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17. Qualitative properties of finite difference schemes

17.1. Dissipation. Consider the approximation of the linear transport equation ut+αux = 0
by the finite difference schemes:

[Un+1
j − Un−1

j ](2k) + α[Un
j+1 − Un

j−1]/(2h) = 0, leapfrog,

[Un+1
j − Un

j ]/k + α[Un
j+1 − Un

j−1]/(2h)− α2k[Un
j+1 − 2Un

j + Un
j−1]/(2h

2) = 0, Lax Wendroff.

Introducing λ = αk/h, we may rewrite these in the form:

Un+1
j = Un−1

j − λ[Un
j+1 − Un

j−1], leapfrog,

Un+1
j = Un

j − (λ/2)[Un
j+1 − Un

j−1] + (λ2/2)[Un
j+1 − 2Un

j + Un
j−1]. Lax Wendroff.

Suppose that Un
j = (−1)j+nǫ, n = 0, 1, i.e., a mesh function with a high frequency oscillation.

Then for the leapfrog scheme,

Un+1
j = (−1)j+n−1ǫ− λ[(−1)j+n+1ǫ− (−1)j+n−1ǫ] = (−1)j+n−1ǫ = (−1)j+n+1ǫ.

So the leapfrog scheme propagates the disturbance without damping it. If we consider Lax-
Wendroff, then we get

Un+1
j = (−1)j+nǫ+ (λ2/2)ǫ[(−1)j+n+1 − 2(−1)j+n + (−1)j+n−1]

= (−1)j+nǫ[1− 2λ2] = [1− 2λ2]Un
j .

If |λ| < 1, then |1− 2λ2| < 1, so the oscillation decreases in amplitude at each iteration The
decreasing of high frequency oscillations is called dissipation.

Another way to understand dissipation of a numerical approximation scheme is to look at
the scheme as a approximation of a modified equation. Consider the approximation of the
transport equation Lu ≡ ut + αux = 0 by the Lax-Friedrichs scheme:

Lh,kU
n
j ≡ 1

k
{Un+1

j − (1/2)[Un
j−1 + Un

j+1]} −
α

2h
[Un

j+1 − Un
j−1] = 0,

If we look at the local truncation error of the method, we get by Taylor series expansions
that

Lh,ku(x, t)− Lu(x, t) =
1

k
{u(x, t+ k)− 1

2
[u(x− h, t) + u(x+ h, t)]

+
α

2h
[u(x+ h, t)− u(x− h, t)]− ut(x, t)− αux(x, t)

=
1

k
{(u+ kut +

k2

2
utt + · · · )− (u+

h2

2
uxx + · · · )}

+
α

2h
[2hux +

1

3
h3uxxx + · · · ]− ut − αux

=
k

2
utt −

h2

2k
uxx +O(k2) +O(h3/k) +O(h2).

Hence, if k = O(h), then the local truncation error is O(k) = O(h). However, if we view the
Lax-Friedrichs scheme as an approximation of

ut + αux +
k

2
utt −

h2

2k
uxx = 0,
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with k = O(h), then the local truncation error is O(k2) = O(h2). The above equation is
called the modified equation. If u is a sufficiently smooth solution of the modified equation,
then by differentiating the equation, we obtain

utt = −αutx −
k

2
uttt −

h2

2k
uxxt = −α[−αuxx] +O(k) = α2uxx +O(k).

Inserting this result, we see that the Lax-Friedrichs scheme is a second order approximation
to the equation

ut + αux =
h2

2k

[

1− k2

h2
α2

]

uxx.

Setting λ = αk/h, we can rewrite this in the form

ut + αux = h
α(1− λ2)

2λ
uxx.

Thus, we have effectively added a small diffusion term to the right hand side that tends to
smooth out the solution as t increases.

17.2. Dispersion. We again consider the transport equation ut + αux = 0 with initial
condition u(x, 0) = u0(x). Recalling that the Fourier transform of a function f(x) is defined
by

f̂(p) =
1√
2π

∫

∞

−∞

e−ipxf(x) dx,

we can write

û(p, t+ k) =
1√
2π

∫

∞

−∞

e−ipxu(x, t+ k) dx.

But for α a constant, u(x, t) = u0(x− αt) and so

û(p, t+ k) =
1√
2π

∫

∞

−∞

e−ipxu0(x− α[t+ k]) dx.

Setting y = x− αk, we get

û(p, t+ k) =
1√
2π

∫

∞

−∞

e−ip(y+αk)u0(y − αt) dy =
1√
2π

e−ipαk

∫

∞

−∞

e−ipyu(y, t) dy.

Hence û(p, t+ k) = e−ipαkû(p, t).

If we approximate this problem by a two level finite difference scheme, then we showed
that

Ûn+1(p) = G(p, h, k)Ûn(p).

So we expect that G(p, h, k) should be a good approximation to e−ipαk. Write

G(p, h, k) = |G|eiθ = |G|e−ipωk,

i.e., θ = −pωk. In general, ω = ω(p) will depend on p and is called the phase speed, i.e.,
the speed at which waves of frequency p are propagated by the finite difference scheme. To
propagate at the correct scheme, we would need ω = α for all p. Since in general, ω depends
on p, ω will only be an approximation to α. Dispersion is the phenomena of waves of different
frequencies traveling at different speeds. Define α− ω(p) to be the phase error.
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Example: Lax-Wendroff scheme:

Lh,kU
n
j ≡ [Un+1

j − Un
j ]/k + α[Un

j+1 − Un
j−1]/(2h)− α2k[Un

j+1 − 2Un
j + Un

j−1]/(2h
2) = 0.

The amplification factor is:

g = 1− 2λ2 sin2(ph/2)− iλ sin(ph), λ = αk/h.

If we write g = |g|eiθ = |g|(cos θ + i sin θ), then

tan θ =
Imag g

Real g
=

−λ sin(ph)

1− 2λ2 sin2(ph/2)
. θ = −pωk.

Using Taylor series expansions, one can show that

ω = α[1 +O(p2h2)].

To see this, we use

1

1− x
= 1 + x+O(x2), sin x = x− x3/6 +O(x5),

sin2 x = x2 − x4/3 +O(x6), tan−1 x = x+O(x3)

to get

−λ sin(ph)

1− 2λ2 sin2(ph/2)
= −λ(ph)

[

1 +O(p2h2)
][

1 +O(p2h2)
]

= −λ(ph)[1 +O(p2h2)].

Then

− pωk = θ = tan−1[tan θ] = tan−1
(

− λ(ph)[1 +O(p2h2)
)

= [−λ(ph)[1 +O(p2h2)] +O(p3h3) = −λ(ph)[1 +O(p2h2)].

Hence,

ω =
λ(ph)[1 +O(p2h2)]

pk
=

αkp[1 +O(p2h2)]

pk
= α[1 +O(p2h2)].


