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11.2. Stability of difference schemes – examples. In this section we present some ex-
amples to illustrate the theory.

Example 1: explicit scheme for the heat equation. In this case, we saw that C−1 = C1 =
σk/h2 and C0 = 1− 2σk/h2. Hence the amplification matrix

G(p, h, k) =
1

∑

q=−1

eipqhCq = e−iphσk/h2 + (1− 2σk/h2) + eiphσk/h2

= 1− 2σk/h2 + 2σk/h2 cos(ph).

For stability, we want |G| ≤ 1 +Mk. Now cos(2θ) = 1− 2 sin2 θ, so

G = 1− 2σk/h2 + 2(σk/h2)[1− 2 sin2(ph/2)] = 1− 4(σk/h2) sin2(ph/2).

Then −1−Mk ≤ G ≤ 1 +Mk if

−2−Mk ≤ −4(σk/h2) sin2(ph/2) ≤ Mk.

The right inequality is always true, since σ, k > 0. For the left inequality, we need

(σk/h2) sin2(ph/2) ≤ (1/2) +Mk/4, ∀p.

Since sin2(ph/2) can be arbitrarily close to 1, the stability condition becomes:

σk/h2 ≤ (1/2) +Mk/4.

If we let h, k → 0 in such a way that σk/h2 remains constant, then we obtain the stability
restriction σk/h2 ≤ 1/2.

Example 2: transport equation ut + αux = 0. If we consider the scheme:

[Un+1

j − Un
j ]/k + α[Un

j+1 − Un
j ]/h = 0, i.e.,

k−1[Un+1

j − (1 + αk/h)Un
j + (αk/h)Un

j+1] = 0,

then C0 = 1 + αk/h and C1 = −αk/h. Hence,

G(p, h, k) = 1 + αk/h− (αk/h)eiph.

For p = π/h,
G(p, h, k) = 1 + 2αk/h > 1 +Mk,

no matter how k, h → 0. Hence, the scheme is unstable. Recall that the CFL condition is
also violated in this case.

Example 3: If, instead, we consider the scheme:

[Un+1

j − Un
j ]/k + α[Un

j − Un
j−1]/h = 0, i.e.,

k−1[Un+1

j − (1− αk/h)Un
j − αk/hUn

j+1] = 0,

then C0 = 1− αk/h and C−1 = αk/h. Hence,

G(p, h, k) = 1− αk/h+ (αk/h)e−iph.

For λ = αk/h satisfying 0 ≤ λ ≤ 1,

|G| ≤ |1− αk/h+ (αk/h)e−iph| ≤ |1− λ|+ |λe−iph| ≤ 1− λ+ λ ≤ 1.
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Hence, the scheme is stable for 0 < αk/h ≤ 1. For λ > 1 and ph ≈ π,

|G| ≈ |1− 2αk/h| = 2λ− 1 > 1,

so the method is unstable.

Example 4:

[Un+1

j − Un
j ]/k + α[Un

j+1 − Un
j−1]/(2h) = 0, i.e.,

k−1[Un+1

j − Un
j + αk/(2h)(Un

j+1 − Un
j−1)] = 0,

then C0 = 1, C−1 = αk/(2h), C1 = −αk/(2h). Hence,

G(p, h, k) = 1 + αk/(2h)e−iph − αk/(2h)eiph = 1− i(ak/h) sin(ph).

Then

|G| = [1 + (α2k2/h2) sin2(ph)]1/2 ≈ [1 + α2k2/h2]1/2

for ph ≈= π/2. If k = O(h), then the method is unstable, while if k = ch2, then

|G| = [1 + α2ck]1/2 ≤ [1 + α2ck + α4c2k2/4]1/2 = 1 + α2ck/2.

Hence, the method is stable in this case. However, this is a bad scheme, since it requires a
very small time step.

11.3. Three-level explicit schemes. A scheme that was mentioned earlier was the ap-
proximation of the wave equation utt = c2uxx by the method

[Un+1

j − 2Un
j + Un1

j ]/k2 = c2[Un
j+1 − 2Un

j + Un
j−1]/h

2.

If we set λ = ck/h and introduce a new variable V n
j = Un−1

j . then we convert this scheme
to a two level scheme for the vector (Un

j , V
n
j ), i.e., we have

Un+1

j = (2− 2λ2)Un
j + λ2(Un

j+1 + Un
j−1)− V n

j , V n+1

j = Un
j .

In matrix form, this becomes:
(

Un+1

j

V n+1

j

)

=

(

λ2 0
0 0

)(

Un
j−1

V n
j−1

)

+

(

2− 2λ2 −1
1 0

)(

Un
j

V n
j

)

+

(

λ2 0
0 0

)(

Un
j+1

V n
j+1

)

.

Hence, the amplification matrix for this method is

G(p, h, k) =

(

λ2[e−iph + eiph] + 2− 2λ2 −1
1 0

)

=

(

2λ2 cos(ph) + 2− 2λ2 −1
1 0

)

=

(

2− 4λ2 sin2(ph/2) −1
1 0

)

.

We next show that the von Neumann condition is satisfied if as h, k → 0, λ = ck/h ≤ 1. Let
β = 2− 4λ2 sin2(ph/2). Then the eigenvalues of the matrix G are the roots of

det

(

β − x −1
1 −x

)

= x2 − βx+ 1 = 0, i.e., x = (β ±
√

β2 − 4)/2.
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Now for 0 ≤ λ ≤ 1, −2 ≤ β ≤ 2 and so β2 − 4 ≤ 0. For |β| < 2, the roots are complex
conjugates and so |x|2 = (β2 + 4− β2)/4 = 1. If |β| = 2, then |x| = 1. Hence, ρ(G) ≤ 1 and
so the von Neumann condition is satisfied. However,

GG∗ =

(

β −1
1 0

)(

β 1
−1 0

)

=

(

β2 + 1 β
β 1

)

,

G∗G =

(

β 1
−1 0

)(

β −1
1 0

)

=

(

β2 + 1 −β
−β 1

)

,

and so GG∗ 6= G∗G, i.e., G is not a normal matrix. Hence, the von Neumann condition does
not imply stability. To investigate stability for this problem, one can verify directly that for
0 < λ < 1,

‖Gn(p, h, k)‖ ≤ K, ∀p, h, k, 0 ≤ n ≤ N, λ = ak/h.

For λ = 1, ‖Gn‖ → ∞ and the method is not stable.

11.4. Stability of two-level implicit schemes. In the homogeneous case, (f = 0), a
constant coefficient two-level implicit scheme may be written in the form

Q
∑

q=−Q

BqU
n+1(x+ qh) =

Q
∑

q=−Q

CqU
n(x+ qh).

Again writing U
n in terms of its Fourier series, i.e.,

U
n(x) =

∞
∑

p=−∞

Û
n
(p)eipx,

we have
∑

p

Q
∑

q=−Q

Bqe
ipqh

Û
n+1

(p)eipx =
∑

p

Q
∑

q=−Q

Cqe
ipqh

Û
n
(p)eipx.

Hence,

H1(p, h, k)Û
n+1

(p) = H0(p, h, k)Û
n
(p), where

H1(p, h, k) =

Q
∑

q=−Q

Bqe
ipqh, H0(p, h, k) =

Q
∑

q=−Q

Cqe
ipqh.

Setting G(p, h, k) = H−1

1 H0, we get

Û
n+1

(p) = G(p, h, k)Û
n
(p).

The previous theory carries over directly to this case: the difference scheme is stable if and
only if there exists a constant K independent of h, k, and p such that

max
0≤n≤N−1

‖Gn(p, h, k)‖ ≤ K, ∀p, h, k.

The von Neumann condition is again necessary for stability and is also sufficient if G is a
normal matrix.
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Example: implicit scheme for the heat equation

[Un+1

j − Un
j ]/k = σ[Un+1

j+1 − 2Un+1

j + Un+1

j−1 ]h
2,

which we rewrite in the form

k−1[−(σk/h2)Un+1

j+1 + (1 + 2σk/h2)Un+1

j − (σk/h2)Un+1

j−1 ] = k−1Un
j .

Then
B−1 = B1 = −σk/h2, B0 = 1 + 2σk/h2, C0 = 1.

Hence,

H1 = −(σk/h2)(eiph + e−iph) + 1 + 2σk/h2

= 1 + 2σk/h2 − 2(σk/h2) cos(ph) = 1 + (4σk/h2) sin2(ph/2).

Since H0 = 1, we get that

0 ≤ G = 1/[1 + (4σk/h2) sin2(ph/2)] ≤ 1,

and so the implicit method is unconditionally stable.


