
8 NUMERICAL SOLUTION OF PDES

1.4. Other approaches to approximation on domains with curved boundaries. A
simple scheme for domains with curved boundaries is to define Uh as the solution of

−∆hUh(x, y) = f(x, y), (x, y) ∈ Ω0
h, Uh(x, y) = g(x′, y′), (x, y) ∈ Ω∗

h,

where (x′, y′) is one of the neighbors of (x, y) on ∂Ωh. In this case, we only use the standard
5 point difference approximation to the Laplacian. The result is:

max
Ωh∪∂Ωh

|u− Uh| ≤ M1h+
M4d

2

96
h2, M1 = max

Ω̄

(max |∂u/∂x|, |∂u/∂y|).

Note that the crude approximation of the boundary condition gives only an O(h) error
estimate.

An O(h2) approximation can be obtained by the following method, due to L. Collatz.
Define Uh(x, y) as the solution of

−∆hUh(x, y) = f(x, y), (x, y) ∈ Ω0
h, Uh(x, y) = g(x, y), (x, y) ∈ ∂Ωh,

and for (x, y) ∈ Ω∗

h, define Uh(x, y) as the linear interpolate of the value of Uh at two neighbors
of (x, y), one in Ω0

h and one on ∂Ωh. For example, if (x+ h, y) ∈ Ω0
h and (x− αh, y) ∈ ∂Ωh,

define Uh at the point (x, y) by

Uh(x, y) =
α

α + 1
Uh(x+ h, y) +

1

α + 1
Uh(x− αh, y).

The result is:

max
Ωh∪∂Ωh

|u− Uh| ≤ M2h
2 +

M4d
2

48
h2, M2 = max

Ω̄

(max |∂2u/∂x2|, |∂u2/∂y2|).

1.5. Other boundary conditions. We next consider the boundary condition

α(x, y)u(x, y) + β(x, y)
∂u

∂n
(x, y) = g(x, y).

Consider first the case of a point on a straight boundary, say x = 1, and 0 < y < 1. At
the boundary point (1, y), an O(h) approximation to ∂u/∂n = ∂u/∂x is given by [u(1, y)−
u(1− h, y)]/h, so the boundary condition would be approximated by:

α(1, y)u(1, y) + β(1, y)[u(1, y)− u(1− h, y)]/h = g(1, y).

An O(h2) approximation to ∂u/∂x is given by the centered difference: [u(1 + h, y) − u(1 −
h, y)]/(2h). This introduces a new unknown at the point 1 + h, y outside the domain.
Hence, we need an additional equation. Assuming that the solution is smooth and the
partial differential equation holds on the boundary as well, we can use the 5 point difference
approximation to the Laplacian applied at the boundary point, i.e., we have the equation

Uh(1 + h, y) + Uh(1− h, y) + Uh(1, y + h) + Uh(1, y − h)− 4Uh(1, y) = h2f(1, y).

This equation can be used to eliminate the new unknown.

If the boundary is curved, draw the normal line through the point P = (x, y) and assume
it intersects a mesh line at a point C where C lies between the mesh points A and B. Then
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we approximate ∂u/∂n(P ) by [u(P ) − u(C)]/|P − C|, where |P − C| denotes the distance
between P and C and u(C) is defined by linear interpolation using u(A) and u(B), i.e.,

u(C) =
|B − C|

|B − A|
u(A) +

|C − A|

|B − A|
u(B).

Inserting this formula gives a linear relation equation involving u(A), u(B), and u(P ).

Approximation of ∂u/∂n

A B

P

•

•

•

• •

�
�
�
C

1.6. Higher order approximations. To get higher order approximations to ∆u(x, y), we
need to take more points at a larger distance from (x, y). Using Taylor series expansions, we
have

u(x± kh, y) = u(x, y)± kh
∂u

∂x
(x, y) +

k2h2

2

∂2u

∂x2
(x, y)±

k3h3

6

∂3u

∂x3
(x, y)

+
k4h4

24

∂4u

∂x4
(x, y)±

k5h5

120

∂5u

∂x5
(x, y) +

k6h6

6!

∂6u

∂x6
(ξ±, y).

Hence,

u(x+ kh, y) + u(x− kh, y)− 2u(x, y) = 2
k2h2

2

∂2u

∂x2
(x, y) + 2

k4h4

24

∂4u

∂x4
(x, y) +O(h6).

For k = 1, 2, this gives

u(x+ h, y) + u(x− h, y)− 2u(x, y) = h2∂
2u

∂x2
(x, y) +

h4

12

∂4u

∂x4
(x, y) +O(h6),

u(x+ 2h, y) + u(x− 2h, y)− 2u(x, y) = 4h2∂
2u

∂x2
(x, y) +

16h4

12

∂4u

∂x4
(x, y) +O(h6).

Taking 16 times the first equation minus the second equation, we get

16u(x+ h, y) + 16u(x− h, y)− u(x+ 2h, y)− u(x− 2h, y)− 30u(x, y)

= 12h2∂
2u

∂x2
(x, y) +O(h6).
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Taking a similar expansion in the y variable, we get

{16[u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)]

− [u(x+ 2h, y) + u(x− 2h, y) + u(x, y + 2h) + u(x, y − 2h)]− 60u(x, y)]}/(12h2)

=
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) +O(h4).

Note that in the case of the unit square, this higher order approximation cannot be used
at interior mesh points at a distance h from the boundary of Ω, since it would involve mesh
points outside the domain. At these points, we can use the 5-point difference approximation
without affecting the overall accuracy of the method.

On domains with curved boundaries, the situation is much more complicated. Use of the
Shortly-Weller formula would decrease the rate of convergence. So instead, we consider finite
element methods, which handle these difficulties in a more natural way.

1.7. More general elliptic operators. In this section, we develop difference approxima-
tions for the operator div(a grad u) in two dimensions, where a = a(x, y). Although we
could expand this operator to a∆u + ∇a · ∇u and then apply difference approximations,
this is not the best approach, since it does not lead to a symmetric matrix. To see a better
approach, consider the one dimensional analogue, (d/dx)(adu/dx). The basic idea is to use
the approximation dp/dx(xj) ≈

1

h
[p(xj+1/2)− p(xj−1/2]. Choosing p = adu/dx, we get

d

dx

[

a
du

dx

]

(xj) ≈
1

h

{[

a
du

dx

]

(xj+1/2)−

[

a
du

dx

]

(xj−1/2)

}

≈
1

h2
{a(xj+1/2)[u(xj+1)− u(xj)]− a(xj−1/2)[u(xj)− u(xj−1)]}.

Hence,

div(a grad u) ≈
1

h2

{

a(xj+1/2, yl)[u(xj+1, yl)−u(xj, yl)]−a(xj−1/2, yl)[u(xj, yl)−u(xj−1, yl)]

+ a(xj, yl+1/2)[u(xj, yl+1)− u(xj, yl)]− a(xj, yl−1/2)[u(xj, yl)− u(xj, yl−1)]
}

.


