Z|CL1‘]'|, 2:1,,n
j=1
i
Hence,

> lagl/las| <1, i=1,...n

j=1

i
Recall that for Jacobi’s method, the iteration matrix M = —D ' (L+U), i.e., mj; = —a;j/a;
when ¢ # j and m;; = 0 when 7 = j. Hence,

n n
| M|oe = 112%12 [my;| = gfgjlz; |ag|/|ai] < 1.
j= i=

i

O

Although the proof is more complicated (we use an induction argument), one can also
show:
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Theorem 8. If A is strictly diagonally dominant, then the Gauss-Seidel method converges.

Some other convergence results for these methods are:

Theorem 9. (i) If A is Hermitian and positive definite, then the Gauss-Seidel method
converges. (i) If A is Hermitian and A and 2D— A are positive definite, then Jacobi’s method
converges. (iii) If A is irreducible and weakly diagonally dominant, then the Gauss-Seidel
method and Jacobi’s method converge. (i) If A is an L-matriz (i.e., a; > 0,0 =1,...,n
and a;; < 0,9 # 7,14,j =1,...,n, then the Gauss-Seidel method converges if and only if the
Jacobt method converges. If both converge, then the Gauss-Seidel method converges faster,
i.e., p(GS) < p(J), where p(A) denotes the spectral radius of the matriz A.

We next consider a method for accelerating the convergence of iterative methods. We
define the iteration:

i—1 n
:Bf+1 =(1- w):vf + “ [bi - Zaijxé?ﬂ _ Z a,-j:vf], 1=1,...,n,
i =1 j=it1
where w is a real parameter called the relaxation factor. Note w = 1 gives the Gauss-Seidel
method. The choice w < 1 is called under-relaxation, while w > 1 is called over-relaxation.
The usual strategy is to choose w > 1 and the resulting method is called SOR (successive
over-relaxation). Note that we may also write these equations as:

i—1 n
aiixfﬂ + wZaijx§+1 = a”(]_ — C&))ZE? +w |:bz - Z aijxﬂ s 1= ]_, o,

j=1 j=i+1

In matrix form, we have
(D + Lw)z*™ = (1 — w)Da* + w[b — U2"],
which we may rewrite as
" = (D + Lw) (1 — w)D — wU]z" + w(D 4 Lw) ™.

The motivation for this method comes from the proof of convergence of the general iteration
scheme. Recall, we showed that e**!' = Me*, where M is the iteration matrix. Hence,

|eEHL|| < || M||||€¥]], so we would like ||M]| as small as possible to reduce the error as much
as possible at each iteration.

When M is symmetric and || - || = || - ||2, then | M| = p(M) = max; |\;|. In this case,
we would like to choose w to minimize p(M). However, the best choice of w depends on A
and is difficult to calculate except in some special cases. However, there are some known
convergence results.

Theorem 10. If SOR converges, then 0 < w < 2.

Proof. The iteration matrix for SOR is given by
M = (D + Lw) '[(1 —w)D —wU] = (D[I + D' Lw])'[(1 — w)D — wU]
=+ D '"Lw)'D(1 —w)D —wU] = (I + D 'Lw) (1 —w)] —wD 'U].
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We will need the following facts about determinants.
det AB=det Adet B, detA=MXy---\,, det(L+D)=det(D+U)=di - dpn.

Now
p(M) = max || > [AiAg -+ A V™ = | det M|V,

But
det M = det[(I + D™ 'Lw)™'] - det[(1 — w)I — wD U]
_det[(1—-w) —wD U] 0 n
B T 70 R A e

where we have used the fact that (I+D~!Lw) and [(1—w)I—wD~U] are triangular matrices.
So

p(M) > | det M7 = |(1 = w)"|/" = |1 u].
Hence p(M) > 1 unless 0 < w < 2 and so if SOR converges, then 0 < w < 2. O

Theorem 11. If0 < w < 2 and A is real and positive definite, then SOR converges.

The usual choiceis 1 < w < 2.

We can also define symmetric versions of the Jacobi, Gauss-Seidel, and SOR methods.
For example, if we first define a backward version of the Gauss-Seidel method, i.e.,
2" = (U + D) 'La® + (U + D)™,

then a symmetric version can be defined by combining the forward and backward versions
as follows.
"2 = (L+ D)'Us* +(L+ D)y, "' = —(U+ D) 'La*2 + (U + D)"'b.

Eliminating 2**1/2, we get
" = (U + D) 'L(L+ D) 'Us* + (U + D) *[I — L(L + D)™ ']b.

Symmetric versions of the other methods are defined in a similar way.



