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14. Space-Time finite element methods for parabolic problems

We consider the parabolic problem:

ut − div(p∇u) + qu = f, (x, t) ∈ Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], u(x, 0) = g(x), x ∈ Ω.

The continuous time Galerkin method is based on the variational formulation of this problem
given by: Seek u(t) ∈ H̊1(Ω) such that u(0) = g,

(ut, v) + a(u, v) = (f, v), v ∈ H̊1(Ω).

For the Galerkin method, we choose a finite dimensional subspace Vh ⊂ H̊1(Ω) (e.g.,
piecewise polynomials of degree ≤ r) and look for an approximation uh(t) ∈ Vh, t ∈ [0, T ],
satisfying: uh(0) = gh (gh an approximation to g) and

((uh)t, v) + a(uh, v) = (f, v), v ∈ Vh.

Instead of obtaining a fully discrete method by discretizing in time using finite differences,
we now consider two methods for discretizing in time using finite elements. The first is the
continuous Galerkin method: We let 0 = t0 < t1 < · · · tN = T be a partition of [0, T ] and let
Sk be a finite element space consisting of continuous piecewise polynomials of degree ≤ q in
the time variable t. Then define Wh,k to be the tensor product space Wh,k = Vh ⊗ Sk. For
example, if q = 1 and we consider the time slab Ω × [tn−1, tn], we can write a function in
Wh,k in the form

whk =
t− tn−1

k
vnh(x) +

tn − t

k
vn−1

h (x),

where vn−1

h and vnh ∈ Vh.

Define gh ∈ Vh by
a(gh, v) = a(g, v), v ∈ Vh

and Uh,k ∈ Wh,k such that
∫ T

0

[(Uh,k
t , vt) + a(Uh,k, vt)] dt =

∫ T

0

(f, vt) dt, for all v ∈ Wh,k.

While this appears to be a global problem in time, in fact it is a marching scheme, i.e.,
we can compute Uh,k on [tn−1, tn], n = 1, 2, . . . , N , successively by solving

∫ tn

tn−1

[(Uh,k
t , w) + a(Uh,k, w)] dt =

∫ tn

tn−1

(f, w) dt, for all w ∈ Vh ⊗ P q−1([tn−1, tn]),

where P q−1([tn−1, tn]) denotes the set of polynomials of degree ≤ q − 1 on the interval
[tn−1, tn]. To see this, consider the case of q = 1, piecewise linear in time. If we choose

v =











vn−1(x), 0 ≤ t ≤ tn−1

tn−t
k

vn−1(x) + t−tn−1

k
vn(x), tn−1 ≤ t ≤ tn,

vn(x), t ≥ tn,



NUMERICAL SOLUTION OF PDES 75

then vt = [vn(x)− vn−1(x)]/k for tn−1 ≤ t ≤ tn and zero elsewhere. Hence, the integral from
0 to T reduces to an integral over [tn−1, tn] and by choosing vn(x) and vn−1(x) appropriately,
we can get any function w ∈ Vh ⊗ P 0.

Notice also that in the case of q = 1, if we write

Uh,k =
t− tn−1

k
Un
h (x) +

tn − t

k
Un−1

h (x),

then
∫ tn

tn−1

[(Uh,k
t , w) + a(Uh,k, w)] dt = (Un

h (x)− Un−1

h (x), w) +
k

2
[a(Un

h (x), w) + a(Un−1

h (x), w)],

so we get a type of Crank-Nicholson-Galerkin scheme, where the right hand side is averaged.

A second possibility is to use the discontinuous Galerkin approach. Let

wn
+ = lim

t→tn+
w(t), wn

−
= lim

t→tn−
w(t), and [wn] = wn

+ − wn
−
.

We now define Sk as the set of all discontinuous piecewise polynomials of degree ≤ q on the
mesh on [0, T ] and Wh,k = Vh ⊗ Sk. Then we seek U ∈ Wh,k as the solution of

N
∑

n=1

∫ tn

tn−1

[(Ut, w) + a(U,w)] dt+
N
∑

n=1

([Un−1], wn−1

+ ) + (U0

−
, w0

+)

= (g, w0

+) +

∫ tN

0

(f, w) dt, for all w ∈ Wh,k.

Since the finite element space is discontinuous in time, we can choose w so that it is non-zero
only on the subinterval [tn−1, tn]. We again get a time marching scheme that determines U
successively on [tn−1, tn] by solving
∫ tn

tn−1

[(Ut, w)+ a(U,w)] dt+(Un−1

+ , wn−1

+ ) = (Un−1

−
, wn−1

+ )+

∫ tn

tn−1

(f, w) dt, for all w ∈ Wh,k.

On the first subinterval, we will have
∫ t1

t0

[(Ut, w) + a(U,w)] dt+ (U0

+, w
0

+) = (g, w0

+) +

∫ t1

t0

(f, w) dt, for all w ∈ Wh,k.

Note that the true solution will satisfy these equations, since un−1
+ = un−1

−
.

In the continuous scheme, we have a single value for U at t = tn. In the discontinuous
scheme, we have two values, one from the minus side and one from the plus side. So, if we
choose q = 1, then on the subinterval [tn−1, tn], we are writing

U =
t− tn−1

k
Un
−
(x) +

tn − t

k
Un−1

+ (x).


