NUMERICAL SOLUTION OF PDES

4. Approximation of Elliptic Variational Inequalities

We have previously considered approximation of variational equalities, i.e., problems of the form: Find $u \in V$ such that a(u, v) = (f, v) for all $v \in V$. When a(u, v) = a(v, u), this problem can also be formulated as a minimization problem, i.e., defining $J(v) = \frac{1}{2}a(v, v) - (f, v)$, we consider the problem: Find $u \in V$ such that $J(u) \leq J(v)$ for all $v \in V$.

To get a variational inequality, we let K be a closed convex subset of V (i.e., if $u, v \in K$, then for $0 \le t \le 1$, $(1-t)u + tv \in K$) and consider the problem: Find $u \in K$ such that $a(u, v - u) \ge (f, v - u)$ for all $v \in K$. When a(u, v) = a(v, u), this problem is also equivalent to a minimization problem: Find $u \in K$ such that $J(u) \le J(v)$ for all $v \in K$.

To see how the variational inequality is obtained from the minimization problem, let u be the solution of the minimization problem and $v \in K$. Since $u \in K$ and K is a convex set $(1-t)u + tv \in K$ for all $0 \le t \le 1$. Hence $J(u) \le J((1-t)u + tv)$. Using the definition of J, rewriting (1-t)u + tv as u + t(v - u), and expanding the terms, we get for all $v \in K$,

$$\begin{aligned} \frac{1}{2}a(u,u) - (f,u) &= J(u) \le J((1-t)u + tv) = \frac{1}{2}a((1-t)u + tv, (1-t)u + tv) - (f, (1-t)u + tv) \\ &\le \frac{1}{2}a(u,u) + ta(u,v-u) + \frac{1}{2}t^2a(v-u,v-u) - (f,u) - t(f,v-u). \end{aligned}$$

Canceling common terms, we get

$$0 \le ta(u, v - u) - t(f, v - u) + \frac{1}{2}t^{2}a(v - u, v - u).$$

Since this inequality holds for any 0 < t < 1, we can divide by t to get

$$0 \le a(u, v - u) - (f, v - u) + \frac{1}{2}ta(v - u, v - u).$$

Letting $t \to 0$, we see that u must satisfy

$$a(u, v - u) \ge (f, v - u), \quad v \in K.$$

The canonical example of such a problem is the "obstacle" problem, in which $V = \mathring{H}^1(\Omega)$,

$$K = \{ v \in V : v \ge \psi \text{ a.e. in } \Omega \}, \qquad a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx, \qquad (f, v) = \int_{\Omega} f \, v \, dx,$$

where $\psi(x)$ is a given function which we will assume $\in H^2(\Omega)$.

In the case of the variational equality, the variational equation says that $-\Delta u = f$ in Ω . In the case of the variational inequality describing the obstacle problem, this is no longer the case. Instead, we have that for any x, either $-\Delta u = f$ or $u = \psi$.

To get an approximation scheme, we let $V_h \subset V$ be finite dimensional and construct a closed convex subset K_h of V_h such that the following two conditions are satisfied: (i) Writing $v_h \in V_h$ as $v_h = \sum_{j=1}^M \beta_j \phi_j$, where $\{\phi_j\}$ are a basis for V_h , the set K_h should reduce to a finite number of constraints on the β_j ; (ii) K_h should be a good approximation to K in a sense to be clearer in the error estimates.

In the case of the obstacle problem, a simple choice for the approximation scheme is to let V_h be the space of continuous piecewise linear functions with respect to a triangulation \mathcal{T}_h of Ω (which we assume to be a convex polygon). We then define $K_h = \{v_h \in V_h : v_h \geq \psi_I \text{ for all } x \in \Omega\}$, where ψ_I is the interpolant of ψ in V_h . A key point here is that since v_h and ψ_I are piecewise linear, $v_h \in K_h$ is equivalent to requiring that $v_h(\boldsymbol{a}_i) \geq \psi_I(\boldsymbol{a}_i)$ for all vertices \boldsymbol{a}_i of \mathcal{T}_h , so condition (i) above is satisfied. To see this, recall that on a triangle T, we may write $u_h(\boldsymbol{x}) = \sum_{i=1}^3 u_h(\boldsymbol{a}_i)\lambda_i(\boldsymbol{x})$, where λ_i is the barycentric coordinate associated to the point \boldsymbol{a}_i , i.e., λ_i is a linear function on T that is equal to one at \boldsymbol{a}_i and equal to zero at the other two vertices of T. If $u_h(\boldsymbol{a}_i) \geq \psi_I(\boldsymbol{a}_i) = \psi(\boldsymbol{a}_i)$, then since the $\lambda_i \geq 0$, we get for all $\boldsymbol{x} \in T$, $u_h(\boldsymbol{x}) \geq \sum_{i=1}^3 \psi_I(\boldsymbol{a}_i)\lambda_i(\boldsymbol{x}) = \psi_I(\boldsymbol{x})$.

The difficulty for the error analysis is that although $V_h \subset V$, K_h is not a subset of K. The reason for this is that $\psi_I(x)$ could be $\langle \psi(x) \rangle$, so requiring that $v_h \geq \psi_I$ does not guarantee that $v_h \geq \psi$. In the case of variational equalities, we proved that

$$||u - u_h||_1 \le \frac{M}{\alpha} ||u - v_h||_1, \quad v \in V_h,$$

and so for C^0 piecewise linear functions, we get $||u-u_h||_1 \leq Ch||u||_2$. In the case of variational equalities, we have by integration by parts (for u sufficiently smooth) that $-\Delta u = f$ in Ω . The situation is more complicated for variational inequalities. In the case of the obstacle problem, it is known that

$$-\Delta u - f \ge 0, \qquad u \ge \psi, \qquad (u - \psi)(\Delta u + f) = 0.$$

Using these facts we can prove the following error estimate.

Lemma 9. Let u and u_h denote the true and approximate solutions, respectively. Then if $f \in L^2(\Omega)$, $u \in H^2(\Omega)$, and $\psi \in H^2(\Omega)$,

 $||u - u_h||_1 \le Ch[||u||_2 + ||f||_0 + ||\psi||_2].$

where $||f||_0 := ||f||_{L^2(\Omega)}, ||u||_1 := ||u||_{H^1(\Omega)}, and ||u||_2 := ||u||_{H^2(\Omega)}.$

Proof. We first show that

$$a(u - u_h, u - u_h) \le a(u - u_h, u - v_h) + (\Delta u + f, u - v_h) + (\Delta u + f, \psi_I - \psi).$$

To get this result, we write

$$\begin{aligned} a(u - u_h, u - u_h) &= a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h) \\ &\leq a(u - u_h, u - v_h) - (\Delta u, v_h - u_h) + (f, u_h - v_h) \\ &\text{ since } a(u, v) = (-\Delta u, v), \qquad a(u_h, u_h - v_h) \leq (f, u_h - v_h) \\ &\leq a(u - u_h, u - v_h) - (\Delta u + f, v_h - \psi_I + \psi_I - u_h) \\ &\leq a(u - u_h, u - v_h) - (\Delta u + f, v_h - \psi_I) \\ &\text{ since } - (\Delta u + f) \geq 0, \qquad \psi_I - u_h \leq 0 \\ &\leq a(u - u_h, u - v_h) - (\Delta u + f, v_h - u + u - \psi + \psi - \psi_I) \\ &\leq a(u - u_h, u - v_h) - (\Delta u + f, v_h - u + \psi - \psi_I) \\ &\leq a(u - u_h, u - v_h) - (\Delta u + f, v_h - u + \psi - \psi_I) \\ &\text{ since } - (\Delta u + f, u - \psi) = 0. \end{aligned}$$

Hence, using the arithmetic-geometric mean inequality $ab \leq \alpha a^2/2 + b^2/(2\alpha)$, the Schwarz inequality $(f,g) \leq ||f||_0 ||g||_0$, and the properties of the bilinear form a(u,v), we get

$$\begin{aligned} \alpha \|u - u_h\|_1^2 &\leq a(u - u_h, u - u_h) \leq M \|u - u_h\|_1 \|u - v_h\|_1 \\ &+ \|\Delta u + f\|_0 [\|v_h - u\|_0 + \|\psi - \psi_I\|_0] \\ &\leq \frac{\alpha}{2} \|u - u_h\|_1^2 + \frac{M^2}{2\alpha} \|u - v_h\|_1^2 + \|\Delta u + f\|_0 [\|v_h - u\|_0 + \|\psi - \psi_I\|_0]. \end{aligned}$$

Choosing $v_h = u_I \in K_h$, we know

$$||u - u_I||_1 \le Ch||u||_2, \qquad ||u - u_I||_0 \le Ch^2 ||u||_2, \qquad ||\psi - \psi_I||_0 \le Ch^2 ||\psi||_2.$$

Inserting these results, and again using the arithmetic-geometric mean inequality, we get

$$\begin{aligned} \frac{\alpha}{2} \|u - u_h\|_1^2 &\leq Ch^2 \|u\|_2^2 + Ch^2 [\|\Delta u\|_0 + \|f\|_0] [\|u\|_2 + \|\psi\|_2] \\ &\leq Ch^2 [\|u\|_2^2 + \|\Delta u\|_0^2 + \|f\|_0^2 + \|\psi\|_2^2]. \\ &\leq Ch^2 [\|u\|_2 + \|f\|_0 + \|\psi\|_2]^2. \end{aligned}$$

In the above, C denotes a generic constant, which in not necessarily the same in any two places. However, it is independent of h, u, f, and ψ . We also use the fact that $\|\Delta u\|_0 \leq C \|u\|_2$. Hence,

$$||u - u_h||_1 \le Ch[||u||_2 + ||f||_0 + ||\psi||_2].$$

To solve the approximate problem, we can use the minimization formulation. Writing $v \in K_h = \sum_{j=1}^M \beta_j \phi_j(x)$, where the ϕ_j are the C^0 piecewise linear basis functions, i.e., the piecewise linear functions that are one at vertex \boldsymbol{a}_j and zero at all the other vertices, we get

$$J(v) = \frac{1}{2}a(v,v) - (f,v) = \frac{1}{2}\sum_{i=1}^{M}\sum_{j=1}^{M}\beta_{i}\beta_{j}a(\phi_{i},\phi_{j}) - \sum_{i=1}^{M}\beta_{i}(f,\phi_{i}) = \beta^{T}A\beta - \beta^{T}F$$

where A is the matrix with entries $A_{ij} = a(\phi_i, \phi_j)$, F is the column vector with entries $F_i = (f, \phi_i)$ and β is the column vector with entries β_i . Hence J is a quadratic function of the β_i . The constraint set K_h consists of functions $v \in V_h$ such that $v \ge \psi_I$. The key fact is that since v and ψ_I are linear functions on each triangle, $v - \psi_I \ge 0$ on a triangle T if and only if $v - \psi_I \ge 0$ at the vertices of T. But at a vertex \mathbf{a}_k , $v(\mathbf{a}_k) = \sum_{j=1}^M \beta_j \phi_j(\mathbf{a}_k) = \beta_k$. Hence, the constraint set K_h is equivalent to the finite set of conditions $\beta_j \ge \psi_I(\mathbf{a}_j)$ for $j = 1, \ldots, M$. This is a finite number of linear constraints on the β_j . Hence the finite dimensional problem becomes the minimization of a quadratic form subject to linear constraints, which can be solved by quadratic programming methods.