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14. SPACE-TIME FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS

We consider the parabolic problem:
u — div(pVu) + qu = f, (x,t) € Q x (0,7,
u(z,t) =0, (z,t) € 0Qx(0,T], u(z,0) =g(z), z €l

The continuous time Gzollerkin method is based on the variational formulation of this problem
given by: Seek u(t) € H'(Q2) such that u(0) = g,

(ug,v) + a(u,v) = (f,v), ve H(Q).

For the Galerkin method, we choose a finite dimensional subspace Vi, ¢ HY(Q) (e.g.,
piecewise polynomials of degree < r) and look for an approximation wu,(t) € Vj,, t € [0,T],
satisfying: u;,(0) = g5, (gn an approximation to g) and

((un)i, v) + alun, v) = (f,0), v eV

Instead of obtaining a fully discrete method by discretizing in time using finite differences,
we now consider two methods for discretizing in time using finite elements. The first is the
continuous Galerkin method: We let 0 =ty < t; < ---tx =T be a partition of [0, 7] and let
Sk be a finite element space consisting of continuous piecewise polynomials of degree < ¢ in
the time variable ¢. Then define W}, to be the tensor product space W), = Vj, ® Si. For
example, if ¢ = 1 and we consider the time slab Q x [t,,_1,t,], we can write a function in

Wi in the form
th—t
k Uh 1(2:)7

t—1t,—
wht = — 11},’;(:@ +
where v}’f’l and vy € Vj,.

Define g;, € V}, by
a(gn, v) = a(g,v), veV,
and UM ¢ Wi such that
T T
/ (U, 0p) + a(UF,0,)] dt = / (f,v)dt, for all v € Wiy
0 0

While this appears to be a global problem in time, in fact it is a marching scheme, i.e.,
we can compute U™ on [t,_q,t,], n=1,2,..., N, successively by solving
tn

tn
/ [(U[F w) + a(UM* w)) dt = / (f,w)dt, forallw e Vi, ® P ([ta_1,t,]),

tn—1 tn—1

where P?1([t,_1,t,]) denotes the set of polynomials of degree < ¢ — 1 on the interval
[tn_1,t,]. To see this, consider the case of ¢ = 1, piecewise linear in time. If we choose

v = %0"71(1‘) —+ HT”_l’l)n(fL‘), b1 <t < 12

V" (z), L2ty
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then v, = [v™(x) —v" " Y(z)]/k for t,,_; <t < t, and zero elsewhere. Hence, the integral from
0 to T reduces to an integral over [t,_1,t,] and by choosing v™(x) and v"~!(z) appropriately,
we can get any function w € V), ® P°.

Notice also that in the case of ¢ = 1, if we write
l— tn—l

Utk = — Up(x) +

b, —t

—U @),

then
tn k
/ (U w) + a(UM*,w)] dt = (U} () — Uy~ (), w) + 50U (@), w) + (U™ (), w)),
tn—1
so we get a type of Crank-Nicholson-Galerkin scheme, where the right hand side is averaged.

A second possibility is to use the discontinuous Galerkin approach. Let
w = tlgrr#w(t), w" = tggl_ w(t), and [w"] = w} —w".

We now define S, as the set of all discontinuous piecewise polynomials of degree < ¢ on the
mesh on [0,7] and W), = V), ® Sk. Then we seek U € W, as the solution of

Z/t (U, w) +a(U,w)]dt + Y (U™ wi™h) + (U2, w)

tn
= (g,w?) —i—/ (fyw)dt, forall we Wyy.
0

Since the finite element space is discontinuous in time, we can choose w so that it is non-zero
only on the subinterval [t,_1,t,]. We again get a time marching scheme that determines U
successively on [t,,_1,t,] by solving

tn tn
/ [(Up, w) 4+ a(U,w)] dt + (U7 wi™h) = (U wl ) +/ (f,w)dt, forall we Wyy.

th—1 tn—1

On the first subinterval, we will have

t1 t1
/ (Vs w) + a(U, w)] dt + (U2, ) = (g, u) +/ (Fw)dt, forall w € W
to to
Note that the true solution will satisfy these equations, since u’};l ="t

In the continuous scheme, we have a single value for U at t = t,,. In the discontinuous
scheme, we have two values, one from the minus side and one from the plus side. So, if we
choose ¢ = 1, then on the subinterval [t,_1,t,], we are writing

t—t,_ t, —t
U=—"2U"xz)+

- Urt(x).




