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17. QUALITATIVE PROPERTIES OF FINITE DIFFERENCE SCHEMES

17.1. Dissipation. Consider the approximation of the linear transport equation u;+au, = 0
by the finite difference schemes:

(U = U71)(2K) + alU7,, — U] /(2h) =0, leapfrog,

J

U3 = U2k + alUyy — U /(2h) = 02Ky, — 2U7 + U, ]/(2h) = 0, Lax Wendroff

j
Introducing A = ak/h, we may rewrite these in the form:

U]’."“rl = U;l_l — AU, —U",], leapfrog,

J J
Urtt =up — (\/2)U}, = UP ]+ (X2/2)[UF,, — 207 + U] Lax Wendroff.

Suppose that U}' = (—1)7*", n = 0,1, i.e., a mesh function with a high frequency oscillation.
Then for the leapfrog scheme,

an—i-l — (_1)j+n71€ _ )\[(_1)3‘+n+16 _ (_1)j+n716] — (_1)j+n71€ — (_1)j+n+16.

So the leapfrog scheme propagates the disturbance without damping it. If we consider Lax-
Wendroff, then we get

Ut = (=17 e (N /2)e(=1)77H = 2(=1)7" 4 (=1)7F
= (=1)7""e[l — 2X%] = [1 — 2X*]U7}.

If |A\| < 1, then |1 — 2A?| < 1, so the oscillation decreases in amplitude at each iteration The
decreasing of high frequency oscillations is called dissipation.

Another way to understand dissipation of a numerical approximation scheme is to look at
the scheme as a approximation of a modified equation. Consider the approximation of the
transport equation Lu = u; + au, = 0 by the Lax-Friedrichs scheme:

n 1 n n n -~ n n
LupUj = AU = (1/2)[U + Ujl} = 53 (070 = U]

k J J j—1

If we look at the local truncation error of the method, we get by Taylor series expansions
that

|=0

Liu(e, t) — Lu(z, t) = %{u(:v, F+ k) — %[u(x — )+ u(w + b t)]

+ g[u(x + h, t) — u(ZL‘ — h,t)] — Ut(x,t) - aux(x>t)

2h
1 k? h?
o 1,
+ﬁ[2hux+§h Ugge ++ 0] — U — Qg
k h? 2 3 2
= Eutt—%um-i—O(k‘ )+ O(h’/k) + O(h?).

Hence, if £ = O(h), then the local truncation error is O(k) = O(h). However, if we view the
Lax-Friedrichs scheme as an approximation of
2

Up + QUy + = Uy — —Ugze = 0,
¢ T +2tt o
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with & = O(h), then the local truncation error is O(k?) = O(h?). The above equation is
called the modified equation. If u is a sufficiently smooth solution of the modified equation,
then by differentiating the equation, we obtain

k h?
Ut = — AUy — §uttt - ﬁumt = _a[_aum] + O(k) - Oéz“” + O<k>

Inserting this result, we see that the Lax-Friedrichs scheme is a second order approximation
to the equation

h? k?

U + au, = o5 [1 — —« 1 Uy -

Setting A = ak/h, we can rewrite this in the form

a(l =A%)
2\

Thus, we have effectively added a small diffusion term to the right hand side that tends to
smooth out the solution as t increases.

u + ou, = h U -

17.2. Dispersion. We again consider the transport equation u; + au, = 0 with initial
condition u(z,0) = ug(z). Recalling that the Fourier transform of a function f(x) is defined
by

~

f(p) =

—lpl' dx
?

el

1 <
u(p, t+ k) = \/_2_7r/ e PPu(x,t + k) dx.

But for a a constant, u(z,t) = up(z — at) and so

u(p, t+ k) = \/_/ up(x — aft + k) dz.

Setting y = © — ak, we get

we can write

o

1 ,
i(p,t + k) = 7= / e~ PRy (y — at) dy = NerH e PR [ TPy, t) dy.

—0o0

Hence a(p,t + k) = e~k (p, t).

If we approximate this problem by a two level finite difference scheme, then we showed
that R )
U™ (p) = G(p, h, k)U™ (p).
So we expect that G(p, h, k) should be a good approximation to e~?**. Write
G(p,h k) = |Gle” = |Gle™ ",

i.e., § = —pwk. In general, w = w(p) will depend on p and is called the phase speed, i.e.,
the speed at which waves of frequency p are propagated by the finite difference scheme. To
propagate at the correct scheme, we would need w = « for all p. Since in general, w depends
on p, w will only be an approximation to a.. Dispersion is the phenomena of waves of different
frequencies traveling at different speeds. Define o — w(p) to be the phase error.
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Example: Lax-Wendroff scheme:
LnxU} = (UM = UM [k + alU}, — UP]/(2h) — 2k[UT,, — 207 + U, ]/(2k%) = 0.

j
The amplification factor is:

g =1—2X\?sin®(ph/2) — iXsin(ph), A= ak/h.
If we write g = |g|e? = |g|(cos @ + isin @), then
Imag g —Asin(ph)
Realg  1— 2\Zsin(ph/2)’
Using Taylor series expansions, one can show that

w = all + O(p*h?))].

tanf =

0 = —pwk.

To see this, we use

ﬁ =1+2+0(?), sinz=x—212°/6+0(z"),
sinfx = 2% —2*/3 + 0(2%), tan 'z =12+ 0O(2?)
to get
—Asin(ph)
1 — 2\Zsin?(ph/2)
Then

— pwk = 0 = tan"'[tan 0] = tan* ( — A(ph)[1 + O(p2h2)>
= [=Aph)[1 + O(*h*)] + O(W°h*) = —A(ph)[1 + O(p*h?)].

= AR [1+ 0GR [1+ 0GP h3)] = —A@h)[1 + 04,

Hence,
Alph)[1 + O(p*h*)] _ akp[l + O(p*h?)]

ok s = a[l + O(p*h?)).




