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5. Calculation of eigenvalues and eigenvectors

Given an n× n matrix A, we consider the problem of finding scalars λ and vectors x 6= 0,
such that Ax = λx. There are a number of methods for solving this problem, and the best
choice will depend on the type of matrix and whether we want some or all of the eigenvalues
and/or eigenvectors.

Generally speaking, we do not compute the eigenvalues of A by finding the solution of the
characteristic polynomial det(A − λI) = 0. For n > 4, there is no closed-form solution of
polynomial equations, so we need an approximation method. Also, the roots of a polynomial
can often be very sensitive to small changes in the coefficients, so roundoff errors in the
computation could lead to bad approximations of the eigenvalues. Instead, we use methods
that reduce the matrix A to a matrix that has the same eigenvalues, but one where the
eigenvalues are easy to compute.

5.1. Canonical forms of matrices. We begin by recalling the following definition.

Definition: Two matrices A and B are similar if A = C−1BC for some nonsingular matrix
C.

Lemma 2. If A and B are similar, then they have the same characteristic polynomial (and
hence the same eigenvalues).

Proof. Let A = C−1BC. Then

det(A− λI) = det(C−1BC − λI) = det[C−1(B − λI)C] = det(C−1) · det(B − λI) · detC
= [detC]−1 · det(B − λI) · detC = det(B − λI).

�

The importance of this result is that we can use similarity transformations to reduce A to
a simple form from which the eigenvalues are easily determined. We note that if A = C−1BC
and Ax = λx, then C−1BCx = λx and so BCx = λCx. Hence, if λ is an eigenvalue of A
with eigenvector x, then λ is an eigenvalue of B with eigenvector Cx.

We next consider the question: For what types of matrices are the eigenvalues easily
determined? Clearly, this is the case for triangular matrices, since the eigenvalues are just
the diagonal entries. This leads to the obvious question: What types of matrices can be
reduced to these forms by similarity transformations?

Definition: An n × n matrix A is called defective if it has an eigenvalue of multiplicity k
having fewer than k linearly independent eigenvectors.
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Example: The matrix

(

1 1
0 1

)

has a double eigenvalue λ = 1, but only one linearly

independent eigenvector [1, 0]T , so is defective. By contrast, the matrix

(

1 0
0 1

)

also has a

double eigenvalue λ = 1, but has two linearly independent eigenvectors [1, 0]T and [0, 1]T .

Theorem 13. Let A be an n×n matrix with complex entries. Then A is nondefective if and
only if there is a nonsingular matrix X such that X−1AX = Λ = diag(λ1, . . . , λn), where the
λi are the eigenvalues of A and the ith column of X is an eigenvector of A corresponding to
λi.

There are a few problems with this result. The first is that X may be ill-conditioned so
that X−1AX may be inaccurate. The second problem is that given an X, we must calculate
X−1. Instead, we consider what simplifications can be accomplished using the class of unitary
transformations, i.e., U−1 = U∗ ≡ ŪT .

Theorem 14. Let A be an n×n matrix with complex entries. If A has eigenvalues λ1, . . . , λn,
then there is a unitary matrix U such that U∗AU is upper triangular with diagonal elements
λ1, . . . , λn.

Corollary 2. If A is normal, i.e., A∗A = AA∗, then U∗AU will be diagonal.

Note that if A is Hermitian, A = A∗, then A is normal.

If A is real, we do not want to use general unitary transformations to triangularize A,
since U∗AU will then have complex elements. We then confine ourselves to real unitary
transformations, i.e., orthogonal matrices Q satisfying Q−1 = QT . In this case, we will not
generally get QTAQ to be a triangular matrix. Instead, we have the following result.

Theorem 15. Let A be a real n×n matrix. Then there exists an orthogonal matrix Q such
that QTAQ is quasi-triangular (i.e., A is block triangular with each diagonal block of order
≤ 2). Moreover, Q may be chosen so that any 2×2 diagonal block of QTAQ has only complex
eigenvalues (which must be complex conjugates – since a polynomial with real coefficients can
only have complex roots in conjugate pairs).

A quasi-triangular matrix will have the form




A1 A2 A3

0 A4 A5

0 0 A6



 ,

where the matrices A1, A4, and A6 are at most 2× 2.

Another terminology that is used is to call A upper Hessenberg if aij = 0 when i > j+1. So
if A is real, then there exists an orthogonal matrix Q such that QTAQ is upper Hessenberg.

Corollary 3. If A is real and symmetric, then there exists an orthogonal matrix Q such that
QTAQ is tridiagonal.
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Proof.
(QTAQ)T = QTATQ = QTAQ,

so QTAQ is symmetric. Hence aij = 0 when i > j + 1 and when j > i+ 1. �

In fact, since A has only real eigenvalues in this case, QTAQ = D, where D is a diagonal
matrix containing the eigenvalues of A. Then AQ = QD, so Q is a matrix of corresponding
orthogonal eigenvectors.

We will use these results as a basis for numerical approximation schemes.

5.2. Perturbation theory for eigenvalues and eigenvectors. The numerical schemes
we study will produce approximate eigenvalues and eigenvectors. If λ is an approximate
eigenvalue of a matrix A and x a corresponding approximate eigenvector, we can ask whether
if ‖Ax − λx‖ is small, will λ and/or x be good approximations to some eigenvalue and
corresponding eigenvector of A.

The following perturbation result gives a partial answer to that question.

Theorem 16. (i) If A has n linearly independent eigenvectors xi corresponding to eigenval-
ues λi, then for any scalar λ and vector x 6= 0,

min
i

|λi − λ| ≤ ‖P−1‖‖P‖‖Ax− λx‖/‖x‖,

where P is a matrix whose ith column is the eigenvector xi and ‖ · ‖ is the 1,2, or ∞ norm.
(ii) If A is normal, then

min
i

|λi − λ| ≤ ‖Ax− λx‖2/‖x‖2.

Proof. Let r = (A−λI)x. By the definition of P , P−1AP = Λ, where Λ is a diagonal matrix
with the λi on the diagonal. Hence, A = PΛP−1 and so

P (Λ− λI)P−1x = (A− λI)x = r.

If λ is an eigenvalue of A then the estimate is trivially true. If not, then (Λ− λI)−1 exists,
so x = P (Λ− λI)−1P−1r. Hence,

‖x‖ ≤ ‖P‖‖(Λ− λI)−1‖‖P−1‖‖r‖.
Now

‖(Λ− λI)−1‖ = max
i

|λi − λ|−1

for the 1, 2,∞ norms. Hence,

‖x‖ ≤ 1

mini |λi − λ|‖P
−1‖‖P‖‖Ax− λx‖,

which implies that
min

i
|λi − λ| ≤ ‖P−1‖‖P‖‖Ax− λx‖/‖x‖.

If A is normal, then P is a unitary matrix, so ‖P‖2 = ‖P−1‖2 = 1 and the result follows
immediately. �
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So for normal matrices, a small residual does guarantee a good approximation, while for
more general matrices, we could get magnification of the error by the condition number of
the matrix P .

We next ask whether a small residual guarantees an accurate approximation to an eigen-
vector. We shall see by the following example that the answer is no, even for symmetric
matrices. Let

A =

(

a ǫ
ǫ a

)

, λ = a, x =

(

1
0

)

.

Then Ax− λx = (0, ǫ)T so ‖Ax− λx‖2 = |ǫ|. An easy calculation shows that the true eigen-
values of A are given by a± ǫ with corresponding orthonormal eigenvectors (1/

√
2, 1/

√
2)T

and (1/
√
2,−1/

√
2)T . Obviously, x is not a good approximation to either of these. The

problem occurs when the eigenvalues are close. However, we are able to obtain the following
error bound.

Theorem 17. Suppose A = A∗ and let λ be a scalar and x 6= 0 a unit vector. Let λ1, . . . , λn

be the eigenvalues of A and x1, . . . , xn corresponding orthonormal eigenvectors, Suppose that

|λi − λ| ≤ ‖Ax− λx‖2, i = 1, 2, . . . , r, |λi − λ| ≥ d, i = r + 1, . . . , n.

Then

min
a1,...,ar

‖x−
r

∑

i=1

aix
i‖2 ≤ ‖Ax− λx‖2/d.

Note: by a previous theorem, there exist some λi such that |λi − λ| ≤ ‖Ax − λx‖2. We
are considering the situation when there might be other close eigenvalues that have some
separation from the remaining eigenvalues.

Proof. Since the {xi} are a basis for R
n, there exist constants bi such that x =

∑n

i=1
bix

i.
Using the fact the {xi} are an orthonormal basis, we have

min
a1,...,ar

‖x−
r

∑

i=1

aix
i‖2 ≤ ‖x−

r
∑

i=1

bix
i‖2 = ‖

n
∑

i=r+1

bix
i‖2 =

n
∑

i=r+1

|bi|2.

Now

‖Ax− λx‖22 = ‖(A− λI)
n

∑

i=1

bix
i‖22 = ‖

n
∑

i=1

bi(λi − λ)xi‖22 =
n

∑

i=1

b2i (λi − λ)2

≥
n

∑

i=r+1

b2i (λi − λ)2 ≥ d2
n

∑

i=r+1

b2i .

Combining these results, we get

min
a1,...,ar

‖x−
r

∑

i=1

aix
i‖2 ≤ ‖Ax− λx‖22/d2,

and the result follows by taking square roots of both sides of the inequality. �


