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2. Finite Element Methods for Elliptic Equations

2.1. Preliminaries and variational formulations. We will study the approximation of
problems of the form:

(2.1) − div(p∇u) + qu = f, in Ω,

together with one of the following boundary conditions

(i) u = g, or (ii) p
∂u

∂n
+ γu = g.

We shall assume that the given coefficients p, q, γ satisfy

p(x) ≥ p0 > 0, q(x) ≥ 0, γ(x) ≥ 0.

Note that if we take p = 1 and q = 0, then we have Poisson’s equation −∆u = f .

The finite element method is not based directly on the partial differential equation, but
rather on a variational formulation of the problem. To discuss this, we first introduce some
notation and formulas. First, we introduce the space L2(Ω) as the set of functions v for
which

∫

Ω
v2 dx <∞. For integer m ≥ 0, we then define the Sobolev spaces

Hm(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω)},

where α = (α1, · · · , αn) with |α| = α1 + . . . αn ≤ m and

Dαv =
∂|α|u

∂xα1

1
· · · ∂xαn

n

.

We also define the norm

‖u‖2
m
=
∑

|α|≤m

∫

Ω

|Dαu|2 dx

Example: in two dimensions,
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Define Sobolev spaces of functions satisfying boundary conditions:

H̊m(Ω) = {v ∈ Hm(Ω) : Dαv = 0 on ∂Ω, |α| ≤ m− 1}.

Example: H̊1(Ω) denotes functions in H1(Ω) that are zero on ∂Ω.

Example: We will consider the space of continuous piecewise linear functions. Such func-
tions are not in C1(Ω), but will belong to the space H1(Ω).

To write down a variational formulation of our boundary value problem, we need to use
some identities (called Green’s identities) that are just integration by parts formulas. All
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these identities will follow from the Divergence Theorem:
∫

Ω

divϕ dx =

∫

∂Ω

ϕ · n ds,

where n denotes the unit outward normal vector to Ω. If we set ϕ = vψ, then

divϕ =
N
∑

i=1

∂[vψi]

∂xi
=

N
∑

i=1

[

ψi

∂v

∂xi
+ v

∂ψi

∂xi

]

= ∇v ·ψ + v divψ.

Hence,
∫

Ω

[∇v ·ψ + v divψ] dx =

∫

Ω

div[vψ] dx =

∫

∂Ω

vψ · n ds.

If we pick ψ = (0, · · · , 0, u, 0, · · · 0), with u in the ith position, then we get the integration
by parts formula:

∫

Ω

[

∂v

∂xi
u+ v

∂u

∂xi

]

dx =

∫

∂Ω

vuni ds.

If we choose ψ = p∇u, then
∫

Ω

[∇v · p∇u+ v div(p∇u)] dx =

∫

∂Ω

vp∇u · n ds,

which we may rewrite as:
∫

Ω

p∇u · ∇v dx = −

∫

Ω

div(p∇u)v dx+

∫

∂Ω

pv
∂u

∂n
ds.

This formula is one of the classical Green’s identities. Using this formula, we can now
give a variational formulation of the boundary value problem. We first consider the case of
boundary condition (i) with g = 0, i.e., u = 0 on ∂Ω. The variational formulation of the
BVP in this case is given by:

Find u ∈ H̊1(Ω) such that

(2.2)

∫

Ω

[p∇u · ∇v + quv] dx =

∫

Ω

fv dx, for all v ∈ H̊1(Ω).

Note that in this case, we are building the boundary condition into the space in which we
seek the solution (called an essential boundary condition).

The relationship of the solution of problem (2.2) to the original boundary value problem
can be stated as follows.

Lemma 1. If u is a smooth solution of (2.1) with boundary condition u = 0 on ∂Ω, then
u is a solution of (2.2). Conversely, if u is a solution of (2.2) and u is sufficiently smooth,
then u is a solution of (2.1) and satisfies u = 0 on ∂Ω.

Proof. First suppose u is a smooth solution of (2.1). Then for any function v ∈ H̊1(Ω),
∫

Ω

(− div p∇u+ qu)v dx =

∫

Ω

fv dx.
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Applying Green’s formula, and observing that the boundary term vanishes since v = 0 on
∂Ω, we find that u satisfies:

∫

Ω

[p∇u · ∇v + quv] dx =

∫

Ω

(− div p∇u+ qu)v dx+

∫

∂Ω

pv
∂u

∂n
ds =

∫

Ω

fv dx.

Since u = 0 on ∂Ω and is smooth, u ∈ H̊1(Ω) and hence is a solution of (2.2). Now suppose
that u is a solution of (2.2) and is smooth. Again applying Green’s formula, we find that u
satisfies

∫

Ω

(− div p∇u+ qu− f)v dx = 0, for all v ∈ H̊1(Ω).

Since this equation holds for all such v, it can be shown that − div p∇u+ qu− f = 0. Since
u ∈ H̊1(Ω), u = 0 on ∂Ω. �

Next consider boundary condition (ii). The variational formulation of the BVP in this
case is given by:

Find u ∈ H1(Ω) such that

(2.3)

∫

Ω

[p∇u · ∇v + quv] dx+

∫

∂Ω

γuv ds =

∫

Ω

fv dx+

∫

∂Ω

gv ds, for all v ∈ H1(Ω).

Note that in this case, we do not build the boundary condition into the space. As we shall
see, the solution of (2.3) automatically satisfies this boundary condition (called a natural
boundary condition).

Also, note that in some cases, this problem will not have a solution unless the data satisfies
a compatibility relation. For example, if q = 0 and γ = 0, then choosing v = 1, we must
have

∫

Ω

f dx+

∫

∂Ω

g ds = 0.

If this equation holds, we will have a solution, but it will not be unique, since if we add
any constant to u, it will still be a solution. One way around this to to then add the extra
condition that

∫

Ω
u dx = 0.

The relationship of the solution of problem (2.3) to the original boundary value problem
can be stated as follows.

Lemma 2. If u is a smooth solution of (2.1) with boundary condition (ii) ∂u/∂n+γu = g on
∂Ω, then u is a solution of (2.3). Conversely, if u is a solution of (2.3) and u is sufficiently
smooth, then u satisfies (2.1) and boundary condition (ii).

Proof. First suppose u is a smooth solution of (2.1). Then for any function v ∈ H1(Ω),
∫

Ω

(− div p∇u+ qu)v dx =

∫

Ω

fv dx.



14 NUMERICAL SOLUTION OF PDES

Applying Green’s formula, we find that u satisfies:
∫

Ω

[p∇u · ∇v + quv] dx =

∫

Ω

(− div p∇u+ qu)v dx+

∫

∂Ω

pv
∂u

∂n
ds

=

∫

Ω

fv dx+

∫

∂Ω

(g − γu)v ds.

Hence, u satisfies (2.3). Now suppose u satisfies (2.3) and is sufficiently smooth. Applying
Green’s formula, we get
∫

Ω

[p∇u · ∇v + quv] dx+

∫

∂Ω

γuv ds =

∫

Ω

(− div p∇u+ qu)v dx+

∫

∂Ω

(p
∂u

∂n
+ γu)v ds

=

∫

Ω

fv dx+

∫

∂Ω

gv ds.

By first choosing v ∈ H̊1(Ω), we find that u must satisfy (2.1). Since the boundary variation
holds for all v ∈ H1(Ω), we can conclude that u also satisfies the boundary condition (ii). �


