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5. Efficient solution of the linear systems arising from finite element

discretization

5.1. Optimization methods. We have shown that the finite element discretization of Pois-
son’s equation leads to the solution of a linear system Ax = b, in which A is a symmetric
matrix. It is also easy to check that A is a positive definite matrix, i.e., xTAx > 0 for
x 6= 0. For such a problem, the solution of this system is also the minimizer of the functional
φ(x) = 1

2
xTAx−xT b. Note the minimum will occur where ∇φ(x) = 0. But ∇φ(x) = Ax− b,

so the solution of the minimization problem is the solution of the linear system of equations.

A typical minimization algorithm is to let {pk}k≥0 be a set of search directions and {αk}k≥0

a set of scalars and define an iteration

xk+1 = xk + αkp
k.

The simplest example is the method of steepest descent, in which we choose

pk = −∇φ(xk) = b− Axk.

To determine the best choice of αk, we then minimize φ(xk + αkp
k) with respect to αk,

considering xk and pk now fixed. Since

φ(xk + αkp
k) =

1

2

[

(xk)TAxk + 2αk(p
k)TAxk + α2

k(p
k)TApk

]

− xT b− αkp
T b,

minimizing with respect to αk gives:

(pk)TAxk + αk(p
k)TApk − (pk)T b = 0,

i.e.,

αk =
(pk)T (b− Axk)

(pk)TApk
=

(pk)Tpk

(pk)TApk
.

Thus, the algorithm looks like:
choose an initial iterate x0

for k = 0, 1, . . .,
set pk = b− Axk

set αk = (pk)Tpk/(pk)TApk

set xk+1 = xk + αkp
k

end

Writing the iteration in this way, it appears we need two matrix-vector multiplications
per iteration, one to compute Axk and one to compute Apk. We can reduce the work
involved by defining qk = Apk and noticing that once we have computed qk and αk, we can
compute the next residual pk+1 without an additional matrix-vector multiplication. Since
xk+1 = xk + αkp

k, we have pk+1 = b − Axk+1 = b − Axk − αkAp
k = pk − αkq

k. Hence, we
can write the algorithm as:
choose an initial iterate x0

Set p0 = b− Ax0

for k = 0, 1, . . .,
set qk = Apk

set αk = (pk)Tpk/(pk)T qk
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set xk+1 = xk + αkp
k

set pk+1 = pk − αkq
k

end

To understand the convergence of such an algorithm, consider the simpler choice, αk = α
for all k. Then we get the iteration

xk+1 = xk − α[Axk − b] = [I − αA]xk + αb.

If we let x denote the exact solution of Ax = b, then we get the error equation

x− xk+1 = x− [I − αA]xk − αb = [I − αA](x− xk) + αAx− αb = [I − αA](x− xk).

Iterating this equation, we find that

x− xk = [I − αA]k(x− x0).

A well known result from linear algebra says that this iteration will converge for all x0 ∈ R
n

if and only if ρ(I − αA) < 1, where if M is an n × n matrix with eigenvalues µi, then
ρ(M) = maxi |µi|. Now if λ is an eigenvalue of A with eigenvector v, then Av = λv and so
(I−αA)v = v−αλv = (1−αλ)v. Hence (1−αλ) is an eigenvalue of I−αA with eigenvector
v. Hence, for convergence, we need −1 < 1 − αλ < 1 for all eigenvalues λ of the matrix A.
Since A is positive definite, all its eigenvalues are positive, so we require 0 < α < 2/λ for all
eigenvalues λ of A, i.e., 0 < α < 2/ρ(A).

To determine the optimal choice of the parameter α, we proceed as follows. We first define
the vector norm ‖x‖2 and the associated matrix norm ‖A‖2 by

‖x‖2 =
(

n
∑

i=1

x2
i

)1/2

, ‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

.

It follows from the definition that ‖Ax‖2 ≤ ‖A‖2‖x‖2 for all x. It can be shown that
‖A‖2 = [ρ(A∗A)]1/2, where for an n × n matrix B, ρ(B) = maxi |µi|, where µ1, . . . , µn are
the eigenvalues of B, and A∗ = (Ā)T , where Ā is the complex conjugate of A. In particular,
if A is real and symmetric, (the case we are considering), then A∗ = A, so A∗A = A2, and
since the eigenvalues of A2 are the squares of the eigenvalues of A, ‖A‖2 = ρ(A) = maxi |λi|,
where λi are the eigenvalues of A.

Since A is assumed real and symmetric, so is I − αA. Hence,

‖I − αA‖2 = ρ(I − αA) = max
i

|1− αλi|,

where λi are the eigenvalues ofA. SinceA is positive definite, we have that 0 < λ1 ≤ . . . ≤ λn.
Using the fact (easy to check) that (1− αλ)k is an eigenvalue of (I − αA)k with eigenvector
v, we get

‖x− xk‖2 = ‖[I − αA]k(x− x0)‖2 ≤ ‖[I − αA]k‖2‖x− x0‖2 ≤ max
i

|1− αλi|k‖x− x0‖2.

To reduce the error at each iteration as much as possible, we would like to choose α to
minimize the expression maxi |1−αλi|. Observing that maxi |1−αλi| = max{|1−αλ1|, |1−
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αλn|}, we will minimize the desired expression by choosing α so that the two quantities are
equal, i.e., 1− αλ1 = αλn − 1. Hence, the optimal value is α = 2/(λ1 + λn). In this case,

ρ(I − αA) = 1− 2λ1

λ1 + λn

=
λn − λ1

λn + λ1

=
(λn/λ1)− 1

(λn/λ1) + 1
.

Let κ = ‖A‖2‖A−1‖2 be the condition number of A measured in the ‖ · ‖2 norm. Since A
is symmetric and positive definite, ‖A‖2 = ρ(A) = λn. Since the eigenvalues of A−1 are the
reciprocals of the eigenvalues of A, ‖A−1‖2 = ρ(A−1) = 1/λ1. Hence, κ = λn/λ1. Thus,
ρ(I − αA) = (κ− 1)/(κ+ 1), and we have proved the following result.

Theorem 7. If A is symmetric and positive definite, then the iteration scheme defined by

xk+1 = [I − αA]xk + αb, with α = 2/(λ1 + λn) satisfies:

‖x− xk‖2 ≤
(

κ− 1

κ+ 1

)k

‖x− x0‖2, κ = λmax(A)/λmin(A).

For the solution of Poisson’s problem by standard finite elements, we can show that there
is a constant independent of h such that κ(A) ≈ c2h−2. Thus, implementing this iteration
in its present form leads to a small reduction in error (1−O(h2)) and slow convergence.

To get a more precise understanding of what the method is doing, we consider an eigen-
function expansion of the error, i.e., we suppose that Aφi = λiφi, where {φi}ni=1 are a set of
orthonormal eigenvectors of A. We then set ek = x− xk and write

e0 =
n

∑

i=1

[(e0)Tφi]φi.

Suppose we choose α = 1/λn, the largest eigenvalue of A. Then

ek = [I − αA]ke0 =
n

∑

i=1

[(e0)Tφi](1− λi/λn)
kφi.

Now for large eigenvalues 1− λi/λn is small, so the high frequency components of the error
are damped out quickly, while for small eigenvalues 1 − λi/λn ≈ 1, and there is not much
decay in the error and so the low frequency components are not changed much. Thus, a few
iterations of this method has the effect of “smoothing” the error. We shall come back to this
idea in a later lecture.

In fact, the method of steepest descent has the same convergence rate as this simplified
method, so we look for alternatives.

5.2. Conjugate-Gradient method (CG). A better choice of search directions {pk} is to
choose them to be A-orthogonal, i.e, to satisfy (pj)TApi = 0 for i 6= j. In this case, the best
choice of the αk are given by

αk =
(pk)T [b− Axk]

(pk)TApk
.

The CG method generates the directions pk recursively using the Gram-Schmidt orthogo-
nalization process, but can be written in a simplified way (not obvious).
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choose an initial iterate x0

Set p0 = r0 = b− Ax0

for k = 0, 1, . . .,
set αk = (rk)T rk/[(pk)TApk]
set xk+1 = xk + αkp

k

set rk+1 = rk − αkAp
k

set pk+1 = rk+1 + rk+1)T rk+1

(rk)T rk
pk

end

If A is an n×n matrix, the CG method gives the exact solution in n iterations. However,
it is most commonly used as an iterative method. If we stop after k iterations, we get the
following error estimate:

‖x− xk‖A ≤ 2

(√
κ− 1√
κ+ 1

)k

‖x− x0‖A,

where ‖x‖2A = xTAx. Since now
√
κ enters, the reduction is like 1−O(h), better than before,

but still slow.

In practice, one uses the idea of preconditioning. Instead of solving the system Ax = b,
we solve the system B−1Ax = B−1b, where B−1 is an approximation to A−1, for which the
linear system Bz = c is easy to solve. Then the rate of convergence depends on the condition
number of B−1A instead of A. If B−1 is a good approximation to A−1, then B−1A ≈ I, and
so κ(B−1A) will be close to 1, and we will get a substantial error reduction at each iteration.

One can show that the CG iteration for the linear system B−1Ax = B−1b can be written
in the following form.

choose an initial iterate x0

Set r0 = b− Ax0, p0 = B−1r0

for k = 0, 1, . . .,
set αk = (rk)TB−1rk/[(pk)TApk]
set xk+1 = xk + αkp

k

set rk+1 = rk − αkAp
k

set pk+1 = B−1rk+1 + (rk+1)TB−1rk+1

(rk)TB−1rk
pk

end

Hence, we need to compute zk ≡ B−1rk at each iteration (which we do by solving the
system Bzk = rk). If this can be done quickly, the work involved will be essentially the same
as for the CG method applied to the system Ax = b.

Some common choices for the matrix B are the diagonal of A, a banded piece of A,
an incomplete factorization of A, domain decomposition methods, and multigrid methods.
Multigrid is one of the most effective and we shall treat this next.


