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12. Finite element methods for parabolic problems

We consider the parabolic problem:

ut − div(p∇u) + qu = f, (x, t) ∈ Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], u(x, 0) = g(x), x ∈ Ω.

A variational formulation of this problem is to seek u(t) ∈ H̊1(Ω) such that u(0) = g,

(∂u/∂t, v) + a(u, v) = (f, v), v ∈ H̊1(Ω),

where as in the elliptic case, (·, ·) denotes the L2(Ω) inner product and

a(u, v) =

∫

Ω

[p∇u · ∇v + quv] dx.

12.1. Continuous time Galerkin scheme. We first consider an approximation in which
we discretize by finite elements in the spatial variable, but keep time continuous. Thus, we
choose a finite dimensional subspace Vh ⊂ H̊1(Ω) and look for an approximation uh(t) ∈ Vh,
t ∈ [0, T ], satisfying: uh(0) = gh (gh an approximation to g) and

(∂uh/∂t, v) + a(uh, v) = (f, v), v ∈ Vh.

To see what is involved in solving this problem, we write uh(t) =
∑m

j=1
αj(t)φj(x). Inserting

this into the variational equations, and choosing v to be each of the basis functions φi, we
get

m
∑

j=1

α′

j(t)(φj, φi) +
m
∑

j=1

αj(t)a(φj, φi) = (f, φi), i = 1, . . . ,m.

Let

Mij = (φj, φi), Aij = a(φj, φi), Fi = (f, φi), α = (α1, . . . , αm)
T .

Our equations then have the form

Mα′(t) + Aα = F,

a first order system of ordinary differential equations.

One can obtain a simple error estimate for this approximation scheme by comparing the
approximate solution to the elliptic projection wh(t) ∈ Vh, satisfying

a(u(t)− wh(t), vh) = 0, vh ∈ Vh.

We showed previously that if Vh consists of piecewise polynomials of degree ≤ r, and u is
sufficiently smooth, then

‖u(t)− wh(t)‖+ h‖u(t)− wh(t)‖1 ≤ Chr+1|u(t)|r+1.

Theorem 12. If Vh consists of piecewise polynomials of degree ≤ r and u is sufficiently

smooth, then for t ≥ 0,

‖u(t)− uh(t)‖ ≤ ‖g − gh‖+ Chr+1

[

‖g‖r+1 +

∫ t

0

‖ut‖r+1 ds

]

.
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Proof. We estimate the error by writing u− uh = (u−wh) + (wh − uh). From the above, we
have

‖u(t)− wh(t)‖ ≤ Chr+1‖u(t)‖r+1 ≤ Chr+1‖u(0) +

∫ t

0

ut(s) ds‖r+1

≤ Chr+1

[

‖g‖r+1 +

∫ t

0

‖ut(s)‖r+1 ds

]

.

It thus remains to estimate ‖uh−wh‖. Using the continuous and discrete variational formu-
lations and the definition of wh(t), we get

(∂[uh − wh]/∂t, v) + a(uh − wh, v) = (∂[uh − u]/∂t, v) + a(uh − u, v)

+ (∂[u− wh]/∂t, v) + a(u− wh, v) = (∂[u− wh]/∂t, v), v ∈ Vh.

Choosing v = uh − wh, and observing that

‖uh − wh‖
d

dt
‖uh − wh‖ =

1

2

d

dt
‖uh − wh‖

2 = ([uh − wh]t, uh − wh),

we get

‖uh − wh‖
d

dt
‖uh − wh‖+ ‖uh − wh‖

2
E = ([u− wh]t, uh − wh) ≤ ‖[u− wh]t‖‖uh − wh‖.

Hence,
d

dt
‖uh − wh‖ ≤ ‖[u− wh]t‖.

Integrating this equation between 0 and t, we get

‖uh(t)− wh(t)‖ ≤ ‖uh(0)− wh(0)‖+

∫ t

0

‖[u− wh]t(s)‖ ds

≤ ‖uh(0)− u(0)‖+ ‖u(0)− wh(0)‖+

∫ t

0

‖[u− wh]t(s)‖ ds.

≤ ‖g − gh‖+ Chr+1

[

‖g‖r+1 +

∫ t

0

‖ut(s)‖r+1 ds

]

.

Using the triangle inequality, and combining estimates, we then obtain

‖u(t)− uh(t)‖ ≤ ‖u(t)− wh(t)‖+ ‖uh(t)− wh(t)‖

≤ ‖g − gh‖+ Chr+1

[

‖g‖r+1 +

∫ t

0

‖ut(s)‖r+1 ds

]

.

�

12.2. Fully discrete schemes. One way to get a fully discrete scheme is to combine the
use of finite elements to discretize the spatial variable with a finite difference approximation
in time. For example, if we approximate ut by the backward Euler approximation, we get
the scheme: Find Un ∈ Vh, satisfying U0 = gh and for n ≥ 0

([Un+1 − Un]/k, v) + a(Un+1, v) = (fn+1, v) v ∈ Vh.
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Using the matrices defined previously, and defining Un(x) =
∑m

j=1
αnφj(x), the discrete

variational formulation above corresponds to the linear system

(M + kA)αn+1 = Mαn + kF n+1, n = 0, 1, . . . .

Another choice is the Crank-Nicholson-Galerkin method, which has the form: Find Un ∈
Vh, satisfying U0 = gh and for n ≥ 0

([Un+1 − Un]/k, v) + a([Un+1 + Un]/2, v) = ([fn+1 + fn]/2), v ∈ Vh.

In this case, we get the linear system

(M + 1

2
kA)αn+1 = (M − 1

2
kA)αn + k(F n+1 + F n)/2, n = 0, 1, . . . .

For the backward Euler method, we have the following error estimate (tn = nk).

Theorem 13.

‖u(tn)− Un‖ ≤ ‖g − gh‖+ Chr+1

[

‖g‖r+1 +

∫ tn

0

‖ut(s)‖r+1

]

+ k

∫ tn

0

‖utt(s)‖ ds, n ≥ 0.

Proof. As before, we write u(tn)−Un = (u(tn)−W n)+(W n−Un), where W n = wh(tn) ∈ Vh

(the elliptic projection) satisfies

a(u(t)− wh(t), vh) = 0, vh ∈ Vh.

From our previous result, we have

‖u(tn)−W n‖ ≤ Chr+1

[

‖g‖r+1 +

∫ tn

0

‖ut(s)‖r+1 ds

]

.

To estimate Un − W n, we again use our continuous and discrete variational formulations,
but this time obtaining

([(U −W )n+1 − (U −W )n]/k, v) + a((U −W )n+1, v) = ([(U − u)n+1 − (U − u)n]/k, v)

+ a((U − u)n+1, v) + ([(u−W )n+1 − (u−W )n]/k, v) + a((u−W )n+1, v)

= (un+1
t − [un+1 − un]/k, v) + ([(u−W )n+1 − (u−W )n]/k, v) ≡ (ρn, v) v ∈ Vh.

Choosing v = (U −W )n+1, we get

‖(U −W )n+1‖2 + k‖(U −W )n+1‖2E = ((U −W )n, (U −W )n+1) + k(ρn, (U −W )n+1)

≤ [‖(U −W )n‖+ k‖ρn‖]‖(U −W )n+1‖.

Hence,

‖(U −W )n+1‖ ≤ ‖(U −W )n‖+ k‖ρn‖.

Iterating this equation, we get

‖(U −W )n‖ ≤ ‖(U −W )0‖+ k
n−1
∑

j=0

‖ρj‖.
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By Taylor series,

u(x, t) = u(x, t+ k)− kut(x, t+ k) +

∫ t+k

t

(s− t)utt(s) ds.

Hence, for tj = jk,

uj+1

t − [uj+1 − uj]/k = k−1

∫ tj+1

tj

(s− tj)utt(s) ds.

So

‖ρj‖ =
∥

∥

∥
k−1

∫ tj+1

tj

[(s− tj)utt(s) + (u− wh)t(s)] ds
∥

∥

∥

≤ k−1

∫ tj+1

tj

[k‖utt(s)‖+ ‖(u− wh)t(s)‖] ds

≤ k−1

∫ tj+1

tj

[k‖utt(s)‖+ Chr+1‖ut(s)‖r+1] ds.

Hence,

k
n−1
∑

j=0

‖ρj‖ ≤
n−1
∑

j=0

∫ tj+1

tj

[k‖utt(s)‖+ Chr+1‖ut(s)‖r+1] ds

≤ k

∫ tn

t0

‖utt(s)‖ ds+ Chr+1

∫ tn

t0

‖ut(s)‖r+1] ds.

The theorem follows by combining all these results. �


