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2.2. Common abstract formulation. Both these variational formulations may be thought
of as special cases of a common abstract formulation. To see this, we define

a(u,v) = /Q(qu - Vv + quu) do (—l— /asz yuv ds) : F(v) = /va dx (~|— /asz gu ds) )

where the terms in parenthesis are only needed for (2.3). We then define a space V =
H'(Q) for boundary condition (i) and V = H'(Q) for boundary condition (ii). Then, both
variational formulations have the common form:

(2.4) Find u € V such that a(u,v) = F(v), forallve V.

2.3. Formulation as a minimization problem. In the problem we are considering, the
bilinear form a(u, v) is symmetric, i.e., a(u,v) = a(v,u). In such a case, we also can formulate
1

problem (2.4) as a minimization problem, i.e., defining J(v) = ja(v,v) — F'(v), we consider

(2.5) Find u € V such that J(u) < J(v) forallve V.

Then we have the following result.

Lemma 3. If u is a solution of (2.4), then it is a solution of (2.5) and if u is a solution of
(2.5), then it is a solution of (2.4).

Proof. We use the fact that a(u,v) is a bilinear form on V' x V', i.e., for all u,v,w € V and
all constants o and S,

a(au + Pw,v) = aalu,v) + Ba(w,v), a(u, v + fw) = aalu,v) + Ba(u, w),
and Fis a linear functional on V, i.e., F(au+ fw) = aF(u)+ SF(w). First suppose that w is
a solution of (2.5). Since for all v € V' and constants ¢, u+tv € V, we have J(u) < J(u+tv),
ie.,
1
§a(u,u)—F(u) <
Hence,

a(uttv, u+tv)—F(u+tv) = %a(u, u)+ta(u, v)+%t2a(v, v)—F(u)—tF(v).

N | —

1
ta(u,v) + 5152@(1), v) —tF(v) > 0.
This implies
a(u,v) + %a(v,v) > F(v) (t>0) and a(u,v) + %a(v,v) < F(v) (t<0).

Letting ¢ — 0 in both equations, we find that a(u,v) > F(v) and a(u,v) < F(v) and so
a(u,v) = F(v) for all v € V. Hence u is a solution of (2.4). Next, let u be a solution of
(2.4). Then for all v € V|

J(w) — J(v) = %a(u,u) ~ F(u) - %a(v, o) + F(v)
=a(u,u —v)— Flu—v)— %a(u,u) + a(u,v) — %a(v,v) =0- Ea(u—v,u—v) <0,

since for all v € V', a(v,v) > 0. Hence, J(u) < J(v) for all v € V and so u is a solution of
(2.5). O
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2.4. Ritz-Galerkin approximation schemes. Let V), be a finite dimensional subspace
of V' (in practice, we will use piecewise polynomials to construct this subspace). Then, a
natural approximation scheme based on formulation (2.5) is:

(2.6) Find uy, € V, such that J(up) < J(vy) for all v, € V.
In the same way as in the continuous problem, this is equivalent to the method:
(2.7) Find uy, € Vj, such that a(up,v,) = F(v,) for all v, € V.

We next consider what has to be done to solve Problem (2.7). Let ¢;, ¢ = 1,..., M be a
basis for V},. Then we can write u;, = Z]Nil a;¢;, for some constants ;. To determine uy,
we now need only determine the «;. Since the variation in (2.7) holds for all v, € V}, it
holds when vy, is chosen to be any of the basis functions ¢;. Hence, we get that the o;; must
satisfy

M

(2.8) > aja(dy, ¢) = F(¢i), i=1,...,M.

Jj=1

Next define a matrix A = (A;;) where A;; = a(¢;, ¢;) and a vector b = (b;) by b; = F(¢;). If
we let o denote the vector with components «a;, then our problem reduces to the solution of
the linear system of equations Ao = b. Note that it is enough to require that the variation
only hold for the basis functions, since if a(up, ¢;) = F(¢;) for i = 1,..., M, then for any
constants 3;, ¢ = 1,..., M, we have

a(up, Zﬁi¢i) = Zﬁia(um ¢i) = ZﬁiF(@) = F(Z Bii).-
But any v, € Vj, can be written as ) . 8;¢; for some choice of the constants ;. Hence, we
obtain a(up, v,) = F(vy) for all v, € V,.

The finite element method is a special case of the Ritz-Galerkin method in which we choose
the space V}, to consist of piecewise polynomials.

2.5. Properties of Ritz-Galerkin approximation schemes. We make the following as-
sumptions about the bilinear form a(u,v) and the linear functional F'(v). These can be
verified for the particular choices of a(u,v) and F(v) that we are considering.

Lemma 4. There exist positive constants o, M, and K, such that for all u,v € V,

a(v,v) Z alvli,  la(u,v)] < Mljull[loll,  [F)] < Klv],

Note that K will depend on the data f and g and M and « will depend on the coefficients
p, ¢, and v. When p = ¢ = 1 and v = 0, the first two inequalities are simple, since
then a(v,v) = ||v||? and the second follows directly from the Cauchy-Schwarz inequality. In
general, one needs estimates such as the following: There exists a positive constant C' such
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From the first property, it easily follows that the Galerkin method has a unique solution.

that for all € > 0,

Lemma 5. If a(v,v) > a||[v||} for allv € V, then the Galerkin approzimation scheme has a
unique solution.

Proof. Since the method reduces to a square linear system of equations, we need only show
that when F'(v) = 0, that u = 0. Note this corresponds to f = 0 and g = 0. But then
a(up,v) =0 for all v € V},. Choosing v = uy,, we get

allunllt < aup, up) = 0.

Hence u;, = 0. ]

We also obtain the following error estimate for the Ritz-Galerkin approximation scheme.

Lemma 6. (Céa’s Lemma)

M
|lu — upll < EHU —vplli,  for allv € V.

Proof. Recall u and uy, satisfy:
a(u,v) = F(v), vev, a(up,vp) = F(vp), vy € Vp.
Since V,, C V, choosing v = vy, and subtracting equations, we get
a(u —up,vp) =0, veEV, (Galerkin orthogonality).

Using Galerkin orthogonality, we get

a(u — up,u —up) = a(u — up, u — vy) + alu — up, vy — up) = a(u — up, u — vy),
since if uy,, vy, € V4, then v, — uy, € V3. Hence,

allu —upl|? < alu — up, v —up) = alu — up,u —vy) < Mlju —up||1||u —val1,
and so

M
lu = unlly < —llw = walls.



