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5. EFFICIENT SOLUTION OF THE LINEAR SYSTEMS ARISING FROM FINITE ELEMENT
DISCRETIZATION

5.1. Optimization methods. We have shown that the finite element discretization of Pois-
son’s equation leads to the solution of a linear system Az = b, in which A is a symmetric
matrix. It is also easy to check that A is a positive definite matrix, i.e., 27 Az > 0 for
x # 0. For such a problem, the solution of this system is also the minimizer of the functional
¢(x) = 327 Az — 2z7b. Note the minimum will occur where V¢(z) = 0. But Vo(z) = Az —b,
so the solution of the minimization problem is the solution of the linear system of equations.

A typical minimization algorithm is to let {p*},>0 be a set of search directions and {ay } x>0
a set of scalars and define an iteration

" = 2k + ap”.

The simplest example is the method of steepest descent, in which we choose
pF = —Ve(a") =b— Az".

To determine the best choice of ay, we then minimize ¢(z* + agp¥) with respect to oy,
considering ¥ and p* now fixed. Since

1
(2" + app”) = 5 [(#*)" Az® + 2a,,(p") " Az® + o (p")" Ap*] — 27b — aup™ b,

minimizing with respect to oy, gives:
(pk)TAl’k + ak(pk)TApk o (pk)Tb — 07
ie.,
(P — Az®) (M)
(p*)" Ap* (p*)T Ap*

A —

Thus, the algorithm looks like:
choose an initial iterate x
for k=0,1,...,
set p* = b — Az
set a; = (p")"p"/(p*)T Ap"
set oF Tl = 2% + qppt
end

0

Writing the iteration in this way, it appears we need two matrix-vector multiplications
per iteration, one to compute Ax* and one to compute Ap¥. We can reduce the work
involved by defining ¢* = Ap* and noticing that once we have computed ¢* and a4, we can
compute the next residual p**! without an additional matrix-vector multiplication. Since
2P = 2F 4 qppF, we have pFt! = b — AzPtt = b — Axb — o ApF = pF — a.¢®. Hence, we
can write the algorithm as:
choose an initial iterate x
Set p? = b — Ax°
for k=0,1,...,

set ¢F = ApF

set ax = (p")Tp" /(") T¢*

0



NUMERICAL SOLUTION OF PDES 41

set 2Ft = 2% 4+ ap¥
set pFt! = pF — "
end

To understand the convergence of such an algorithm, consider the simpler choice, oy = «
for all k. Then we get the iteration

a* = gb — a[Az® —b) = [I — aA]z* + ab.
If we let = denote the exact solution of Ax = b, then we get the error equation
v — 2" =g —[I —adlz" —ab=[I — aA](z — 2") + aAr — ab = [[ — aA](z — 2%).
Iterating this equation, we find that
r— 2" = [I — aA)(x — 2°).

A well known result from linear algebra says that this iteration will converge for all 2° € R®
if and only if p(I — @A) < 1, where if M is an n X n matrix with eigenvalues p;, then
p(M) = max; |p;]. Now if X is an eigenvalue of A with eigenvector v, then Av = Av and so
(I —aA)v = v—alv = (1—aX)v. Hence (1—a) is an eigenvalue of I —aA with eigenvector
v. Hence, for convergence, we need —1 < 1 — aX < 1 for all eigenvalues A of the matrix A.
Since A is positive definite, all its eigenvalues are positive, so we require 0 < a < 2/ for all
eigenvalues \ of A, i.e,, 0 < o < 2/p(A).

To determine the optimal choice of the parameter «, we proceed as follows. We first define
the vector norm ||z||> and the associated matrix norm ||Al|s by

n

1/2 A
oo = (3202)" Al = max 12212

— w20 lzflz
It follows from the definition that ||Az|s < ||Al|2]|x]|2 for all . It can be shown that
|All2 = [p(A*A)]"/2, where for an n x n matrix B, p(B) = max; |u;|, where p1, ..., pu, are
the eigenvalues of B, and A* = (A)T, where A is the complex conjugate of A. In particular,
if A is real and symmetric, (the case we are considering), then A* = A, so A*A = A%, and

since the eigenvalues of A? are the squares of the eigenvalues of A, || Al = p(A) = max; |\,
where \; are the eigenvalues of A.

Since A is assumed real and symmetric, so is I — aA. Hence,
|l — aAlz = p(I — aA) = max |1 — a\],
where \; are the eigenvalues of A. Since A is positive definite, we have that 0 < \; < ... < \,.

Using the fact (easy to check) that (1 — a\)* is an eigenvalue of (I — aA)* with eigenvector
v, we get

lz = 2¥2 = [l — aA]*(z = 2°) 2 < Il — aA"|l2]|z — 2°[l2 < max |1 — e[|z — 2°|2.

To reduce the error at each iteration as much as possible, we would like to choose a to
minimize the expression max; |1 —a);|. Observing that max; |1 —a);| = max{|1 —aX],|1—
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a\,|}, we will minimize the desired expression by choosing a so that the two quantities are

equal, i.e., 1 —aA; = a\, — 1. Hence, the optimal value is & = 2/(A; + \,). In this case,
201 A=A (/) -1

MAX A+ /A + 1

Let k = ||A]|2]][A7Y|2 be the condition number of A measured in the || - || norm. Since A
is symmetric and positive definite, ||A|ls = p(A) = \,. Since the eigenvalues of A~! are the
reciprocals of the eigenvalues of A, [[A7!||s = p(A™!) = 1/\;. Hence, k = \,/A;. Thus,
p(I —aA) =(k—1)/(k+ 1), and we have proved the following result.

p(I —aA)=1-

Theorem 7. If A is symmetric and positive definite, then the iteration scheme defined by
oFH = [I — aAlzk + ab, with o = 2/(\; + \,) satisfies:

k—1\"
o=l < (557) ool &= )/ Auin(4),

For the solution of Poisson’s problem by standard finite elements, we can show that there
is a constant independent of h such that x(A4) ~ c*h~2. Thus, implementing this iteration
in its present form leads to a small reduction in error (1 — O(h?)) and slow convergence.

To get a more precise understanding of what the method is doing, we consider an eigen-
function expansion of the error, i.e., we suppose that A¢p; = \;¢;, where {¢;}", are a set of
orthonormal eigenvectors of A. We then set e¥ = z — 2¥ and write

e’ = Z[(eo)T@]@.
i=1
Suppose we choose a = 1/),,, the largest eigenvalue of A. Then
e = [I —aAle® = [(") i](1 = Xi/Aa)*6
i=1

Now for large eigenvalues 1 — \; /A, is small, so the high frequency components of the error
are damped out quickly, while for small eigenvalues 1 — \;/\, =~ 1, and there is not much
decay in the error and so the low frequency components are not changed much. Thus, a few
iterations of this method has the effect of “smoothing” the error. We shall come back to this
idea in a later lecture.

In fact, the method of steepest descent has the same convergence rate as this simplified
method, so we look for alternatives.

5.2. Conjugate-Gradient method (CG). A better choice of search directions {p*} is to
choose them to be A-orthogonal, i.e, to satisfy (p’)T Ap® = 0 for i # j. In this case, the best
choice of the ay are given by
(P*)"[b — Az*]

(p*)" Ap*
The CG method generates the directions p* recursively using the Gram-Schmidt orthogo-
nalization process, but can be written in a simplified way (not obvious).

A —
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choose an initial iterate z°

Set p =70 =0b— Aa°
for k=0,1,...,
set oy = (r*) "t /[(p*)" Ap]
set ¥t = 2% + qpp”
set 1 =k — q  ApF
k+1\T .k+1
set pFtl =+l 4 - (Tk))T:k o
end

If A is an n x n matrix, the CG method gives the exact solution in n iterations. However,
it is most commonly used as an iterative method. If we stop after k iterations, we get the

following error estimate:
Ve —1\"
o= oHla <2 (VErT ) llo - o0l

where ||z]|% = 27 Az. Since now \/k enters, the reduction is like 1 —O(h), better than before,
but still slow.

In practice, one uses the idea of preconditioning. Instead of solving the system Ax = b,
we solve the system B~'Ax = B~'b, where B! is an approximation to A~!, for which the
linear system Bz = c is easy to solve. Then the rate of convergence depends on the condition
number of B~!A instead of A. If B~! is a good approximation to A™!, then B~'A ~ I, and
so k(B~1A) will be close to 1, and we will get a substantial error reduction at each iteration.

One can show that the CG iteration for the linear system B~'Axz = B~'b can be written
in the following form.

choose an initial iterate z°

Set 1% =b— Az, p* = B~

for k=0,1,...,
set oy, = ()T B~Ir* /[(p)T Ap']
set ¥t = ¥ + qpp”
set 1 =k — q  ApF
_ k+1\T g—1,k+1
set phtl = B-lph+l 4 WTI:& k
end

Hence, we need to compute z¥ = B~1r* at each iteration (which we do by solving the
system Bz* = r*). If this can be done quickly, the work involved will be essentially the same
as for the CG method applied to the system Ax = b.

Some common choices for the matrix B are the diagonal of A, a banded piece of A,
an incomplete factorization of A, domain decomposition methods, and multigrid methods.
Multigrid is one of the most effective and we shall treat this next.



