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15. A FINITE ELEMENT METHOD FOR THE TRANSPORT EQUATION

We consider the approximation of the initial value problem:
B-Vu+ou=f, inQ, u=g on[,(Q),
where 3 is a unit vector, ¢ > ¢ > 0 and
Lin(Q) ={z€0Q: B -n <0},

where m is the unit outward normal to 2. We shall assume that € is a polygon and 7}, is a
triangulation of Q. Then it is possible to order the triangles {77, Ty, - - - } such that for each
k, the domain of dependence of T} consists of some subset of T';,(2) and {71, - ,Tk_1}.
With such an ordering, one can develop an finite element method in an explicit fashion,
triangle by triangle.
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FIGURE 3. Ordering of the triangles

Letting P,(T') denote the polynomials of degree < n on T, the Discontinuous Galerkin
method for this problem has the form:

For T' € Ty, find uj, € P,(T) such that u, = g, on I';,(2) and satisfies

(B - Vuy, + oup,v)p —/ ( )(u;[ —u, )o@ -nds=(f,v)r, veP(T),
Dy (T

where for z € Ty, (T), ui(z) = limun(z & ¢B3). If we solve these equations using the

ordering discussed above, then u, is known at the time it is needed to compute the solution
on triangle T'. On each triangle, we need to solve a simple square linear system of equations.
Note that the solution produced is a piecewise polynomial, but one that is discontinuous
across triangle edges. The key to the analysis of this method is the following identity.

Lemma 12. Assume that B is a constant vector. Then
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Proof. Now since 3-n >0 on ', (T) and 5-n < 0 on 'y, (T),
(8- Vu,u)r = 5(8 - V[u’])r
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Adding these two equations gives the desired identity. 0

One important implication of this identity is that it easily follows that the linear system
on each triangle has a unique solution for ¢ > 0. To see this, we need only show that if
f=0and u, =0, then u, = 0. Choosing v = u;, and using the above identity, we get
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and so up = 0.

In analyzing this problem, it is helpful to think of w; as evolving in layers .S;, defined by
SO — @, Sz — {T c 7;1 . Fm<T) C an(Q - Uj<iSj}> j — 1, 2, cet

Within a layer, u;, can be developed in parallel. We can also define a sequence of fronts Fj,
to which wuy, has advanced after it has been computed in €; = U;<;.5;.

In the case when f = 0, we also have a very simple stability analysis that can be expressed
in the above terms.

Theorem 14.
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Proof. Applying our identity with f = 0, we obtain
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Summing over all the triangles in the layer S; and omitting the positive jump terms, we get
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The theorem follows by iterating this inequality. 0

Also using this key identity, we are able to show that |[u—wuy||r2) < Ch"/2[Ju||,11. Note
that this is not an optimal order error estimate, since the best approximation by polynomials
of degree < n, would be O(h"*1).



