15. A finite element method for the transport equation

We consider the approximation of the initial value problem:

$$\boldsymbol{\beta} \cdot \nabla u + \sigma u = f, \quad \text{in } \Omega, \qquad u = g \quad \text{on } \Gamma_{in}(\Omega),$$

where $\boldsymbol{\beta}$ is a unit vector, $\sigma \geq c > 0$ and

$$\Gamma_{in}(\Omega) = \{ x \in \partial \Omega : \boldsymbol{\beta} \cdot \boldsymbol{n} < 0 \},\$$

where \boldsymbol{n} is the unit outward normal to Ω . We shall assume that Ω is a polygon and \mathcal{T}_h is a triangulation of Ω . Then it is possible to order the triangles $\{T_1, T_2, \cdots\}$ such that for each k, the domain of dependence of T_k consists of some subset of $\Gamma_{in}(\Omega)$ and $\{T_1, \cdots, T_{k-1}\}$. With such an ordering, one can develop an finite element method in an explicit fashion, triangle by triangle.

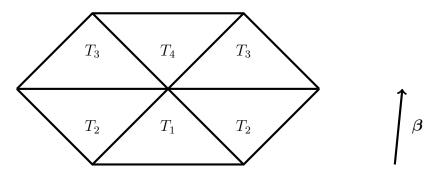


FIGURE 3. Ordering of the triangles

Letting $P_n(T)$ denote the polynomials of degree $\leq n$ on T, the Discontinuous Galerkin method for this problem has the form:

For $T \in \mathcal{T}_h$, find $u_h \in P_n(T)$ such that $u_h^- = g_h$ on $\Gamma_{in}(\Omega)$ and satisfies

$$(\boldsymbol{\beta} \cdot \nabla u_h + \sigma u_h, v)_T - \int_{\Gamma_{in}(T)} (u_h^+ - u_h^-) v \,\boldsymbol{\beta} \cdot n \, ds = (f, v)_T, \quad v \in P_n(T).$$

where for $x \in \Gamma_{in}(T)$, $u_h^{\pm}(x) = \lim_{\epsilon \to 0} u_h(x \pm \epsilon \beta)$. If we solve these equations using the ordering discussed above, then u_h^- is known at the time it is needed to compute the solution on triangle T. On each triangle, we need to solve a simple square linear system of equations. Note that the solution produced is a piecewise polynomial, but one that is discontinuous across triangle edges. The key to the analysis of this method is the following identity.

Lemma 12. Assume that β is a constant vector. Then

$$\begin{aligned} (\boldsymbol{\beta} \cdot \nabla u, u)_T &- \int_{\Gamma_{in}(T)} (u^+ - u^-) u^+ \, \boldsymbol{\beta} \cdot n \, ds \\ &= \frac{1}{2} \int_{\Gamma_{out}(T)} (u^-)^2 |\boldsymbol{\beta} \cdot \boldsymbol{n}| \, ds + \frac{1}{2} \int_{\Gamma_{in}(T)} (u^+ - u^-)^2 |\boldsymbol{\beta} \cdot \boldsymbol{n}| \, ds - \frac{1}{2} \int_{\Gamma_{in}(T)} (u^-)^2 |\boldsymbol{\beta} \cdot \boldsymbol{n}| \, ds \end{aligned}$$

Proof. Now since $\beta \cdot n \geq 0$ on $\Gamma_{out}(T)$ and $\beta \cdot n < 0$ on $\Gamma_{in}(T)$,

$$\begin{aligned} (\boldsymbol{\beta} \cdot \nabla u, u)_T &= \frac{1}{2} (\boldsymbol{\beta} \cdot \nabla [u^2])_T \\ &= \int_{\partial T} \frac{1}{2} u^2 \boldsymbol{\beta} \cdot n \, ds = \int_{\Gamma_{out}(T)} \frac{1}{2} (u^-)^2 |\boldsymbol{\beta} \cdot n| \, ds - \int_{\Gamma_{in}(T)} \frac{1}{2} (u^+)^2 |\boldsymbol{\beta} \cdot n| \, ds, \\ &- \int_{\Gamma_{in}(T)} (u^+ - u^-) u^+ \, \boldsymbol{\beta} \cdot n \, ds = \int_{\Gamma_{in}(T)} \frac{1}{2} (u^+)^2 |\boldsymbol{\beta} \cdot n| \, ds \\ &+ \int_{\Gamma_{in}(T)} \frac{1}{2} (u^+ - u^-)^2 |\boldsymbol{\beta} \cdot n| \, ds - \int_{\Gamma_{in}(T)} \frac{1}{2} (u^-)^2 |\boldsymbol{\beta} \cdot n| \, ds. \end{aligned}$$

Adding these two equations gives the desired identity.

One important implication of this identity is that it easily follows that the linear system on each triangle has a unique solution for $\sigma > 0$. To see this, we need only show that if f = 0 and $u_h^- = 0$, then $u_h = 0$. Choosing $v = u_h$ and using the above identity, we get

$$\frac{1}{2} \int_{\Gamma_{out}(T)} (u^{-})^2 |\beta \cdot \boldsymbol{n}| \, ds + \frac{1}{2} \int_{\Gamma_{in}(T)} (u^{+} - u^{-})^2 |\beta \cdot \boldsymbol{n}| \, ds + \sigma ||u_h||_T^2 = 0,$$

and so $u_h = 0$.

In analyzing this problem, it is helpful to think of u_h as evolving in layers S_i , defined by

 $S_0 = \emptyset, \qquad S_i = \{T \in \mathcal{T}_h : \Gamma_{in}(T) \subset \Gamma_{in}(\Omega - \bigcup_{j < i} S_j)\}, \quad j = 1, 2, \cdots.$

Within a layer, u_h can be developed in parallel. We can also define a sequence of fronts F_i , to which u_h has advanced after it has been computed in $\Omega_i = \bigcup_{j \leq i} S_j$.

In the case when f = 0, we also have a very simple stability analysis that can be expressed in the above terms.

Theorem 14.

$$\frac{1}{2}|u_h^-|_{F_i}^2 + \sigma ||u_h||_{\Omega_i}^2 \le \frac{1}{2}|u_h^-|_{\Gamma_{in}(\Omega)}^2$$

Proof. Applying our identity with f = 0, we obtain

$$\frac{1}{2} \int_{\Gamma_{out}(T)} (u^{-})^2 |\beta \cdot \boldsymbol{n}| \, ds + \frac{1}{2} \int_{\Gamma_{in}(T)} (u^{+} - u^{-})^2 |\beta \cdot \boldsymbol{n}| \, ds + \sigma ||u_h||_T^2 = \frac{1}{2} \int_{\Gamma_{in}(T)} (u^{-})^2 |\beta \cdot \boldsymbol{n}| \, ds.$$

Summing over all the triangles in the layer S_i and omitting the positive jump terms, we get

$$\frac{1}{2} |u_h^-|_{F_i}^2 + \sigma \sum_{T \in S_i} ||u_h||_T^2 \le \frac{1}{2} |u_h^-|_{F_{i-1}}^2$$

The theorem follows by iterating this inequality.

Also using this key identity, we are able to show that $||u-u_h||_{L^2(\Omega)} \leq Ch^{n+1/2} ||u||_{n+1}$. Note that this is not an optimal order error estimate, since the best approximation by polynomials of degree $\leq n$, would be $O(h^{n+1})$.