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1.2. Stability and error estimates. We now use the discrete maximum principle to bound
the error between u and Uh. We first establish the following stability result.

Theorem 3. Let v(x, y) be a function defined on Ωh ∪ ∂Ωh. Then

max
Ωh∪∂Ωh

|v| ≤ max
∂Ωh

|v| +
1

2
max
Ωh

|∆hv|.

Proof. Let φ(x, y) = x2/2. Then 0 ≤ φ(x, y) ≤ 1/2 for all (x, y) ∈ Ωh ∪ ∂Ωh. Furthermore,

∆hφ(x, y) =
1

2h2
{(x + h)2 + (x − h)2 + x2 + x2 − 4x2} = 1.

Define functions v+(x, y) and v−(x, y) by v±(x, y) = ±v(x, y) + Mφ(x, y), where M =
maxΩh

|∆hv|. Then for all (x, y) ∈ Ωh,

∆hv±(x, y) = ±∆hv(x, y) + M ≥ 0.

Hence, by Theorem 1, for all (x, y) ∈ Ωh,

v±(x, y) ≤ max
∂Ωh

v±(x, y) = max
∂Ωh

[±v(x, y) + Mφ(x, y)] ≤ max
∂Ωh

[±v(x, y] + M/2.

Since Mφ ≥ 0,

±v(x, y) = v±(x, y) − Mφ(x, y) ≤ v±(x, y).

Hence, for all (x, y) ∈ Ωh,

±v(x, y) ≤ max
∂Ωh

[±v(x, y)] + M/2 ≤ max
∂Ωh

|v| + M/2,

and so

max
Ωh

|v| ≤ max
∂Ωh

|v| + max
Ωh

|∆hv|.

Since max∂Ωh
|v| is also bounded by the right hand side of the above, (ii) follows immediately.

�

Theorem 4. Suppose u and Uh are the solutions of Problems P and Ph, respectively. Then

max
Ωh∪∂Ωh

|u − Uh| ≤
1

2
max
Ωh

|∆hu − ∆u|.

Proof. Set v = u − Uh, where we now consider the restriction of u to the mesh, so that we
can view v as a function defined on the mesh. Then v = 0 on ∂Ωh and

∆hv = ∆hu − ∆hUh = ∆hu − ∆u + ∆u − ∆hUh = ∆hu − ∆u + f − f = ∆hu − ∆u.

By Theorem 3, applied to v = u − Uh,

max
Ωh∪∂Ωh

|u − Uh| ≤ max
∂Ωh

|u − Uh| +
1

2
max
Ωh

|∆hu − ∆u| =
1

2
max
Ωh

|∆hu − ∆u|.

�

Corollary 1. If u ∈ C4(Ω), then maxΩh∪∂Ωh
|u − Uh| ≤ h2M4/12.
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Remarks: The quantity ∆u−∆hu is called the consistency error in the approximation of
∆u by ∆hu. The statement that max |∆u−∆hu| → 0 as h → 0 says that the approximation
is consistent.

Since Problem Ph has a unique solution, there will be a constant Ch depending on h such
that for any mesh function v, we have an estimate of the form:

max
Ωh∪∂Ωh

|v| ≤ Ch(max
∂Ωh

|v| + max
Ωh

|∆hv|).

If there exists a constant C (the stability constant) such that Ch ≤ C for all 0 < h ≤ h0, (i.e,
the estimate holds with a constant independent of h), we say the approximation scheme is
stable.

Our previous argument showed the error max |u−Uh| is bounded by the stability constant
times the maximum of the consistency error. So we have stability + consistency implies
convergence, i.e., limh→0 |u − Uh| = 0. Since we imposed boundary conditions exactly, there
was no consistency error due to approximation of the boundary conditions. In other problems
(e.g., domains with curved boundaries or Neumann boundary conditions), we will also need
to account for this.

The statement stability + consistency implies convergence holds in much more generality
and is a fundamental notion underlying many areas of numerical analysis. We shall frequently
see various versions of this as we consider the approximation of other partial differential
equations and other discretization schemes.

1.3. Extensions to domains with curved boundaries. We now consider the same
boundary value problem, but on a more general domain Ω with a smooth boundary. For sim-
plicity, we restrict to a convex domain. Let Eh = {(ih, jh), i, j integers} and set Ωh = Ω∩Eh.
We write Ωh = Ω0

h + Ω∗

h, where

Ω0
h = {(x, y) ∈ Ωh : (x ± h, y), (x, y ± h) ∈ Ωh}, Ω∗

h = Ωh − Ω0
h,

i.e., mesh points are in Ω0
h if their 4 nearest neighbors are also in Ωh. Ω∗

h then denotes the
remainder of the interior mesh points. We then define ∂Ωh to be the neighbors of points
in Ω∗

h which lie on the intersection of at least one mesh line and ∂Ω. For points in Ω0
h, the

operator ∆h defined previously is well defined, but for points in Ω∗

h, we must modify the
definition. Consider the case where (x, y) ∈ Ω∗

h, (x+h, y) and (x, y +h) ∈ Ωh, but (x−h, y)
and (x, y−h) both lie outside of Ω (see Figure below). Then there will be points (x−αh, y)
and (x, y − βh) that lie on ∂Ωh for some 0 < α, β < 1. At the point (x, y), we then define

∆hv(x, y) =
2

h2

{ 1

α + 1
v(x + h, y) +

1

α(α + 1)
v(x − αh, y) +

1

β + 1
v(x, y + h)

+
1

β(β + 1)
v(x, y − βh) −

(

1

α
+

1

β

)

v(x, y)
}

(Shortly-Weller formula).
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Note that for α = β = 1, we recover the previous formula. Using Taylor series expansions,
one can show that for all v ∈ C3(Ω̄),

|∆hv(x, y) − ∆v(x, y)| ≤ 2M3h/3, M3 = max
Ω̄

[

max

∣

∣

∣

∣

∂3v

∂x3

∣

∣

∣

∣

,

∣

∣

∣

∣

∂3v

∂y3

∣

∣

∣

∣

]

,

but that the formula does not give an O(h2) approximation unless α = β = 1. Using our
previous analysis, we might expect that the error |u − Uh| would be only O(h), since the
error was bounded by the maximum of the local truncation errors. However, using a more
precise analysis and the fact that the difference operator with larger local truncation error
only lives on a strip of width ch near the boundary of Ω, it is possible to show that the error
|u − Uh| is still O(h2). More precisely, we have the following result.

Theorem 5. Suppose u and Uh are the solutions of Problems P and Ph, respectively. If

u ∈ C4(Ω), then

max
Ωh∪∂Ωh

|u − Uh| ≤
M4d

2

96
h2 +

2M3

3
h3,

where M3 and M4 are the bounds on appropriate third and fourth derivatives of u given

previously and d is the diameter of the smallest circumscribed circle containing Ω.

Approximation ∆h near ∂Ω

(x, y) (x + h, y)

(x, y + h)

(x − αh, y)

(x, y − βh)

•

•

•

• •


