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12. FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS

We consider the parabolic problem:
ut—dlv(pvu)+qu:f7 (.ﬁlj’,t) € 1 x (O7T}7
u(z,t) =0, (z,t) € 09 x (0,77, u(z,0) =g(x), xe€.

A variational formulation of this problem is to seek u(t) € H*(Q) such that u(0) = g,
(9u/0t,v) + alu,v) = (f,v), ve H'(Q),

where as in the elliptic case, (-,-) denotes the L*(Q) inner product and

a(u,v) = /[qu - Vv + quul du.
Q

12.1. Continuous time Galerkin scheme. We first consider an approximation in which
we discretize by finite elements in the spatial variable, but keep time continuous. Thus, we
choose a finite dimensional subspace V;, C H'(Q) and look for an approximation uy(t) € Vj,
t € [0, 7], satisfying: u,(0) = gn (gn an approximation to g) and
(auh/atu ’U) + a(uha /U) = (f7 'U), (S Vh-

To see what is involved in solving this problem, we write u(t) = >_7", a;(t)$;(z). Inserting
this into the variational equations, and choosing v to be each of the basis functions ¢;, we
get

m

Za;(t)(¢]7¢l) + ZO‘j(t)a((ﬁj?(ﬁi) = (fv Cbz)? 1= 17 s M

j=1
Let
Mij: (¢j7¢i)7 Aij :a(¢j7¢i)7 F; = (f7¢1)7 o = <a17--~7am)T-

Our equations then have the form
Md/(t) + Aa = F,

a first order system of ordinary differential equations.

One can obtain a simple error estimate for this approximation scheme by comparing the
approximate solution to the elliptic projection wy(t) € V},, satisfying

a(u(t) — wh(t), ?)h) =0, vy € V.

We showed previously that if V}, consists of piecewise polynomials of degree < r, and wu is
sufficiently smooth, then

lu(t) — wr ()] + hllu(t) — wa(@®)]ls < CR™Hu(t) |-

Theorem 12. If V), consists of piecewise polynomials of degree < r and u is sufficiently
smooth, then fort >0,

t
() = wn(®)]| < lg = gull + C+! [ngum + [ s ds] |
0
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Proof. We estimate the error by writing u — u, = (u — wy,) + (wy, — up). From the above, we
have

t
lu(t) — wr ()] < CR™Hu(®) |41 < CR™H|u(0) +/ ui(s) dsllrs1
0

t
<ow [||9||r+1 ; / ae(s) s ds] .

It thus remains to estimate ||uy, —wy||. Using the continuous and discrete variational formu-
lations and the definition of wy,(t), we get

(Olup, — wp)/0t,v) + alup, — wp,v) = (Oup, — ul/0t,v) + alup, — u,v)
+ (Ou — wp) /0t v) + a(u — wy, v) = (Olu — wy] /O, v), v E V.

Choosing v = u;, — wy,, and observing that

d 1d
|un — whl@”“h —wy|| = §%Huh — wp|]* = ([un — wale, un — wp),

we get

d
lun — will = lun — wall + lun — wall = ([u — wale, un —wa) < [[[u — wplel||un — wall.
dt

Hence,

d

g llun = wnl| < [lfu = wale].

Integrating this equation between 0 and t, we get
t
[[un(t) — wr @) < [[un(0) — wi(0)]] +/0 I — wali(s)| ds
t
< [Jun(0) = w(0)[| + [[u(0) — wa(0)I] + /0 I = wali(s)| ds.

t
<l = anll+ 0 [lglhas+ [ s
Using the triangle inequality, and combining estimates, we then obtain
Ju(t) = un(®)] < [[u(t) — wa@)] + lun(t) — wa @)
t
<l = anll+ 0 [lglhas+ [ s
O
12.2. Fully discrete schemes. One way to get a fully discrete scheme is to combine the
use of finite elements to discretize the spatial variable with a finite difference approximation

in time. For example, if we approximate u; by the backward Euler approximation, we get
the scheme: Find U™ € V},, satisfying U° = g;, and for n > 0

(U™ —U™/k,v) + a(U" 0) = (f*THv) v e V.
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Using the matrices defined previously, and defining U"(z) = Z;n:l a"¢;(x), the discrete
variational formulation above corresponds to the linear system

(M + kA)a"™ = Ma™ + kF" n=0,1,....

Another choice is the Crank-Nicholson-Galerkin method, which has the form: Find U™ €
Vi, satisfying U° = g, and for n > 0

(U™ = U]k, v) + a([U + U"/2,0) = ([ + [11/2), v €V
In this case, we get the linear system

(M + $kA)a™ = (M — LkA)™ + k(F" + F™)/2,  n=0,1,....

For the backward Euler method, we have the following error estimate (¢, = nk).

Theorem 13.

t’”/
HM%%JWHSM—9M+CW“DMM1+/ w«wwj+k/
0 0

tTL
lug(s)]| ds, n > 0.

Proof. As before, we write u(t,) —U™ = (u(t,) —W")+(W" —U"), where W" = wy,(t,) € V},
(the elliptic projection) satisfies

a(u(t) —wp(t),vy) =0, v € V.

From our previous result, we have

tn
futt) =71 < 0 gl + [ 9l s
0

To estimate U™ — W™, we again use our continuous and discrete variational formulations,
but this time obtaining

(U = WY1 = (U = W)k, 0) + al(U — W)™, 0) = (U — 0™ — (U — u)")/k,v)
+a((U =) v) + ([(w = W)™ = (u = W)"] [k, 0) + a((u — W)™ )
= (uf™ — " —u")/k,v) + ([(uw— W) — (u— W)k, 0) = (p",v) v E V.
Choosing v = (U — W)™ we get

(U = W)U + EII(U = W)™ % = (U= W)™, (U = W)™ + k(p", (U = W)™)
< @ = W)™+ ke @ = W)™
Hence,
1T = W)™ < /@ = W)™+ llp"-
[terating this equation, we get

n—1

IO =Wy < IO =Wl + kD]

J=0



72 NUMERICAL SOLUTION OF PDES
By Taylor series,
t+k
u(z,t) = u(x, t + k) — ku(z, t + k) + / (s — t)uy(s) ds.
t
Hence, for t; = jk,

. . . thrl
Wt — [t — W)k = kl/ (s —t;)uw(s)ds.
ty

So

Skqlw“wwawn+Mu—wm@wws

tit1
Sk*/‘[wW@w+CMHmmmHmm
t;

Hence,
n—1 ‘ n—1 tit1
EY 1P < Z/ [Ellwee (s)]| + CR™ Hlwe(s)]| 1] ds
=0 j=0 7t

tn tn
sa/|mwmw+cM“/ el 1] .

to to
The theorem follows by combining all these results. U



