
2 NUMERICAL SOLUTION OF PDES

1. Finite Difference Methods for Elliptic Equations

1.1. The Dirichlet problem for Poisson’s equation. We consider the finite difference
approximation of the boundary value problem:

Problem P: −∆u = f in Ω, u = g on ∂Ω.

For simplicity, we first consider the case when Ω is the unit square (0, 1) × (0, 1). To
obtain a finite difference approximation, we place a mesh of width h with sides parallel to
the coordinate axes on Ω̄ (Ω together with its boundary ∂Ω) and denote the set of mesh
points lying inside Ω by Ωh and the set of mesh points lying on the ∂Ω by ∂Ωh. We then
seek numbers uij as approximations to the true solution u(ih, jh), where i, j = 0, 1, . . . , N
and Nh = 1. To obtain uij, we derive a system of equations that approximate the equations
determining the true solution u(ih, jh), i.e., the equations

−∆u(ih, jh) = f(ih, jh), (ih, jh) ∈ Ω.

To get these approximate equations, we use Taylor series expansions, i.e, we write

u(x ± h, y) = u(x, y) ± h
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for some x ≤ ξ+ ≤ x + h and x − h ≤ ξ− ≤ x. Adding these equations, we get
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where x − h ≤ ξ ≤ x + h and we have used the Mean Value Theorem for sums in the last
step, i.e., if gi ≥ 0 and

∑M

i=1 gi = 1, then there is a number c satisfying min xi ≤ c ≤ max ci

such that
∑M

i=1 gif(xi) = f(c). Using similar expansions in the y variable, we get

u(x, y + h) − 2u(x, y) + u(x, y − h) = h2∂2u
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where y − h ≤ η ≤ y + h. Adding these equations and dividing by h2, we get
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Defining a finite difference operator

∆hu(x, y) =
1
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and supposing that
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we get

|∆u(ih, jh) − ∆hu(ih, jh)| ≤
M4

6
h2.

We then use the discrete Laplace operator ∆h to define a set of discrete equations from
which we can determine uij, i.e., we consider the problem:

Problem Ph: Find a mesh function Uh = (uij) (i.e., Uh is only defined at the mesh points),
such that

−∆hUh = f on Ωh, Uh = g on ∂Ωh.

This is a system of (N + 1)2 linear equations for the (N + 1)2 unknowns uij, i, j = 0, . . . N .
We next consider the form of these equations in the special case h = 1/4.

Since the boundary values u00, u10, u20, u30, u40, u01, u02, u03, u04, u41, u42, u43, u44, u14,
u24, u34 are all given by the corresponding values of g, we need only determine the values
u11, u12, u13, u21, u22, u23, u31, u32, u33. The equations for these are:

4u11 − u21 − u12 − u01 − u10 = h2f11,

4u21 − u31 − u11 − u20 − u22 = h2f21

and so on, where fij = f(ih, jh). Rewriting in matrix form, we get
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h2f11 + u10 + u01

h2f21 + u20

h2f31 + u30 + u41

h2f12 + u02

h2f22

h2f32 + u42

h2f13 + u03 + u14

h2f23 + u24

h2f33 + u34 + u43



























Note several properties of this linear system: (1) The right hand side is known; (2) the
symmetry properties of the matrix depend on the ordering of the elements; (3) this is an
example of a sparse matrix – many zero elements. If we decreased the mesh size further, we
would introduce more zeroes.

Questions: (1) Does this type of linear system have a unique solution? (2) How does the
error between the true and approximate solutions depend on the mesh size h? (3) What is
an efficient way to solve the linear system when the number of equations becomes large?

To see that this linear system always has a unique solution, we first establish a property
of the discrete Laplace operator ∆h, known as a discrete maximum principle.

Theorem 1. (i) If v is a function defined on Ωh ∪ ∂Ωh and satisfies ∆hv(x, y) ≥ 0 for all
(x, y) ∈ Ωh, then maxΩh

v ≤ max∂Ωh
v.

(ii) Alternatively, if v satisfies ∆hv(x, y) ≤ 0 for all (x, y) ∈ Ωh, then minΩh
v ≥ min∂Ωh

v.
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Proof. The proof is by contradiction. Let (x0, y0) ∈ Ωh at which v has a maximum, i.e.,
v(x0, y0) = M , where M ≥ v(x, y) for all (x, y) ∈ Ωh and M > v(x, y) for (x, y) ∈ ∂Ωh. By
assumption, ∆hv(x0, y0) ≥ 0. Hence,

M = v(x0, y0) ≤
1

4
{v(x0 + h, y0) + v(x0 − h, y0) + v(x0, y0 + h) + v(x0, y0 − h)}.

But M ≥ v(x, y) then implies that v(x0 ± h, y0) = M and v(x0, y0 ± h) = M . Repeating
this argument, we eventually conclude that v(x, y) = M for all (x, y) ∈ Ωh ∪ ∂Ωh. This
contradicts our initial assumption, so (i) follows. To establish (ii), we let w(x, y) = −v(x, y).
Then ∆hw(x, y) = −∆hv(x, y) ≥ 0, so by (i), maxΩh

[−v(x, y)] ≤ max∂Ωh
[−v(x, y)]. But

max[−v(x, y)] = −min v(x, y), so −minΩh
v(x, y) ≤ −min∂Ωh

[v(x, y)]. Then (ii) follows by
multiplying by (−1), which reverses the sign of the inequality. �

We note that we can extend this result to non-square domains.

Theorem 2. The linear system of equations corresponding to the difference equations

−∆hUh(x, y) = f(x, y), (x, y) ∈ Ωh, Uh(x, y) = g(x, y), (x, y) ∈ ∂Ωh

has a unique solution.

Proof. We use the fact that a square linear system Az = b will have a unique solution if
and only if the only solution of the homogeneous system Az = 0 is z = 0. Hence, we need
to show that the only solution to Problem Ph when f and g are zero is Uh = 0. But by
Theorem 1, since ∆hU is both ≥ 0 and ≤ 0, both the maximum and minimum of U(x, y)
occur on ∂Ωh. Hence, 0 ≤ U(x, y) ≤ 0 for all (x, y) ∈ Ωh ∪ ∂Ωh and so U ≡ 0. �


