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2.2. Common abstract formulation. Both these variational formulations may be thought
of as special cases of a common abstract formulation. To see this, we define

a(u, v) =

∫

Ω

(p∇u · ∇v + quv) dx

(

+

∫

∂Ω

γuv ds

)

, F (v) =

∫

Ω

fv dx

(

+

∫

∂Ω

gv ds

)

,

where the terms in parenthesis are only needed for (2.3). We then define a space V =

H̊1(Ω) for boundary condition (i) and V = H1(Ω) for boundary condition (ii). Then, both
variational formulations have the common form:

(2.4) Find u ∈ V such that a(u, v) = F (v), for all v ∈ V.

2.3. Formulation as a minimization problem. In the problem we are considering, the
bilinear form a(u, v) is symmetric, i.e., a(u, v) = a(v, u). In such a case, we also can formulate
problem (2.4) as a minimization problem, i.e., defining J(v) = 1

2
a(v, v)− F (v), we consider

(2.5) Find u ∈ V such that J(u) ≤ J(v) for all v ∈ V.

Then we have the following result.

Lemma 3. If u is a solution of (2.4), then it is a solution of (2.5) and if u is a solution of
(2.5), then it is a solution of (2.4).

Proof. We use the fact that a(u, v) is a bilinear form on V × V , i.e., for all u, v, w ∈ V and
all constants α and β,

a(αu+ βw, v) = αa(u, v) + βa(w, v), a(u, αv + βw) = αa(u, v) + βa(u, w),

and F is a linear functional on V , i.e., F (αu+βw) = αF (u)+βF (w). First suppose that u is
a solution of (2.5). Since for all v ∈ V and constants t, u+tv ∈ V , we have J(u) ≤ J(u+tv),
i.e.,

1

2
a(u, u)−F (u) ≤

1

2
a(u+tv, u+tv)−F (u+tv) =

1

2
a(u, u)+ta(u, v)+

1

2
t2a(v, v)−F (u)−tF (v).

Hence,

ta(u, v) +
1

2
t2a(v, v)− tF (v) ≥ 0.

This implies

a(u, v) +
t

2
a(v, v) ≥ F (v) (t > 0) and a(u, v) +

t

2
a(v, v) ≤ F (v) (t < 0).

Letting t → 0 in both equations, we find that a(u, v) ≥ F (v) and a(u, v) ≤ F (v) and so
a(u, v) = F (v) for all v ∈ V . Hence u is a solution of (2.4). Next, let u be a solution of
(2.4). Then for all v ∈ V ,

J(u)− J(v) =
1

2
a(u, u)− F (u)−

1

2
a(v, v) + F (v)

= a(u, u− v)− F (u− v)−
1

2
a(u, u) + a(u, v)−

1

2
a(v, v) = 0−

1

2
a(u− v, u− v) ≤ 0,

since for all v ∈ V , a(v, v) ≥ 0. Hence, J(u) ≤ J(v) for all v ∈ V and so u is a solution of
(2.5). �
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2.4. Ritz-Galerkin approximation schemes. Let Vh be a finite dimensional subspace
of V (in practice, we will use piecewise polynomials to construct this subspace). Then, a
natural approximation scheme based on formulation (2.5) is:

(2.6) Find uh ∈ Vh such that J(uh) ≤ J(vh) for all vh ∈ Vh.

In the same way as in the continuous problem, this is equivalent to the method:

(2.7) Find uh ∈ Vh such that a(uh, vh) = F (vh) for all vh ∈ Vh.

We next consider what has to be done to solve Problem (2.7). Let φi, i = 1, . . . ,M be a

basis for Vh. Then we can write uh =
∑M

j=1
αjφj, for some constants αj. To determine uh,

we now need only determine the αj. Since the variation in (2.7) holds for all vh ∈ Vh, it
holds when vh is chosen to be any of the basis functions φi. Hence, we get that the αj must
satisfy

(2.8)
M
∑

j=1

αja(φj, φi) = F (φi), i = 1, . . . ,M.

Next define a matrix A = (Aij) where Aij = a(φj, φi) and a vector b = (bi) by bi = F (φi). If
we let α denote the vector with components αj, then our problem reduces to the solution of
the linear system of equations Aα = b. Note that it is enough to require that the variation
only hold for the basis functions, since if a(uh, φi) = F (φi) for i = 1, . . . ,M , then for any
constants βi, i = 1, . . . ,M , we have

a(uh,
∑

i

βiφi) =
∑

i

βia(uh, φi) =
∑

i

βiF (φi) = F (
∑

i

βiφi).

But any vh ∈ Vh can be written as
∑

i βiφi for some choice of the constants βi. Hence, we
obtain a(uh, vh) = F (vh) for all vh ∈ Vh.

The finite element method is a special case of the Ritz-Galerkin method in which we choose
the space Vh to consist of piecewise polynomials.

2.5. Properties of Ritz-Galerkin approximation schemes. We make the following as-
sumptions about the bilinear form a(u, v) and the linear functional F (v). These can be
verified for the particular choices of a(u, v) and F (v) that we are considering.

Lemma 4. There exist positive constants α, M , and K, such that for all u, v ∈ V ,

a(v, v) ≥ α‖v‖2
1
, |a(u, v)| ≤ M‖u‖1‖v‖1, |F (v)| ≤ K‖v‖1,

Note that K will depend on the data f and g and M and α will depend on the coefficients
p, q, and γ. When p = q = 1 and γ = 0, the first two inequalities are simple, since
then a(v, v) = ‖v‖2

1
and the second follows directly from the Cauchy-Schwarz inequality. In

general, one needs estimates such as the following: There exists a positive constant C such
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that for all ǫ > 0,
∫

Ω

u2 dx ≤ C

(
∫

Ω

|∇u|2 dx+

∫

∂Ω

u2 ds

)

,

∫

∂Ω

u2 ds ≤ ǫ

∫

Ω

|∇u|2 dx+

[

C2

4ǫ
+ C

]
∫

Ω

u2 dx.

From the first property, it easily follows that the Galerkin method has a unique solution.

Lemma 5. If a(v, v) ≥ α‖v‖2
1
for all v ∈ V , then the Galerkin approximation scheme has a

unique solution.

Proof. Since the method reduces to a square linear system of equations, we need only show
that when F (v) = 0, that u = 0. Note this corresponds to f = 0 and g = 0. But then
a(uh, v) = 0 for all v ∈ Vh. Choosing v = uh, we get

α‖uh‖
2

1
≤ a(uh, uh) = 0.

Hence uh = 0. �

We also obtain the following error estimate for the Ritz-Galerkin approximation scheme.

Lemma 6. (Céa’s Lemma)

‖u− uh‖1 ≤
M

α
‖u− vh‖1, for all v ∈ Vh.

Proof. Recall u and uh satisfy:

a(u, v) = F (v), v ∈ V, a(uh, vh) = F (vh), vh ∈ Vh.

Since Vh ⊂ V , choosing v = vh and subtracting equations, we get

a(u− uh, vh) = 0, v ∈ Vh (Galerkin orthogonality).

Using Galerkin orthogonality, we get

a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh) = a(u− uh, u− vh),

since if uh, vh ∈ Vh, then vh − uh ∈ Vh. Hence,

α‖u− uh‖
2

1
≤ a(u− uh, u− uh) = a(u− uh, u− vh) ≤ M‖u− uh‖1‖u− vh‖1,

and so

‖u− uh‖1 ≤
M

α
‖u− vh‖1.

�


