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3. A posteriori error estimates and an adaptive finite element method

Having computed an approximation to the solution of a partial differential equation using
a finite element method defined on an initial mesh, we consider the best way to obtain a
more accurate solution. The simplest approach is simply to uniformly refine all triangles in
the triangulation Th. This can be done by subdividing each triangle into four triangles by
connecting the midpoints of the edges of each triangle. The problem with this approach is
that in regions where the true solution is smooth, we expect a fairly course mesh to already
produce an accurate approximation. Hence, we can reduce the work involved by seeking
to refine the mesh only in regions where the solution is not so smooth. A finite element
method in which we successively adapt the mesh is called an adaptive finite element method.
It is based on having local estimates for the error, so that we can refine the mesh where the
error is largest. Such estimates are based on the ideas of a posteriori error analysis, which
computes an approximation to the error using the just computed approximate solution. To
study these ideas, we first introduce a theoretical tool needed for the analysis.

3.1. A posteriori error estimates. In the error estimates derived previously, we obtained
a priori bounds for the error which did not depend on the computed approximate solution,
but only on the unknown solution u. We now seek error bounds that we can compute directly
from the computed solution uh. The ultimate aim of these bounds, as explained above, is to
use them to determine a strategy to refine the mesh to compute better approximations.

Assume that Ω is a convex polygon in the plane and consider again the model problem

Lu ≡ − div(p∇u) + qu = f in Ω, u = 0 on ∂Ω,

which we write in weak form: Find u ∈ V ≡ H̊1(Ω) such that

a(u, v) = F (v), v ∈ H̊1(Ω),

where

a(u, v) =

∫

Ω

[p∇u · ∇v + quv] dx, F (v) =

∫

Ω

fv dx.

Let uh ∈ Vh satisfy:
a(uh, v) = F (v), v ∈ Vh.

Theorem 6. Let hT denote the diameter of the triangle T and he the length of the edge e.
Then there exists a constant C independent of h such that

‖u− uh‖L2(Ω) ≤ C

(

∑

T∈Th

η2T

)1/2

,

where

η2T = h4
T‖RT (uh)‖2L2(T ) +

1

2

∑

e∈∂T

h3
e‖Re(uh)‖2L2(e), RT (uh) = (f − Luh)|T ,

Re(uh) = −p∇uh|T ′ · nT ′ − p∇uh|T · nT = −p (∇uh|T · nT −∇uh|T ′ · nT ) ,

and e is the common edge shared by the triangles T and T ′. (Note that nT ′ = −nT ).
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Proof. We use the duality argument from the proof of the L2 estimates, i.e., we let w ∈ H̊1(Ω)
be the solution of

a(v, w) = (u− uh, v), for all v ∈ H̊1(Ω).

Writing the integral over Ω as the sum of the integrals over T ∈ Th, using Galerkin orthog-
onality, and integrating by parts, we get

‖u− uh‖2L2(Ω) = a(u− uh, w) = a(u− uh, w − wI) = (f, w − wI)− a(uh, w − wI)

=
∑

T∈Th

[(f, w − wI)T − a(uh, w − wI)T ]

=
∑

T∈Th

[

(f − Luh, w − wI)T −
∫

∂T

p∇uh · n(w − wI) ds

]

.

We now write the integrals over ∂T as the sum of the integrals over the three edges of T .
Note that except for the edges lying on ∂Ω, each edge will appear exactly twice when we
sum over all the triangles. Since w and wh are zero on ∂Ω, the boundary edge integrals will
be zero. For each interior edge e of T , let T ′ denote the other triangle in Th that also has e
as an edge. From the definitions of RT and Re, we can rewrite the above in the form

‖u− uh‖2L2(Ω) =
∑

T∈Th

[

(RT (uh), w − wI)T +
1

2

∑

e∈∂T

∫

e

Re(uh)(w − wI) ds

]

,

where the factor 1/2 occurs because each term involving Re(uh) occurs twice in the sum.
Now

(RT (uh), w − wI)T ≤ ‖RT (uh)‖L2(T )‖w − wI‖L2(T ) ≤ Ch2
T‖RT (uh)‖L2(T )‖w‖H2(T ),

and
∫

e

Re(uh)(w − wI) ds ≤ ‖Re(uh)‖L2(e)‖w − wI‖L2(e) ≤ Ch3/2
e ‖Re(uh)‖L2(e)‖w‖H2(T ).

This last estimate is not something we have seen before. To get such an estimate, we can
start from the integration by parts formula

∫

T

div vz dx+

∫

T

v · ∇z dx =

∫

∂T

zv · n ds.

To simplify, but still see how the powers of h enter, consider the special triangle with vertices
(0, 0), (h, 0), and (0, h). Let e1 denote the edge joining (0, 0) and (h, 0) and v be the function
(x/h, y/h− 1). Note that div v = 2/h and |vi| ≤ 1 on T . On the edge e1, n = (0,−1) and
v ·n = 1. On the edge e3 joining (0, h) and (0, 0), n = (−1, 0) and v ·n = 0. On the edge e2
joining (h, 0) and (0, h), n = (1/

√
2, 1/

√
2) and v · n = 0. Choosing z = (w − wI)

2, we get
∫

∂T

zv · n ds =

∫

e1

(w − wI)
2 ds ≤ (2/h)

∫

T

(w − wI)
2 dx+ 2

∫

T

|w − wI ||∇(w − wI)| dx

≤ (2/h)‖w − wI‖20,T + 2‖w − wI‖0,T‖∇(w − wI)‖0,T .
Since

‖w − wI‖0,T ≤ Ch2
T‖w‖2,T , ‖∇(w − wI)‖0,T ≤ ChT‖w‖2,T ,
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we get

‖w − wI‖L2(e) ≤ Ch
3/2
T ‖w‖2,T .

More generally, we would get on shape regular meshes, that on a general edge e,

‖w − wI‖L2(e) ≤ Ch3/2
e ‖w‖2,T .

Combining these results, we get

‖u− uh‖2L2(Ω) ≤ C
∑

T∈Th

[

h2
T‖RT (uh)‖L2(T )‖w‖H2(T ) +

1

2

∑

e∈∂T

h3/2
e ‖Re(uh)‖L2(e)‖w‖H2(T )

]

.

Since
∑

i aibi ≤ (
∑

i a
2
i )

1/2
(
∑

i b
2
i )

1/2
, we get

∑

T∈Th

h2
T‖RT (uh)‖L2(T )‖w‖H2(T )

≤
(

∑

T∈Th

h4
T‖RT (uh)‖2L2(T )

)1/2(
∑

T∈Th

‖w‖2H2(T )

)1/2

≤
(

∑

T∈Th

η2T

)1/2

‖w‖H2(Ω),

and

∑

T∈Th

1

2

∑

e∈∂T

h3/2
e ‖Re(uh)‖L2(e)‖w‖H2(T )

≤
∑

T∈Th

(

∑

e∈∂T

1

2
h3
e‖Re(uh)‖2L2(e)

)1/2(
∑

e∈∂T

1

2
‖w‖2H2(T )

)1/2

≤
(

∑

T∈Th

1

2

∑

e∈∂T

h3
e‖Re(uh)‖2L2(e)

)1/2(
∑

T∈Th

1

2

∑

e∈∂T

‖w‖2H2(T )

)1/2

≤
(

∑

T∈Th

η2T

)1/2
(

3

2

)1/2

‖w‖H2(Ω).

Using the fact that ‖w‖H2(Ω) ≤ C‖u− uh‖L2(Ω) and combining these results, we get

‖u− uh‖L2(Ω) ≤ C

(

∑

T

η2T

)1/2

.

�

3.2. Error indicators. We now show how to use the a posteriori estimate given in Theo-
rem 6 to develop an adaptive finite element method. We first associate to each triangle an
error indicator

η2T = h4
T‖RT (uh)‖2L2(T ) +

1

2

∑

e∈∂T

h3
e‖Re(uh)‖2L2(e).
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Our a posteriori error estimate is expressed in terms of the local error indicators as:

‖u− uh‖L2(Ω) ≤ c

(

∑

T

η2T

)1/2

≡ cη(Th).

The adaptive strategy then consists of a loop with the steps SOLVE-ESTIMATE-MARK-
REFINE, defined as follows: For k ≥ 0,

• SOLVE: Computes uk on the current mesh Tk

• ESTIMATE: For each triangle T ∈ Tk, compute the error indicator ηT .
If (
∑

T η2T )
1/2) ≤ tol, then quit.

• MARK: Select a subset of triangles Mk ⊂ Tk using Dörfler marking, i.e.,
η(Mk) ≥ θ η(Tk) for 0 < θ < 1 (bulk chasing) with η(Mk) minimal.

• REFINE: Refines the marked elements Mk and outputs a conforming mesh Tk+1

In two dimensions there are a number of refinement strategies, such as bisecting each triangle
using newest vertex bisection illustrated in the figure below.












@

@
@
@
@
@

−→












@

@
@
@
@
@











@@
@@

@@

E
E
E
E
E
E −→












@

@
@
@
@
@E

E
E
E
E
E

EE

EE

EE

EE

EE

EE






@

@
@

−→












@

@
@

@
@
@

@
@
@







E
E
E
E
E
E

Figure 1. Refinement of triangles in two dimensions by newest-vertex bisec-
tion. Dashed lines indicate the refinement edges, which are the sides opposite
the most recently created nodes.

To obtain a uniform refinement, one divides each triangle into four by connecting the
midpoints of the edges. To get a conforming triangulation, neighboring triangles will also
need to be refined by connecting the new vertex to the vertex opposite the subdivided edge.
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Figure 2. Uniform mesh refinement.


