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15. A finite element method for the transport equation

We consider the approximation of the initial value problem:

β · ∇u+ σu = f, in Ω, u = g on Γin(Ω),

where β is a unit vector, σ ≥ c > 0 and

Γin(Ω) = {x ∈ ∂Ω : β · n < 0},

where n is the unit outward normal to Ω. We shall assume that Ω is a polygon and Th is a
triangulation of Ω. Then it is possible to order the triangles {T1, T2, · · · } such that for each
k, the domain of dependence of Tk consists of some subset of Γin(Ω) and {T1, · · · , Tk−1}.
With such an ordering, one can develop an finite element method in an explicit fashion,
triangle by triangle.
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Figure 3. Ordering of the triangles

Letting Pn(T ) denote the polynomials of degree ≤ n on T , the Discontinuous Galerkin
method for this problem has the form:

For T ∈ Th, find uh ∈ Pn(T ) such that u−
h = gh on Γin(Ω) and satisfies

(β · ∇uh + σuh, v)T −

∫
Γin(T )

(u+
h − u−

h )v β · n ds = (f, v)T , v ∈ Pn(T ),

where for x ∈ Γin(T ), u
±
h (x) = limǫ→0 uh(x ± ǫβ). If we solve these equations using the

ordering discussed above, then u−
h is known at the time it is needed to compute the solution

on triangle T . On each triangle, we need to solve a simple square linear system of equations.
Note that the solution produced is a piecewise polynomial, but one that is discontinuous
across triangle edges. The key to the analysis of this method is the following identity.

Lemma 12. Assume that β is a constant vector. Then

(β · ∇u, u)T −

∫
Γin(T )

(u+ − u−)u+ β · n ds

=
1

2

∫
Γout(T )

(u−)2|β · n| ds+
1

2

∫
Γin(T )

(u+ − u−)2|β · n| ds−
1

2

∫
Γin(T )

(u−)2|β · n| ds.
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Proof. Now since β · n ≥ 0 on Γout(T ) and β · n < 0 on Γin(T ),

(β · ∇u, u)T = 1
2
(β · ∇[u2])T

=

∫
∂T

1
2
u2β · n ds =

∫
Γout(T )

1
2
(u−)2|β · n| ds−

∫
Γin(T )

1
2
(u+)2|β · n| ds,

−

∫
Γin(T )

(u+ − u−)u+ β · n ds =

∫
Γin(T )

1
2
(u+)2|β · n| ds

+

∫
Γin(T )

1
2
(u+ − u−)2|β · n| ds−

∫
Γin(T )

1
2
(u−)2|β · n| ds.

Adding these two equations gives the desired identity. �

One important implication of this identity is that it easily follows that the linear system
on each triangle has a unique solution for σ > 0. To see this, we need only show that if
f = 0 and u−

h = 0, then uh = 0. Choosing v = uh and using the above identity, we get

1

2

∫
Γout(T )

(u−)2|β · n| ds+
1

2

∫
Γin(T )

(u+ − u−)2|β · n| ds+ σ‖uh‖
2
T = 0,

and so uh = 0.

In analyzing this problem, it is helpful to think of uh as evolving in layers Si, defined by

S0 = ∅, Si = {T ∈ Th : Γin(T ) ⊂ Γin(Ω− ∪j<iSj}, j = 1, 2, · · · .

Within a layer, uh can be developed in parallel. We can also define a sequence of fronts Fi,
to which uh has advanced after it has been computed in Ωi = ∪j≤iSj.

In the case when f = 0, we also have a very simple stability analysis that can be expressed
in the above terms.

Theorem 14.
1

2
|u−

h |
2
Fi
+ σ‖uh‖

2
Ωi

≤
1

2
|u−

h |
2
Γin(Ω).

Proof. Applying our identity with f = 0, we obtain

1

2

∫
Γout(T )

(u−)2|β · n| ds+
1

2

∫
Γin(T )

(u+ − u−)2|β · n| ds+ σ‖uh‖
2
T =

1

2

∫
Γin(T )

(u−)2|β · n| ds.

Summing over all the triangles in the layer Si and omitting the positive jump terms, we get

1

2
|u−

h |
2
Fi
+ σ

∑
T∈Si

‖uh‖
2
T ≤

1

2
|u−

h |
2
Fi−1

.

The theorem follows by iterating this inequality. �

Also using this key identity, we are able to show that ‖u−uh‖L2(Ω) ≤ Chn+1/2‖u‖n+1. Note
that this is not an optimal order error estimate, since the best approximation by polynomials
of degree ≤ n, would be O(hn+1).


