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5.3. Bounds for eigenvalues. For some iterative numerical methods for finding eigenval-
ues, one needs to have an initial guess for the eigenvalue. In that case, the following result
can sometimes be useful.

Theorem 18. (Gershgorin) Let A = (aij) and let Ci denote circles with centers aii and radii
ri =

∑n
j=1

j 6=i

|aij|. Let D = ∪n
i=1Ci. Then all the eigenvalues of A lie in the set D.

Proof. If λ is an eigenvalue of A, then there exists an eigenvector x 6= 0 such that Ax = λx,
i.e.,

∑n

j=1
aijxj = λxi, i = 1, . . . , n, which we rewrite as

(λ− aii)xi =
n

∑

j=1

j 6=i

aijxj, i = 1, . . . , n.

Let xk be the largest component of x in absolute value (so xk 6= 0). Then applying the above
with i = k, we have

|λ− akk||xk| ≤

n
∑

j=1

j 6=k

|akj||xj|.

Since |xj| ≤ |xk| for j 6= k, we get

|λ− akk| ≤

n
∑

j=1

j 6=k

|akj| = rk.

Hence, λ ∈ Ck ⊂ D. Since λ is an arbitrary eigenvalue, all the eigenvalues of A lie in D. �

Corollary 4. The spectral radius of A, ρ(A) ≤ max1≤i≤n

∑n

j=1
|aij|.

Proof. For any eigenvalue λ, there is some k such that

|λ| − |akk| ≤ |λ− akk| ≤
n

∑

j=1

j 6=k

|akj|,

and so

|λ| ≤
n

∑

j=1

|akj| ≤ maxi

n
∑

j=1

|aij|.

�

One can also establish the following more precise version of Gershgorin’s theorem.

Theorem 19. If k Gershgorin circles of the matrix A are disjoint from the others, then
exactly k eigenvalues of A lie in the union of the k circles.

Example: Let

A =





1 10−4 10−4

10−4 1 10−4

10−4 10−4 2



 .
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Then
C1 = C2 = {λ : |λ− 1| ≤ 2× 10−4}, C2 = {λ : |λ− 2| ≤ 2× 10−4}.

Hence two eigenvalues lie in C1 and one eigenvalue lies in C2.

5.4. Power method. We begin the study of numerical methods for finding eigenvalues
and eigenvectors of a matrix by considering the power method, which can be used to find
approximations to the dominant eigenvalue and corresponding eigenvector of a matrix A.
We will assume that A is real, has a complete set of eigenvectors, and that the eigenvalues
of A satisfy:

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.

In particular, λ1 is real, since if it was complex, λ̄1 would also be an eigenvalue and since
|λ1| = |λ̄1|, our hypothesis would be violated.

Let x1, · · · , xn denote a set of linearly independent eigenvectors of A, with x1 the eigenvec-
tor corresponding to λ1. Let q0 denote an initial approximation to x1, where we assume that
‖x1‖ = ‖q0‖ = 1. We may choose any norm, but for simplicity, we take ‖x1‖∞ = ‖q0‖∞ = 1.
The power method then defines a sequence {qk} by

qk+1 = Aqk/σk, where σk = ‖Aqk‖∞.

Hence, ‖qk+1‖∞ = 1. We then have the following result.

Theorem 20. Suppose that q0 = γ1x
1 + γ2x

2 + · · · γnx
n, where γ1 6= 0. Then

lim
k→∞

qk sgn(λ
k
1) = (sgn γ1)x1,

i.e., {qk} converges to a unit eigenvector associated to λ1.

Although x1 is not known, a random choice of q0 will usually have the desired property.

Proof. Using the expansion for q0, we have

q1 = [γ1λ1x
1 + γ2λ2x

2 + · · ·+ γnλnx
n]/σ0,

q2 = [γ1λ
2

1x
1 + γ2λ

2

2x
2 + · · ·+ γnλ

2

nx
n]/[σ0σ1],

· · · = · · ·

qk = [γ1λ
k
1x

1 + γ2λ
k
2x

2 + · · ·+ γnλ
k
nx

n]/[σ0σ1 · · · σk−1],

= λk
1[γ1x

1 + γ2(λ2/λ1)
kx2 + · · ·+ γn(λn/λ1)

kxn]/[σ0σ1 · · · σk−1].

Since ‖qk‖∞ = 1 for all k, |λj/λ1| < 1 for j = 2, . . . , n, and σi > 0 for all i,

1 = lim
k→∞

|λk
1|

σ0σ1 · · · σk−1

‖γ1x
1 + γ2(

λ2

λ1

)kx2 + · · ·+ γn(
λn

λ1

)kxn‖∞ = |γ1| lim
k→∞

|λk
1|

σ0σ1 · · · σk−1

.

Hence,

lim
k→∞

qk sgn(λ
k
1) = lim

k→∞

|λk
1|

σ0σ1 · · · σk−1

[γ1x
1 + γ2(

λ2

λ1

)kx2 + · · ·+ γn(
λn

λ1

)kxn] =
γ1
|γ1|

x1.

Thus, except for possible sign changes, {qk} converges to ±x1. �
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The rate of convergence depends on the ratio |λ2/λ1|. To see this more precisely, we
observe that

‖
σ0σ1 · · · σk−1

γ1λk
1

qk − x1‖∞ = ‖

n
∑

j=2

(γj/γ1)(λj/λ1)
kxj‖∞

≤
n

∑

j=2

|γj/γ1||λj/λ1|
k ≤ |λ2/λ1|

k

n
∑

j=2

|γj/γ1| ≤ C|λ2/λ1|
k,

where we have assumed that the eigenvectors xj are normalized so that ‖xj‖∞ = 1.

There are a number of ways to obtain a sequence of approximate eigenvalues. One method
is to suppose that u is any vector such that uTx1 6= 0. Although x1 is not known, a
random choice of u will usually have this property. Now consider the sequence of eigenvalue
approximations given by µk = uTAqk/(u

T qk). Then

uTAqk = σku
T qk+1 = σk

λk+1

1

σ0σ1 · · · σk

uT [γ1x
1 + γ2

(

λ2

λ1

)k+1

x2 + · · ·+ γn

(

λn

λ1

)k+1

xn],

while

uT qk =
λk
1

σ0σ1 · · · σk−1

uT [γ1x
1 + γ2

(

λ2

λ1

)k

x2 + · · ·+ γn

(

λn

λ1

)k

xn].

Hence,

µk =
uTAqk
uT qk

= λ1

uT [γ1x
1 + γ2

(

λ2

λ1

)k+1

x2 + · · ·+ γn

(

λn

λ1

)k+1

xn]

uT [γ1x1 + γ2

(

λ2

λ1

)k

x2 + · · ·+ γn

(

λn

λ1

)k

xn]
,

and it easily follows that limk→∞ µk = λ1.

When the matrix A is symmetric, a better method is to consider the Rayleigh quotient
sequence µk = qTk Aqk/q

T
k qk. Then, using the fact that the eigenvectors can be chosen to be

orthogonal, we have

qTk Aqk = σkq
T
k qk+1

= σk

λk
1

σ0σ1 · · · σk−1

[γ1x
1 + γ2

(

λ2

λ1

)k

x2 + · · ·+ γn

(

λn

λ1

)k

xn]T

·
λk+1

1

σ0σ1 · · · σk

[γ1x
1 + γ2

(

λ2

λ1

)k+1

x2 + · · ·+ γn

(

λn

λ1

)k+1

xn]

= λ1

(

λk
1

σ0σ1 · · · σk−1

)2
[

γ2

1‖x
1‖22 + γ2

2

(

λ2

λ1

)2k+1

‖x2‖22 + · · ·+ γ2

n

(

λn

λ1

)2k+1

‖xn‖22

]

,

while

qTk qk =

(

λk
1

σ0σ1 · · · σk−1

)2
[

γ2

1‖x
1‖22 + γ2

2

(

λ2

λ1

)2k

‖x2‖22 + · · ·+ γ2

n

(

λn

λ1

)2k

‖xn‖22

]

.
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Hence, it easily follows that
lim
k→∞

µk = λ1

and the rate of convergence is proportional to (λ2/λ1)
2k, twice the rate of the eigenvector

convergence, and an improvement over the nonsymmetric case.

5.5. Inverse power method. Using the ideas presented above, we next consider a method
for finding an approximation to an eigenvector when a good approximation to an eigenvalue
is known. The method uses the following result.

Lemma 3. Let λ1, λ2, . . . , λn be the eigenvalues of the matrix A and assume that λ 6= λi for
i = 1, . . . , n. Then if xi is an eigenvector of A corresponding to the eigenvalue λi, x

i is an
eigenvector of (λI − A)−1 corresponding to the eigenvalue (λ− λi)

−1.

Proof. Since Axi = λix
i, (λI − A)xi = (λ− λi)x

i and so (λI − A)−1xi = (λ− λi)
−1xi. �

We now consider the power method applied to the matrix B = (λI − A)−1, i.e., qk+1 =
Bqk/σk, where σk = ‖Bqk‖∞. The resulting method is called the inverse power method. We
know that this method converges to the eigenvector corresponding to the largest eigenvalue
of B. But this is the eigenvalue of A that is closest to λ. Note that we may write this
iteration in the form:

(λI − A)q̃k+1 = qk, qk+1 = q̃k+1/‖q̃k+1‖∞.

Hence, at each step we need to solve a linear system of equations. However, since we always
use the same matrix, only one LU decomposition is needed and then one backsolve per
iteration. In fact, if λ is close to λi, the convergence is very rapid (a couple of iterations).

5.6. Rayleigh quotient iteration. For symmetric matrices, we can combine the use of
the Rayleigh quotient and inverse power method to produce a fast converging method for
the computation of an eigenvalue and the corresponding eigenvector. Given an approximate
eigenvalue λ0 and approximate eigenvector x0, do the following steps for n = 1, 2, . . . until
convergence:

(i) Compute a new approximate eigenvector xn by applying the inverse power method to
the eigenvector xn−1 using the approximate eigenvalue λn−1.

(ii) Use the eigenvector xn to compute a new eigenvalue λn by the Rayleigh quotient.


