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4. Approximation of Elliptic Variational Inequalities

We have previously considered approximation of variational equalities, i.e., problems of
the form: Find u ∈ V such that a(u, v) = (f, v) for all v ∈ V . When a(u, v) = a(v, u), this
problem can also be formulated as a minimization problem, i.e., defining J(v) = 1

2
a(v, v)−

(f, v), we consider the problem: Find u ∈ V such that J(u) ≤ J(v) for all v ∈ V .

To get a variational inequality, we let K be a closed convex subset of V (i.e., if u, v ∈ K,
then for 0 ≤ t ≤ 1, (1 − t)u + tv ∈ K) and consider the problem: Find u ∈ K such that
a(u, v−u) ≥ (f, v−u) for all v ∈ K. When a(u, v) = a(v, u), this problem is also equivalent
to a minimization problem: Find u ∈ K such that J(u) ≤ J(v) for all v ∈ K.

To see how the variational inequality is obtained from the minimization problem, let u be
the solution of the minimization problem and v ∈ K. Since u ∈ K and K is a convex set
(1− t)u + tv ∈ K for all 0 ≤ t ≤ 1. Hence J(u) ≤ J((1− t)u + tv). Using the definition of
J , rewriting (1− t)u+ tv as u+ t(v − u), and expanding the terms, we get for all v ∈ K,

1

2
a(u, u)−(f, u) = J(u) ≤ J((1−t)u+tv) =

1

2
a((1−t)u+tv, (1−t)u+tv)−(f, (1−t)u+tv)

≤
1

2
a(u, u) + ta(u, v − u) +

1

2
t2a(v − u, v − u)− (f, u)− t(f, v − u).

Canceling common terms, we get

0 ≤ ta(u, v − u)− t(f, v − u) +
1

2
t2a(v − u, v − u).

Since this inequality holds for any 0 < t < 1, we can divide by t to get

0 ≤ a(u, v − u)− (f, v − u) +
1

2
ta(v − u, v − u).

Letting t→ 0, we see that u must satisfy

a(u, v − u) ≥ (f, v − u), v ∈ K.

The canonical example of such a problem is the “obstacle” problem, in which V = H̊1(Ω),

K = {v ∈ V : v ≥ ψ a.e. in Ω}, a(u, v) =

∫
Ω

∇u · ∇v dx, (f, v) =

∫
Ω

f v dx,

where ψ(x) is a given function which we will assume ∈ H2(Ω).

In the case of the variational equality, the variational equation says that −∆u = f in Ω.
In the case of the variational inequality describing the obstacle problem, this is no longer
the case. Instead, we have that for any x, either −∆u = f or u = ψ.

To get an approximation scheme, we let Vh ⊂ V be finite dimensional and construct a
closed convex subset Kh of Vh such that the following two conditions are satisfied: (i) Writing

vh ∈ Vh as vh =
∑M

j=1 βjφj, where {φj} are a basis for Vh, the set Kh should reduce to a

finite number of constraints on the βj; (ii) Kh should be a good approximation to K in a
sense to be clearer in the error estimates.
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In the case of the obstacle problem, a simple choice for the approximation scheme is to
let Vh be the space of continuous piecewise linear functions with respect to a triangulation
Th of Ω (which we assume to be a convex polygon). We then define Kh = {vh ∈ Vh : vh ≥
ψI for all x ∈ Ω}, where ψI is the interpolant of ψ in Vh. A key point here is that since vh
and ψI are piecewise linear, vh ∈ Kh is equivalent to requiring that vh(ai) ≥ ψI(ai) for all
vertices ai of Th, so condition (i) above is satisfied. To see this, recall that on a triangle T ,
we may write uh(x) =

∑3
i=1 uh(ai)λi(x), where λi is the barycentric coordinate associated

to the point ai, i.e., λi is a linear function on T that is equal to one at ai and equal to zero
at the other two vertices of T . If uh(ai) ≥ ψI(ai) = ψ(ai), then since the λi ≥ 0, we get for
all x ∈ T , uh(x) ≥

∑3
i=1 ψI(ai)λi(x) = ψI(x).

The difficulty for the error analysis is that although Vh ⊂ V , Kh is not a subset of K. The
reason for this is that ψI(x) could be < ψ(x), so requiring that vh ≥ ψI does not guarantee
that vh ≥ ψ. In the case of variational equalities, we proved that

‖u− uh‖1 ≤
M

α
‖u− vh‖1, v ∈ Vh,

and so for C0 piecewise linear functions, we get ‖u−uh‖1 ≤ Ch‖u‖2. In the case of variational
equalities, we have by integration by parts (for u sufficiently smooth) that −∆u = f in Ω.
The situation is more complicated for variational inequalities. In the case of the obstacle
problem, it is known that

−∆u− f ≥ 0, u ≥ ψ, (u− ψ)(∆u+ f) = 0.

Using these facts we can prove the following error estimate.

Lemma 9. Let u and uh denote the true and approximate solutions, respectively. Then if

f ∈ L2(Ω), u ∈ H2(Ω), and ψ ∈ H2(Ω),

‖u− uh‖1 ≤ Ch[‖u‖2 + ‖f‖0 + ‖ψ‖2].

where ‖f‖0 := ‖f‖L2(Ω), ‖u‖1 := ‖u‖H1(Ω), and ‖u‖2 := ‖u‖H2(Ω).

Proof. We first show that

a(u− uh, u− uh) ≤ a(u− uh, u− vh) + (∆u+ f, u− vh) + (∆u+ f, ψI − ψ).

To get this result, we write

a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh)

≤ a(u− uh, u− vh)− (∆u, vh − uh) + (f, uh − vh)

since a(u, v) = (−∆u, v), a(uh, uh − vh) ≤ (f, uh − vh)

≤ a(u− uh, u− vh)− (∆u+ f, vh − ψI + ψI − uh)

≤ a(u− uh, u− vh)− (∆u+ f, vh − ψI)

since − (∆u+ f) ≥ 0, ψI − uh ≤ 0

≤ a(u− uh, u− vh)− (∆u+ f, vh − u+ u− ψ + ψ − ψI)

≤ a(u− uh, u− vh)− (∆u+ f, vh − u+ ψ − ψI)

since − (∆u+ f, u− ψ) = 0.
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Hence, using the arithmetic-geometric mean inequality ab ≤ αa2/2 + b2/(2α), the Schwarz
inequality (f, g) ≤ ‖f‖0‖g‖0, and the properties of the bilinear form a(u, v), we get

α‖u− uh‖
2
1 ≤ a(u− uh, u− uh) ≤M‖u− uh‖1‖u− vh‖1

+ ‖∆u+ f‖0[‖vh − u‖0 + ‖ψ − ψI‖0]

≤
α

2
‖u− uh‖

2
1 +

M2

2α
‖u− vh‖

2
1 + ‖∆u+ f‖0[‖vh − u‖0 + ‖ψ − ψI‖0].

Choosing vh = uI ∈ Kh, we know

‖u− uI‖1 ≤ Ch‖u‖2, ‖u− uI‖0 ≤ Ch2‖u‖2, ‖ψ − ψI‖0 ≤ Ch2‖ψ‖2.

Inserting these results, and again using the arithmetic-geometric mean inequality, we get
α

2
‖u− uh‖

2
1 ≤ Ch2‖u‖22 + Ch2[‖∆u‖0 + ‖f‖0][‖u‖2 + ‖ψ‖2]

≤ Ch2[‖u‖22 + ‖∆u‖20 + ‖f‖20 + ‖ψ‖22].

≤ Ch2[‖u‖2 + ‖f‖0 + ‖ψ‖2]
2.

In the above, C denotes a generic constant, which in not necessarily the same in any two
places. However, it is independent of h, u, f , and ψ. We also use the fact that ‖∆u‖0 ≤
C‖u‖2. Hence,

‖u− uh‖1 ≤ Ch[‖u‖2 + ‖f‖0 + ‖ψ‖2].

�

To solve the approximate problem, we can use the minimization formulation. Writing
v ∈ Kh =

∑M

j=1 βjφj(x), where the φj are the C0 piecewise linear basis functions, i.e., the
piecewise linear functions that are one at vertex aj and zero at all the other vertices, we get

J(v) =
1

2
a(v, v)− (f, v) =

1

2

M∑
i=1

M∑
j=1

βiβja(φi, φj)−
M∑
i=1

βi(f, φi) = βTAβ − βTF,

where A is the matrix with entries Aij = a(φi, φj), F is the column vector with entries
Fi = (f, φi) and β is the column vector with entries βi. Hence J is a quadratic function of
the βi. The constraint set Kh consists of functions v ∈ Vh such that v ≥ ψI . The key fact is
that since v and ψI are linear functions on each triangle, v−ψI ≥ 0 on a triangle T if and only
if v − ψI ≥ 0 at the vertices of T . But at a vertex ak, v(ak) =

∑M

j=1 βjφj(ak) = βk. Hence,

the constraint set Kh is equivalent to the finite set of conditions βj ≥ ψI(aj) for j = 1, . . .M .
This is a finite number of linear constraints on the βj. Hence the finite dimensional problem
becomes the minimization of a quadratic form subject to linear constraints, which can be
solved by quadratic programming methods.


