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4. APPROXIMATION OF ELLIPTIC VARIATIONAL INEQUALITIES

We have previously considered approximation of variational equalities, i.e., problems of

the form: Find uw € V such that a(u,v) = (f,v) for all v € V. When a(u,v) = a(v,u), this

problem can also be formulated as a minimization problem, i.e., defining J(v) = %a(v, v) —

(f,v), we consider the problem: Find u € V' such that J(u) < J(v) for all v € V.

To get a variational inequality, we let K be a closed convex subset of V' (i.e., if u,v € K,
then for 0 < ¢t <1, (1 —t)u+tv € K) and consider the problem: Find v € K such that
a(u,v—u) > (f,v—u) for all v € K. When a(u,v) = a(v, u), this problem is also equivalent
to a minimization problem: Find u € K such that J(u) < J(v) for all v € K.

To see how the variational inequality is obtained from the minimization problem, let u be
the solution of the minimization problem and v € K. Since u € K and K is a convex set
(1—thu+tv e K for all 0 <t < 1. Hence J(u) < J((1 —t)u + tv). Using the definition of
J, rewriting (1 — t)u + tv as u + t(v — u), and expanding the terms, we get for all v € K|

%a(u,u)—(f, ) = J(u) < J(1—t)utto) = %a(u—t)uﬂv, (1= t)ustv)— (£, (1—t)u-+to)

a(u,uw) + ta(u,v —u) + %t%(v —u,v —u) — (f,u) —t(f,v—u).
Canceling common terms, we get
0 <ta(u,v—u)—t(f,v—u)+ %tZa(v — U,V — u).
Since this inequality holds for any 0 < ¢ < 1, we can divide by ¢ to get
0<a(u,v—u)—(f,v—u)+ %ta(v—u,v —u).

Letting ¢t — 0, we see that u must satisfy
a(u,v —u) > (f,v—u), veK.

The canonical example of such a problem is the “obstacle” problem, in which V' = H 1(Q),
K={veV:v>1yae. inQ}, a(u,’u)—/Vu~Vvdx, (f,v)—/ffudx,
Q Q

where 9() is a given function which we will assume € H?((Q).

In the case of the variational equality, the variational equation says that —Au = f in €.
In the case of the variational inequality describing the obstacle problem, this is no longer
the case. Instead, we have that for any z, either —Au = f or u = .

To get an approximation scheme, we let Vj, C V' be finite dimensional and construct a
closed convex subset K}, of V}, such that the following two conditions are satisfied: (i) Writing
v, € Vj as v, = Z;\il Bi¢j, where {¢;} are a basis for V},, the set K}, should reduce to a
finite number of constraints on the §;; (ii) K} should be a good approximation to K in a
sense to be clearer in the error estimates.
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In the case of the obstacle problem, a simple choice for the approximation scheme is to
let V}, be the space of continuous piecewise linear functions with respect to a triangulation
Tr of © (which we assume to be a convex polygon). We then define Kj, = {v, € V}, : v, >
Yy for all z € Q}, where vy is the interpolant of ¢ in V},. A key point here is that since vy,
and v are piecewise linear, v, € K, is equivalent to requiring that v,(a;) > ¥;(a;) for all
vertices a; of Ty, so condition (i) above is satisfied. To see this, recall that on a triangle 7',
we may write up(2) = S0, up(a;)\i(z), where )\; is the barycentric coordinate associated
to the point a;, i.e., \; is a linear function on 7" that is equal to one at a; and equal to zero
at the other two vertices of T'. If uy(a;) > ¥r(a;) = ¥(a;), then since the \; > 0, we get for

all z € T, up(x) > S0 dr(a)\i(x) = ¢y ().

The difficulty for the error analysis is that although V,, C V', K}, is not a subset of K. The
reason for this is that ¢;(z) could be < ¥ (x), so requiring that v, > 1; does not guarantee
that v, > 9. In the case of variational equalities, we proved that

M
lw = unlly < —[lu = w1, v €V,
!

and so for C” piecewise linear functions, we get ||u—uy||; < Chllull2. In the case of variational
equalities, we have by integration by parts (for u sufficiently smooth) that —Au = f in Q.
The situation is more complicated for variational inequalities. In the case of the obstacle
problem, it is known that

—Au—f=20, wzv,  (u—-v)(Au+ f)=0.
Using these facts we can prove the following error estimate.

Lemma 9. Let u and u; denote the true and approrimate solutions, respectively. Then if
fel?Q), ue H*Q), and ¢ € H*(Q),

lu = wnlly < Chllulla + [ fllo + l[#]l2]).

where || fllo = 1 fll2@, lully = [lullar), and [lullz = llullm@)-

Proof. We first show that
a(u — up,u —up) < a(u —up,u—vp) + (Au+ f,u—vp) + (Au+ for — ).
To get this result, we write
a(u —up,u —up) = alu — up,u — vp) + alu — up, vy — up)
< alu—up,u—vp) — (Au, v — up) + (f, up — vp)
since a(u,v) = (—Au,v), a(up, up —vp) < (f,up — vp)
< a(u —un,u—vp) = (Au+ f,on — r + 1 — up)
< a(u—up,u—vp) — (Au+ f,v, — r)
since — (Au+ f) >0, Y —up <0
< a(u—up,u—vp) = (Au+ fon —u+u—1 -+ — )
< a(u—up,u—vp) — (Au+ fion —u+¢ —r)
since — (Au+ f,u—1) =0.
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Hence, using the arithmetic-geometric mean inequality ab < aa?/2 + b*/(2a), the Schwarz
inequality (f,g) < |/ fllollgllo, and the properties of the bilinear form a(u,v), we get

allu—unf < alu —up,u—uy) < Mlju— upl1llu — vnlly
+[Au + fllolllvn — ullo + |¥ — 2r]|o]

a M?
< Sl =l Gl = ol + 1w+ fllfln =l + 19— ]
Choosing v, = u; € Kj, we know
lu —urlly < Chllulfz, Ju —urllo < Ch?[|ull2, 1Y = rllo < CR?|[Y]]s.

Inserting these results, and again using the arithmetic-geometric mean inequality, we get

«
Sl = wnllt < CP|fulls + CR2[| Aullo + || fllolllella + [l ]1]

< CR*[Jull + | Aullg + 115 + 1113]-
< Ch*[Jlullz + Il fllo + I 1l]*.

In the above, C' denotes a generic constant, which in not necessarily the same in any two
places. However, it is independent of h, u, f, and 1. We also use the fact that ||Aullp <
C'||u||2. Hence,
lu = unlly < ChlJullz + || fllo + [l¢]l2]-
O

To solve the approximate problem, we can use the minimization formulation. Writing
veK;,= Zj\il B;p;(x), where the ¢; are the C° piecewise linear basis functions, i.e., the
piecewise linear functions that are one at vertex a; and zero at all the other vertices, we get

1 | MM M
J(v) = ga(v,v) = (fv) = 5 Z_j ;ﬁiﬁja(@-, %;) - Z Bi(f,é:) = BTAB— BTF,
where A is the matrix with entries A;; = a(¢;, ¢;), F is the column vector with entries
F; = (f, ;) and B is the column vector with entries ;. Hence J is a quadratic function of
the §;. The constraint set K} consists of functions v € V}, such that v > ;. The key fact is
that since v and 1 are linear functions on each triangle, v—1; > 0 on a triangle T if and only
if v — ¢y > 0 at the vertices of 7. But at a vertex ay, v(ay) = Z;‘il Bi¢i(ar) = Brx. Hence,
the constraint set K, is equivalent to the finite set of conditions 5; > v¢;(a;) for j =1,... M.
This is a finite number of linear constraints on the 3;. Hence the finite dimensional problem
becomes the minimization of a quadratic form subject to linear constraints, which can be

solved by quadratic programming methods.



