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11. Stability of difference schemes for pure initial value problems with

periodic initial data

In this section, we develop algebraic conditions that allow us to determine for which values
of the mesh sizes h and k, a given difference scheme for an initial value problem is stable.
The problems we consider are of the form:

Lu ≡ ut − Au = f , u(x, 0) = u0(x),

where u is a vector with m components and A is an m×m matrix of differential operators
in x.

11.1. Two-level explicit schemes. Examples:

Heat equation Lu = ut − σuxx, A = σ∂2/∂x2.

Transport equation: Lu = ut + αux, A = −α∂/∂x.

The wave equation utt − c2uxx does not fit this framework in that form, but does fit if we
rewrite it as a first order system by defining w = cux, v = ut, and setting u = (v, w)T . Then

∂

∂t

(

v
w

)

−

(

0 c∂/∂x
c∂/∂x 0

)(

v
w

)

= 0,

so

ut − Au = 0, A =

(

0 c∂/∂x
c∂/∂x 0

)

.

We consider the problem with periodic initial data and look for periodic solutions (period
2π). We illustrate the theory by first considering explicit schemes of the form:

Lh,kU
n
j = fn

j ,

where

Lh,kU
n
j = k−1[Un+1

j −

Q
∑

q=−Q

CqU
n
j+q].

In the aboveQ is a fixed positive number and Cq = Cq(h, k) are matrices that are independent
of j and n.

Example: explicit scheme for the heat equation

Lh,kU
n
j = k−1

{

Un+1
j −

(

1−
2σk

h2

)

Un
j −

σk

h2
[Un

j+1 + Un
j−1]

}

.

Then

m = 1, C−1 = σk/h2 = C1, C0 = 1− 2σk/h2.
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Since we are considering a pure initial value problem, we can define Lh,kU
n at x for all x,

not just the mesh points x = jh, i.e.,

Lh,kU
n(x) = k−1[Un+1(x)−

Q
∑

q=−Q

CqU
n(x+ qh)].

Hence, we can define the numerical solution for all values of x, even though in practice we
only compute it at the mesh points, i.e.,

Lh,kU
n(x) = fn(x), U (x, 0) = u0(x).

Note the the approximate solution is still only defined at the discrete time levels t = nk.

To analyze such problems, we shall use the L2-norm on vector-valued functions of x, i.e.,

‖U‖2 =

∫ 2π

0

|U |2 dx,

where | · | denotes the Euclidean vector norm and we are assuming that U (x+ 2π) = U (x).
For fixed T > 0, we shall use the term discrete function to mean a function Un(x), 0 ≤ n ≤
N = T/k, i.e., the sequence of functions, U 0,U 1, · · · ,UN . On such functions, we use the
norm max0≤n≤N ‖Un‖.

We then say that the numerical method determined by the difference operator Lh,k is
stable in this norm if there exists a constant C independent of h and k such that

max
0≤n≤N

‖V n‖ ≤ C

[

max
0≤n≤N−1

‖Lh,kV
n‖+ ‖V 0‖

]

for all discrete functions V n(x), 0 ≤ n ≤ N , with Nk = T .

If a scheme is stable, then using the triangle inequality, we obtain the following error
estimate.

max
0≤n≤N

‖un −Un‖ ≤ C

[

max
0≤n≤N−1

‖Lh,ku
n − (Lu)n‖+ ‖u0 −U 0‖

]

.

If we choose U 0 = u0, then the scheme is convergent if it is consistent, i.e., if

max
0≤n≤N−1

‖Lh,ku
n − (Lu)n‖ → 0 as h, k → 0.

This combination is the often cited theorem that stability + consistency implies convergence.

Since checking that a scheme is consistent is fairly straightforward for finite difference
schemes, (using Taylor series expansions), we concentrate on the issue of stability. Let us
introduce a formally weaker notion of stability, again with T > 0 fixed and h, k → 0.

Condition (A): There exists a constant K > 0 independent of h and k such that

max
0≤n≤N

‖V n‖ ≤ K‖V 0‖

for all discrete functions V n such that Lh,kV
n = 0. Clearly, if a scheme is stable, then it

satisfies Condition (A). In fact, one can also show that if a scheme satisfies Condition (A),
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then it is stable. Assuming this is the case, we wish to develop an algebraic criterion for
checking Condition (A).

For any vector-valued function v(x) that is 2π periodic, let v(x) =
∑∞

p=−∞
v̂(p)eipx denote

its Fourier series. Then

‖v‖2 = 2π
∞
∑

p=−∞

|v̂(p)|2, v̂(p) =
1

2π

∫ 2π

0

v(x)e−ipx dx.

Now kLh,kV
n(x) = V n+1(x)−

Q
∑

q=−Q

CqV
n(x+ qh)

=
∑

p

V̂
n+1

(p)eipx −
∑

p

Q
∑

q=−Q

CqV̂
n
(p)eip(x+qh) =

∑

p

[V̂
n+1

(p)−G(p, h, k)V̂
n
(p)]eipx,

where

G(p, h, k) =

Q
∑

q=−Q

Cqe
ipqh.

In particular, if Lh,kV
n = 0, then

V̂
n+1

(p) = G(p, h, k)V̂
n
(p).

Iterating this equation, we obtain

V̂
n
(p) = Gn(p, h, k)V̂

0
(p).

The matrix G(p, h, k) is the amplification matrix for the pth mode.

Let ‖G‖ denote the 2-norm (spectral norm) of G given by maxi |λi(G
∗G)|1/2, where

λi(G
∗G)| are the eigenvalues of G∗G. Note that if G is symmetric, then ‖G‖ = maxi |λi(G)|

= ρ(G), the spectral radius of G. Then we have the following result.

Lemma 11. Condition (A) holds if and only if there exists a constant K independent of h,
k, and p such that

Condition (B) max
0≤n≤N−1

‖Gn(p, h, k)‖ ≤ K, ∀p, h, k.

Proof. We only prove that Condition (B) implies Condition (A). If V n is a discrete function
with Lh,kV

n = 0, then for 0 ≤ n ≤ N , with Nk = T ,

‖V n‖2 = 2π
∑

p

|V̂
n
(p)|2 = 2π

∑

p

|Gn(p, h, k)V̂
0
(p)|2

≤ 2π
∑

p

‖Gn(p, h, k)‖2|V̂
0
(p)|2 ≤ 2πK2

∑

p

|V̂
0
(p)|2 = K2‖V 0‖2.

�

Next, we give an important necessary condition for stability (von Neumann).
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Theorem 11. Suppose the explicit 2-level scheme is stable. Then there exists a constant M
independent of k and h such that

max
p

ρ[G(p, h, k)] ≤ 1 +Mk.

Corollary 2. If G is a normal matrix, i.e., GG∗ = G∗G, then the von Neumann condition
is both necessary and sufficient for stability.

Proof. (Of sufficiency). If G(p, h, k) is normal, then

‖Gn‖ = ‖G‖n = [ρ(G)]n.

Hence if ρ(G) ≤ 1 +Mk, then

‖Gn‖ ≤ (1 +Mk)n ≤ eMkn ≤ eMT = K, 0 ≤ n ≤ N,

so the method is stable. �


