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6. QR algorithm

We next study the recommended algorithm for finding all the eigenvalues and eigenvectors
of a general real nonsymmetric matrix. The basic algorithm is fairly simple. Starting with
A0 = A, we define the iteration:

Ai = QiRi, Ai+1 = RiQi,

where Qi is an orthogonal matrix and Ri is upper triangular. Note that Ri = Q−1
i Ai, so

Ai+1 = Q−1
i AiQi. Since Ai+1 is obtained from Ai by a similarity transformation, these

matrices have the same eigenvalues. The idea of the method is that the sequence {Ai} con-
verges to a matrix from which the eigenvalues can be easily determined. For example, if the
eigenvalues are real and distinct, the sequence converges to an upper triangular matrix with
the eigenvalues on the diagonal. More generally, we get convergence to a quasi-triangular
matrix, from which the eigenvalues are also easily determined.

To use this algorithm, we require that Ai have a QR factorization. This in ensured by the
following result.

Theorem 21. If A is real and nonsingular, then there exists a decomposition A = QR for

which Q is orthogonal and R is upper triangular. Furthermore, if the diagonal elements rii
of R are positive, then the decomposition is unique.

Remark: In general, there can be nonuniqueness of the factorization, since if A = QR,
then also A = [QD][D−1R], where D is any diagonal matrix with entries of 1 or −1 on the
diagonal. Note that QD will still be orthogonal and D−1R upper triangular.

Because of the number of arithmetic operations involved, the QR algorithm is practical
only when applied to a matrix in upper Hessenberg form (i.e., aij = 0 for i > j + 1). Hence
the method consists of two steps. In the first step, we find a similar matrix which is in upper
Hessenberg form. The second step is then to apply the QR algorithm to this new matrix.
One can show that if A is in upper Hessenberg form, applying the QR algorithm results in
a sequence of matrices that are also in this form.

One way of reducing a matrix to upper Hessenberg form is to apply Householder transfor-
mations. When A is symmetric, this reduces A to tridiagonal form. For nonsymmetric A,
there is another method that is more efficient, using stabilized (elementary) transformations.
However, since the factorization of A = QR is also done by Householder transformations,
we shall use these transformations for both steps.

6.1. Reduction to Hessenberg form using Householder transformations. The idea
is to find a sequence of orthogonal matrices Pk such that if Ak = P T

k Ak−1Pk, k = 1, 2, . . . , n−
2, with A0 = A, then An−2 is upper Hessenberg. We assume that A is a real n× n matrix.
More specifically, we find at the rth step, a matrix Pr that introduces zeroes in the rth
column (below the subdiagonal), without affecting zeroes in the previous columns (below
the subdiagonal). We illustrate this process in the case n = 7, r = 4. The configuration
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immediately before the rth step (in which Ar is computed from Ar−1) is given by:
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0 0 0 × | × × ×
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where br−1 and dr−1 are vectors with n − r components, Br−1 is a matrix of order n − r,
Cr−1 is a matrix of order r, and Dr−1 is a r − 1 × n − r matrix. We note that the initial
configuration is given by

A = A0 =


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c0 | dT0
− | − − −

|
b0 | B0

|


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
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

.

The matrix Pr may be expressed in the form

Pr =





I | 0
− | −
0 | Qr



 =





I | 0
− | −
0 | I − 2vrv

T
r



 ,

where Qr is a matrix of order n− r and vr is a unit vector having n− r components.

The motivation for choosing Pr of this form is that, as we shall see, P T
r Ar−1Pr leaves the

upper r× r block of Ar−1 unchanged (which is already upper Hessenberg), and is easily seen
to be an orthogonal matrix. Note that

PrP
T
r = PrPr =

(

I 0
0 Qr

)(

I 0
0 Qr

)

=

(

I 0
0 QrQr

)

and, since vTv = 1,

QrQr = (I − 2vvT )(I − 2vvT ) = I − 4vvT + 4vvTvvT = I.
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Hence we have Ar = P T
r Ar−1Pr = PrAr−1Pr =


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If we now choose vr so that Qrbr−1 is zero except for its first component, then Ar will be upper
Hessenberg in its first r columns. To avoid problems with subscripts in the construction of
v, we write the matrix

Pr = I − 2wrw
T
r = I − uru

T
r /(2K

2
r ).

Letting a
(r−1)
ij denote the ijth element of Ar−1 and setting

Sr = (
n
∑

i=r+1

[a
(r−1)
ir ]2)1/2 sgn(a

(r−1)
r+1,r),

we then choose

(ur)i = 0, i = 1, . . . , r, (ur)r+1 = a
(r−1)
r+1,r + Sr, (ur)i = a

(r−1)
ir , i = r + 2, . . . , n,

where 2K2
r = S2

r + a
(r−1)
r+1,rSr. Computations then show that with these choices, the last

n− r − 1 components of Qrbr−1 = 0 and vr is a unit vector.

At the end of this process, we get the Hessenberg matrix

H = Pn−2Pn−1 · · ·P1AP1P2 · · ·Pn−2,

which is similar to A.

Remark: If A is symmetric, then since each Pr is symmetric, H will be symmetric and
hence tridiagonal.

Remark: One can derive efficient formulas for computing H without performing all the
matrix multiplications indicated by the above formula. See the references for details.
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6.2. Implementation of the QR algorithm. We now assume that the matrix A is in
upper Hessenberg form and consider the implementation of the QR algorithm. Recall, we
set A0 = A and then (i) factor Ai = QiRi with Qi orthogonal and Ri upper triangular and
(ii) set Ai+1 = RiQi.

We now show how step (i) can be done using Householder transformations. We set M0 =
Ai. We then construct a sequence {Mr}, r = 1, 2, . . . , n − 1, where the matrix Mr will be
upper triangular in its first r columns. Thus, there are n− 1 steps, and just before the rth
step, the matrix Mr−1 (upper triangular in its first r − 1 columns) will have the form

Mr−1 =





Ur−1 | Vr−1

− | −
0 | Wr−1



 ,

where Ur−1 is an (r−1)× (r−1) upper triangular matrix. We then set Mr = PrMr−1, where
Pr has the form

Pr =





I | 0
− | −−
0 | I − 2vvT



 ,

where the identity matrix in the upper left corner is of order r − 1 and vTv = 1. Then

Mr = PrMr−1 =





Ur−1 | Vr−1

− | − −−
0 | (I − 2vvT )Wr−1



 .

We then choose v so that the first column of (I−2vvT )Wr−1 is zero, except for its first element.
This is essentially what we did previously, except now the first column of (I − 2vvT )Wr−1

has n− r + 1 components (instead of n− r components).

Let M
(r−1)
ij denote the i, jth entry of Mr−1. Set

Sr =

(

n
∑

i=r

[M
(r−1)
ir ]2

)1/2

sgnM (r−1)
r,r , 2K2

r = S2
r + a(r−1)

r,r Sr.

To avoid problems with subscripts, we again write

Pr = I − 2wrw
T
r = I −

1

2K2
r

urr
T
r , where now

(ur)i = 0, i = 1, 2, . . . , r − 1, (ur)r = M (r−1)
r,r + Sr, (ur)i = M

(r−1)
i,r , i = r + 1, . . . n.

Then Mn−1 = Pn−1Pn−2 · · ·P1M0 is upper triangular. Since the Pi are orthogonal, defining
Q−1 = Pn−1Pn−2 · · ·P1, we see that Q

−1 is orthogonal and hence Q = (Pn−1Pn−2 · · ·P1)
−1 =

(Pn−1Pn−2 · · ·P1)
T = P1P2 · · ·Pn−1 is orthogonal. Then, taking Ri = Mn−1 and Qi =

P1P2 · · ·Pn−1, we get the decomposition Ai = QiRi, with Qi orthogonal and Ri upper trian-
gular.


