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5.3. Multigrid. We now consider a very effective method for the solution of the linear
system of equations that arises from the finite element discretization of elliptic boundary
value problems.

The idea of multigrid is to combine two different methods: one that is effective in reducing
the high frequency components of the error and one that is effective in reducing the low
frequency components of the error. We have already seen an example of an iterative method
that reduces the high frequency components of the error. A key idea of multigrid is that the
smooth part of the error can be approximated well on a coarser grid than the one on which
we started. To describe this idea, we consider first a two-grid algorithm for solving the linear
system arising from the discretization:

Find uh ∈ Vh such that a(uh, vh) = (f, vh), vh ∈ Vh,

where we let Vh denote the space of continuous piecewise linear functions on a grid of maxi-
mize size h. We assume that the mesh was obtained from a mesh of size 2h by joining the
midpoints of each triangle to form 4 subtriangles. We let R denote a smoothing operator,
to be described below. For example, we showed previously that the iteration

x
n+1 = x

n − α(Axn − b)

damps out the high frequency eigenmodes for 0 < α < 2/ρ(A). For the problem we are
solving, the vector xn will be the vector of coefficients in the expansion of the approximate
solution un

h in terms of the basis functions {φj}, i.e., u
n
h =

∑
j x

n
j φj. The vectors Ax

n and b

are defined by:

(Axn)i =
∑

j

a(φj, φi)x
n
j = a(un

h, φi), bi = (f, φi).

We choose the usual basis functions such that φi = 1 at vertex pi and zero at all other
vertices. Then any piecewise linear function v can be written as v =

∑
i v(pi)φi.

It will be convenient at times to write equations in terms of the finite element functions,
rather than the vector of coefficients in the expansion in terms of the basis functions. One
way to do this is to define a mesh-dependent inner product on the space Vh by

(u, v)h = h2
∑

k

u(pk)v(pk),

where the sum ranges over all the vertices pk of the mesh. Using this inner product, we then
define fh ∈ Vh and an operator Ah mapping Vh to Vh by

(fh, v)h = (f, v), v ∈ Vh, (Ahu, v)h = a(u, v), u, v ∈ Vh.

We then note that since φi(pk) = 1 when i = k and = 0 for i 6= k,

bi = (f, φi) = (fh, φi)h = h2
∑

k

fh(pk)φi(pk) = h2fh(pi),

(Axn)i = a(un
h, φi) = (Ahu

n
h, φi)h = h2(Ahu

n
h)(pi).

With this notation, our smoothing iteration becomes:
∑

i

x
n+1
i φi =

∑

i

x
n
i φi − α

∑

i

[(Axn)i − bi]φi =
∑

i

x
n
i φi − h2α

∑

i

[(Ahu
n
h)(pi)− fh(pi)]φi.
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Rewriting this, we get,
un+1

h = un
h − h2α[Ahu

n
h − fh] ≡ Run

h.

Then the two level algorithm is described as follows:

Let u0
h be an initial approximation to u in the space Vh.

1. Smoothing Step: Perform m smoothing steps, i.e., define um
h = Rmu0

h.

2. Coarse-Grid Correction: Compute the solution w2h ∈ V2h to the problem: Find w2h ∈
V2h such that

a(um
h + w2h, v2h) = (f, v2h), v2h ∈ V2h.

Then set um+1

h = um
h + Ih2hw2h.

In the above formula, we define the coarse-to-fine intergrid transfer operator Ih2h : V2h → Vh

by Ih2hv = v for all v ∈ V2h (since V2h is a subspace of Vh). Note that a vertex of a triangle
in the fine grid with either also be a vertex of a triangle in the coarse grid (so the value of
v is already defined at that vertex) or be the midpoint of a edge of a triangle in the coarse
grid. In that case, since v in linear on the coarse grid triangle, its value at the midpoint of
an edge will be the average of its values at the vertices which are at the two endpoints of
the edge.

We also define a fine-to-coarse intergrid transfer operator I2hh : Vh → V2h by:

(I2hh w, v)2h = (w, Ih2hv)h, v ∈ V2h, w ∈ Vh.

Note, if we choose v = φi where φi is the basis function on the coarse grid associated with
the vertex pi, then (I2hh w, v)2h = 4h2I2hh w(pi). Now from the discussion given above, Ih2hφi

will be equal to 1 at pi, equal to 1/2 at vertices qj of the fine mesh adjacent to pi and equal
to zero at all other vertices. Hence,

(w, Ih2hφi)h = h2[w(pi) + (1/2)
∑

j

w(qj)],

where the sum is taken over adjacent vertices. Hence,

I2hh w(pi) = (2h)−2(I2hh w, φi)2h = (2h)−2(w, Ih2hφi)h = [w(pi) + (1/2)
∑

j

w(qj)]/4.

Using this notation, we may rewrite the variational equation as:

(A2hw2h, v2h)2h = a(w2h, v2h) = (f, v2h)− a(um
h , v2h) = (fh, v2h)h − (Ahu

m
h , v2h)h

= (fh, I
h
2hv2h)h − (Ahu

m
h , I

h
2hv2h)h = (I2hh (fh − Ahu

m
h ), v2h)2h.

Hence,
w2h = A−1

2h I
2h
h (fh − Ahu

m
h ).

Then
um+1

h = um
h + Ih2hw2h = um

h + Ih2hA
−1

2h I
2h
h (fh − Ahu

m
h ).

In the two level scheme, we computed the exact solution of the linear system on the coarse
level. Instead, we could extend this idea by incorporating additional levels. To describe the
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complete algorithm for several levels, we first choose a coarse triangulation T0 with mesh size
h0. We then subdivide each triangle into four congruent triangles by joining the midpoints of
the edges and denote by T1 the resulting triangulation. Continue in this manner producing
meshes T1, . . . , TN . With each triangulation Tk, we associate a space of continuous, piecewise
linear polynomials that we denote by Vk. The problem we want to solve is:

Find uN ∈ VN such that a(uN , v) = (f, v), v ∈ VN .

We now construct a recursive algorithm for obtaining an approximate solution.

The kth level iteration: We let MG(k, zk0 , g
k) denote the approximate solution of the

equation Akz = gk obtained from the kth level iteration with initial guess zk0 .

For k = 0, MG(0, z0, g
0) = A−1

0 g0, i.e., the solution obtained from a direct method.

For k ≥ 1, MG(k, zk0 , g
k) is obtained recursively in 3 steps. Let m1 > 0 and m2 ≥ 0 be

integers and p = 1 or 2.

Presmoothing step: For 1 ≤ l ≤ m1, let zkl = zkl−1 + αh2(gk − Akz
k
l−1) = Rkzkl−1.

Error correction step: Let ḡk−1 = Ik−1

k (gk − Akz
k
m1

) and qk−1
0 = 0. For 1 ≤ i ≤ p, let

qk−1
i = MG(k − 1, qk−1

i−1 , ḡ
k−1).

Then zkm1+1 = zkm1
+ Ikk−1q

k−1
p .

Post-smoothing step: Set zkm1+m2+1 = [Rk]m2zkm1+1, where

zkl = Rkzkl−1 ≡ zkl−1 + αh2(gk − Akz
k
l−1).

Then the output of the kth level iteration is: MG(k, zk0 , g
k) = zkm1+m2+1.

When p = 1 this is called the V-cycle method and when p = 2, it is called the W-cycle
method. This is illustrated in the diagrams below. To illustrate the steps, first consider the
case of three levels k = 2, 1, 0, m1 = 1, m2 = 1, and p = 1. The computation proceeds as
follows:
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q21 = MG(2, z20 , g
2)

Choose an initial guess z20

z21 = z20 + αh2(g2 − A2z
2
0)

ḡ1 = I12 (g
2 − A2z

2
1), q10 = 0

q11 = MG(1, q10, ḡ
1)

z10 = q10

z11 = z10 + αh2(ḡ1 − A1z
1
0)

ḡ0 = I01 (ḡ
1 − A1z

1
1), q

0
0 = 0

q01 = MG(0, q00, ḡ
0)

q01 = A−1
0 ḡ0

z12 = z11 + I10q
0
1

z13 = z12 + αh2(ḡ1 − A1z
1
2)

q11 = z13

z22 = z21 + I21q
1
1

z23 = z22 + αh2(g2 − A2z
2
2)

q21 = z23
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V-Cycle and W-cycle on three levels

If instead, we choose p = 2, we get
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q22 = MG(2, z20 , g
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V-Cycle and W-cycle on four levels
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The Full Multigrid Algorithm:

For k = 0, let û0 = A−1
0 f0.

For k = 1, · · · , N , the approximate solutions ûk are obtained recursively by the following
algorithm:

uk
0 = Ikk−1ûk−1

uk
l = MG(k, uk

l−1, fk), 1 ≤ l ≤ r,

ûk = uk
r .

So we start at level 0 and at each finer level, we take the initial guess to be Ikk−1ûk−1.
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Full Multigrid

To establish convergence of the multigrid algorithm, one first shows that the kth level
iteration is a contraction with respect to the energy norm ‖v‖2E = a(v, v) with a contrac-
tion number γ independent of k. This means that if z denotes the exact solution of the
linear system at level k, i.e., corresponding to the subspace Vk and MG(k, z0, g) denotes the
approximation obtained by multigrid with initial guess z0, then for some γ < 1,

‖z −MG(k, z0, g)‖E ≤ γ‖z − z0‖E.

Then we have the following convergence result.

Theorem 8. Let uN denote the exact solution of the finite element method on the mesh TN

and ûN the approximation obtained by the full multigrid algorithm. If the kth level iteration

is a contraction with a contraction number γ independent of k and if r is large enough, then

there exists a constant C > 0 independent of h such that

‖uN − ûN‖1 ≤ ChN‖u‖2,Ω.

Note that since ‖u− uN‖ ≤ ChN‖u‖2,Ω, using multigrid to approximately solve the linear
system only introduces an error of the same magnitude we are already making by using
the approximation scheme. The reason multigrid is so successful is that the work involved
(number of arithmetic operations) is proportional to the dimension of the finite element
space (an asymptotically optimal result).


