
56 NUMERICAL SOLUTION OF PDES

9. Finite difference methods for the transport equation

We next consider the approximation of the initial value problem for the transport equation
in one space dimension, i.e., Find u(x, t) satisfying

Lu ≡ ∂u

∂t
+ α

∂u

∂x
= f, u(x, 0) = φ(x).

When f ≡ 0 and α is a constant, it is easy to check that the solution of this problem is given
by u(x, t) = φ(x− αt). Note that the solution at the point (x, t) only depends on the initial
data at the point x−αt. This point (or for more general problems, the set of points) on the
initial line that determine the solution at the point (x, t) is called the domain of dependence
of the point (x, t). Consider the case when α > 0.

The following condition, called the CFL (Courant-Friedrich-Lewy) condition, is necessary
for convergence of an approximation scheme.

Theorem 10. A necessary condition for convergence is that the numerical domain of de-

pendence contains the true domain of dependence.

Thus, we see that choosing forward difference approximations for both ut and ux will not
lead to a convergent approximation scheme. In that case, we would obtain in the case f ≡ 0

[Un+1
j − Un

j ]/k + α[Un
j+1 − Un

j ]/h = 0.

Setting λ = αk/h, this is equivalent to:

Un+1
j = (1 + λ)Un

j − λUn
j+1.

Note that Un+1
j depends on data to the right of x and directly below it, while the exact

solution depends on initial data to the left of x. Hence, the CFL condition is not satisfied
and the scheme does not converge as h, k → 0.

If we consider instead the scheme:

[Un+1
j − Un

j ]/k + α[Un
j − Un

j−1]/h = fn
j , i.e.,

Un+1
j = (1− λ)Un

j + λUn
j−1 + kfn

j ,

then the solution at the point (x, t) = (x, nk) depends on the initial data in the interval
[x− nh, x]. The CFL condition will be satisfied if we choose nh ≥ αnk, i.e., λ = αk/h ≤ 1.

For this simple problem, convergence is easy to prove. Let vnj be a mesh function and

Lh,kv
n
j = [vn+1

j − vnj ]/k + α[vnj − vnj−1]/h.

Then
vn+1
j = (1− λ)vnj + λvnj−1 + kLh,kv

n
j .

For 0 ≤ λ ≤ 1, we easily obtain the following stability result.

Lemma 10. For 0 ≤ λ = ak/h ≤ 1, and nk ≤ T ,

max
j

|vnj | ≤ max
j

|v0j |+ T max
j,n

|Lh,kv
n
j |.
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Proof. Let V n = maxj |vnj |. Then for 0 ≤ n ≤ N , with Nk = T ,

|vn+1
j | ≤ (1− λ)|vnj |+ λ|vnj−1|+ k|Lh,kv

n
j |

≤ (1− λ)V n + λV n + kmax
j

|Lh,kv
n
j | ≤ V n + kmax

j,n
|Lh,kv

n
j |.

Hence,
|vn+1

j | ≤ V n + kmax
j,n

|Lh,kv
n
j |.

Since this equation holds for all values of j, we get

V n+1 = max
j

|vn+1
j | ≤ V n + kmax

j,n
|Lh,kv

n
j |.

Iterating this equation, we obtain

V n ≤ V 0 + nkmax
j,n

|Lh,kv
n
j | ≤ T max

j,n
|Lh,kv

n
j |.

�

To obtain an error estimate, we apply this stability result to vnj = u(jh, nk) − Un
j . An

easy calculation shows that

|Lh,kv
n
j | = |Lh,ku(jh, nk)− Lh,kU

n
j | = |Lh,ku(jh, nk)− fn

j |
= |Lh,ku(jh, nk)− Lu(jh, nk)| = O(k) +O(h).

Since v0j = 0, we get for 0 ≤ n ≤ N ,

max
j,n

|u(jh, nk)− Un
j | ≤ T [O(k) +O(h)].

There are other schemes one might consider, and we shall examine these later. Even though
all of the following schemes satisfy the CFL condition, not all of them are convergent. The
CFL condition is necessary for convergence, but not sufficient. The following are all explicit
schemes.

Un+1
j − Un

j

k
+ α

Un
j+1 − Un

j−1

2h
= fn

j ,

Un+1
j − (1/2)Un

j+1 − (1/2)Un
j−1

k
+ α

Un
j+1 − Un

j−1

2h
= fn

j , Lax -Friedrichs.

Un+1
j − Un

j

k
+ α

Un
j+1 − Un

j−1

2h
− α2k

2

Un
j+1 − 2Un

j + Un
j−1

h2
= fn

j , Lax Wendroff,

Un+1
j − Un−1

j

2k
+ α

Un
j+1 − Un

j−1

2h
= fn

j , leapfrog,

An example of an implicit scheme is given by the Crank-Nicolson method.

Un+1
j − Un

j

k
+ α

Un+1
j+1 − Un+1

j−1 + Un
j+1 − Un

j−1

4h
=

1

2
[fn+1

j + fn
j ].

The derivation of all but one of the above schemes is fairly straightforward. Below we give
a derivation of the Lax-Wendroff scheme (for constant α), when f = 0.
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A Taylor series expansion gives

u(x, t+k) = u(x, t)+kut(x, t)+
k2

2
utt(x, t)+O(k

3) = u(x, t)−kαux(x, t)+
k2

2
utt(x, t)+O(k

3).

Differentiating the equation, we get

utt = −[αux]t = −α[ut]x = −α[−αux]x = α2uxx.

Inserting this into the Taylor series, we have

u(x, t+ k) = u(x, t)− kαux(x, t) +
α2k2

2
uxx(x, t) +O(k3).

If we then use the difference approximations

ux(x, t) =
u(x+ h, t)− u(x− h, t)

2h
+O(h2),

uxx(x, t) =
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
+O(h2),

we get

u(x, t+ k) = u(x, t)− kα

2h
[u(x+ h, t)− u(x− h, t)]

+
α2k2

2h2
[u(x+ h, t)− 2u(x, t) + u(x− h, t)] +O(h2) +O(k3).

Approximating u(x, t) at the point x = jh, t = nk by Un
j , dividing by k, and dropping the

O(h2) and O(k3) terms, we obtain the Lax-Wendroff scheme.

10. Finite difference methods for the wave equation

We next consider the approximation of the initial value problem for the wave equation in
one space dimension, i.e., Find u(x, t) satisfying

Lu ≡ ∂2u

∂t2
− c2

∂2u

∂x2
= f, a < x < b, t > 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x).

We might also give boundary conditions, e.g., u(a, t) = u(b, t) = 0.

A closed form solution (d’Alembert solution) can be given for this problem when f ≡ 0,
i.e.,

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

∫ x+ct

x−ct

ψ(s) ds.

Note that the solution at the point (x∗, t∗) depends on the initial data only in the interval
[x∗ − ct∗, x∗ + ct∗], (called the domain of dependence).

For the heat equation, this property is not true, i.e., if we consider the pure initial value
problem:

∂u

∂t
= σ

∂2u

∂x2
, u(x, 0) = φ(x), −∞ < x <∞,
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then

u(x, t) =

∫

∞

−∞

e−(ξ−x)2/(4t)

√
4πt

φ(ξ) dξ.

Hence u(x, t) depends on the initial data φ(x) everywhere in the interval (−∞,∞).

A simple finite difference approximation of the wave equation is given by:

[Un+1
j − 2Un

j + Un−1
j ]/k2 = c2[Un

j+1 − 2Un
j + Un

j−1]/h
2 + fn

j ,

a three-level explicit scheme. If we set λ = (ck/h), we may rewrite this scheme in the form

Un+1
j = 2[1− λ2]Un

j + λ2[Un
j+1 + Un

j−1]− Un−1
j + k2fn

j .

To proceed, we need initial values at two levels to get started. We take U0
j = φj. To get

a value for U1
j , we can use a Taylor series approximation. The simplest is to approximate

ut(x, 0) by [u(x, k)− u(x, 0)]/k. Then

u(x, k) ≈ u(x, 0) + kut(x, 0) = φ(x) + kψ(x).

More accurate approximations can be obtained if φ is sufficiently differentiable and the wave
equation is satisfied at t = 0. Then

utt(x, 0) = c2uxx(x, 0) = c2φ′′(x),

so

u(x, k) = u(x, 0) + kut(x, 0) +
k2

2
utt(x, 0) +O(k3) ≈ φ(x) + kψ(x) +

k2

2
c2φ′′(x).

Next, we look at the numerical domain of dependence of the difference equation. Since
Un+1
j depends on the values Un

j−1, U
n
j , U

n
j+1, and U

n−1
j , it is easy to see that the value of the

approximate solution at the point (x∗, t∗) will depend on the initial data only in the interval
[x∗ − (h/k)t∗, x∗ + (h/k)t∗]. Hence, the CFL condition will be satisfied, i.e., the numerical
domain of dependence contains the true domain of dependence of the wave equation if

h/k ≥ c, i.e., λ = ck/h ≤ 1.

Hence, we can conclude that in general, the solution of the difference equation cannot
converge to the exact solution of the wave equation as h → 0 and k → 0 for constant
λ = ck/h > 1.

10.1. First order symmetric hyperbolic systems. We note that one can reduce the
1-dimensional wave equation to a first order system by introducing new variables. Let
w1 = cux, w2 = ut, and write w = (w1, w2)

T . Then we have (w1)t = c(w2)x, (w2)t = utt =
c2uxx + f = c(w1)x + f . Hence, we have the system

∂

∂t

(

w1

w2

)

=

(

0 c
c 0

)

∂

∂x

(

w1

w2

)

+

(

0
f

)

with initial conditions

w1(x, 0) = cφ′(x), w2(x, 0) = ψ(x).
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More generally, we can consider a system of n first order differential equations for the n
functions w1, · · · , wn that are the components of the vector w. This will have the form

∂

∂t
w + A

∂

∂x
w = F,

where A is an n × n matrix. In the simplest case of a symmetric hyperbolic system, A
has n real eigenvalues λ1, · · · , λn and a complete set of eigenvectors. Some of the numerical
methods developed for the transport problem can then be applied to approximate this system.


