
18 NUMERICAL SOLUTION OF PDES

2.6. Definition of finite elements. We first define triangular finite element spaces, consid-
ering the case when Ω is a convex polygon. For each 0 < h < 1, we let Th be a triangulation
of Ω̄ with the following properties:

i: Ω̄ = ∪iTi,
ii: If Ti and Tj are distinct, then exactly one of the following holds: (a) Ti∩Tj = ∅, (b)
Ti ∩ Tj is a common vertex, (c) Ti ∩ Tj is a common side.

iii: each Ti ∈ Th has diameter ≤ h.
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Given a triangulation Th of Ω, a finite element space is a space of piecewise polynomials
with respect to Th that is constructed by specifying the following things for each T ∈ Th:

Shape functions: a finite dimensional space V (T ) of polynomial functions on T .

Degrees of freedom (DOF): a finite set of linear functionals ψi : V (T ) → R (i = 1, . . . , N)
which are unisolvent on V (T ), i.e., if V (T ) has dimension N , then given any numbers αi,
i = 1, . . . , N , there exists a unique function p ∈ V (T ), such that ψi(p) = αi, i = 1, . . . , N .
Since these equations amount to a square linear system of equations, to show unisolvence,
we show that the only solution of the system with all αi = 0 is p = 0. A typical example
of a DOF is ψi(p) = p(xi). Another example is ψi(p) =

∫

T
p(x) dx. Note that the ψ operate

on functions and produce numbers. Linear means that ψ(ap + bq) = aψ(p) + bψ(q) for all
p, q ∈ V (T ) and constants a and b.

Not every set of N linear functionals with be unisolvent for a particular space of shape
functions V (T ). For example, if V is the space of quadratic polynomials on the interval [0, 1],
we could ask whether a polynomial p ∈ V is uniquely determined by the values p(0), p(1)
and p′(1/2). Now if p(0) = 0 and p(1) = 0, then p must have both x and 1− x as factors, so
p = cx(1− x) for some constant c. Then p′(x) = c(1− 2x), so p′(1/2) = 0. Since we have a
nonzero polynomial (i.e., p = cx(1− x)) which equals zero at the degrees of freedom, these
degrees of freedom are not unisolvent. If we replace the DOF p′(1/2) by the DOF p(1/2),
then since p(1/2) = c/4 = 0 implies c = 0, we will have p(x) ≡ 0, and so these three DOFs
are unisolvent.
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We further assume that each degree of freedom on T is associated to a subsimplex of T ,
i.e., to a vertex, an edge, or T itself. Moreover, if a subsimplex is shared by two different
triangles T1 and T2 in Th, the DOFs for T1 and T2 associated to the subsimplex are the same.

Once we define the shape functions and DOFs for each triangle, we then define the as-

sembled finite element space as all functions v ∈ L2(Ω) such that

(i) v|T ∈ V (T ) for all T ∈ Th and (ii) The DOFs are single-valued in the sense that
whenever q is a subsimplex shared by T1 and T2, then the corresponding DOFs associated
to q applied to v|T1

and v|T2
take on the same value. Note that we do not specify the

interelement continuity explicitly. It is determined by the fact that the shared DOFs are
single-valued.

We first consider the construction of finite element subspaces of H1(Ω). In general, one
can show that a function v which is smooth on each triangle T ∈ Th (e.g., v is a polynomial
on each T ∈ Th) will belong to the space H1(Ω), if and only if v ∈ C0(Ω).

Hence, we construct Vh = {vh ∈ C0(Ω̄) : vh|T ∈ Pk, T ∈ Th}, where Pk denotes the space
of polynomials of degree ≤ k. This is the space of shape functions. How do we do this?

k = 0. On each triangle Ti, vh = ci, a constant. But since vh ∈ C0(Ω̄), ci = c for all i, and
so the space consists of a single constant. This is not a useful space, since there is only one
degree of freedom.

k = 1. On each triangle, vh|T = c0+c1x1+c2x2. The issue is how to find degrees of freedom
so that the global function we construct is continuous. We shall show that the correct degrees
of freedom are the values of vh at the vertices of the triangulation. This involves establishing
two facts. The first is to show that a linear function on a triangle is uniquely determined
by its values at the vertices. The second is to show that a piecewise linear function defined
on two triangles sharing a common edge will be continuous everywhere on that edge if it is
continuous at the vertices of that edge.

To see how this can be done, first consider the case of an interval [a1, a2] in one dimension.
One way of writing a linear polynomial is P1(x) = c0 + c1x. In this form, the degrees of
freedom c0 and c1 are the values P1(0) and P

′
1(0), respectively, i.e., c0 = P1(0) and c1 = P ′

1(0).
However, we may also write any linear polynomial in the form:

P1(x) = b1
x− a2
a1 − a2

+ b2
x− a1
a2 − a1

.

In this form, the degrees of freedom b1 and b2 are the values P1(a1) and P1(a2), respectively,
i.e., b1 = P1(a1) and b2 = P1(a2). This is because, instead of taking 1 and x as the basis
functions for linear polynomials, we are using the functions

φ1(x) =
x− a2
a1 − a2

, φ2(x) =
x− a1
a2 − a1

.

The key property is that φ1(a1) = 1, φ1(a2) = 0 and φ2(a1) = 0, φ2(a2) = 1.
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We shall show that the corresponding functions in higher dimensions are the barycentric
coordinates of a point x. To define the barycentric coordinates, we let aj = (a1j, a2j) be the
vertices of a triangle T . Then

T = {x =
3

∑

j=1

λjaj, 0 ≤ λj ≤ 1, 1 ≤ j ≤ 3,
3

∑

j=1

λj = 1}.

The barycentric coordinates λj = λj(x), 1 ≤ j ≤ 3 of any point x ∈ R
2 with respect to the

the vertices a1,a2,a3 are the unique solutions of the linear system:
3

∑

j=1

aijλj = xi, i = 1, 2,
3

∑

j=1

λj = 1,

i.e., we solve

A





λ1
λ2
λ3



 =





x1
x2
1



 , where A =





a11 a12 a13
a21 a22 a23
1 1 1



 .

One can show that the matrix is nonsingular if the triangle is nondegenerate.

Observe that when x = ak, i.e., xi = aik, then λ1, λ2, λ3 is the unique solution of
3

∑

j=1

aijλj = aik,
3

∑

j=1

λj = 1.

The solution is given by λj = δjk = 1, for j = k and = 0 for j 6= k.

If we write the general system in the form Aλ =

(

x

1

)

, then λ(x) = A−1

(

x

1

)

. Define

A−1 = B = (bij). Then λi(x) =
∑

2

j=1
bijxj + bi3, 1 ≤ i ≤ 3, so the λi are affine functions

of x1, x2. Since when xi = aik, λj = δjk, we have λj(ak) = δjk. So λj is precisely the function
we need, since it is a linear function equal to 1 at the vertex aj and equal to zero at the
other two vertices.

Example: Consider the triangle with vertices a1 = (1, 0), a2 = (0, 1), and a3 = (0, 0).
Then λ1(x) = x1, λ2(x) = x2, and λ3(x) = 1− x1 − x2.

Also observe that if x = (1− θ)y+ θz, 0 ≤ θ ≤ 1, i.e., x lies on the line segment between
y and z, then

λ(x) = A−1

(

x

1

)

= A−1

(

(1− θ)y + θz
(1− θ)1 + θ1

)

= (1− θ)A−1

(

y

1

)

+ θA−1

(

z

1

)

= (1− θ)λ(y) + θλ(z).

Hence, on the edge joining a1 and a2, λ3(x) = 0. At the point midway between a1 and
a3, λ3(x) = 1/2.

We note that the barycenter of a triangle is the point of T for which all the λi = 1/3.
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Using this notation, we now show that any linear polynomial P (x) = c0 + c1x1 + c2x2
defined on T is uniquely determined by its values at the three vertices a1, a2, a3 of T . The
idea is the same as in one dimension. Instead of writing a linear polynomial as a linear
combination of the basis functions 1, x1, x2, we write it as a linear combination of the λj,
j = 1, 2, 3, i.e.,

P1(x) = b1λ1(x) + b2λ2(x) + b3λ3(x).

From the properties of the λj, we immediately get that

P1(x) = P1(a1)λ1(x) + P1(a2)λ2(x) + P1(a3)λ3(x).

This representation also implies that if we have a piecewise linear function defined on two
triangles sharing a common edge, such that they have the same value at the two vertices
of that edge, then they are equal everywhere along the edge. Hence the piecewise linear
function is continuous across that edge. To see this, consider the edge joining a1 and a2,
and let x = (1 − θ)a1 + θa2, 0 ≤ θ ≤ 1, i.e., x is a point on this line segment. Then
λj(x) = (1− θ)λj(a1) + θλj(a2). Hence, on this edge

P1(x) = (1− θ)P1(a1) + θP1(a2).

So if we have two linear polynomials which have the same value at a1 and a2, they will be
the same everywhere on the edge.

Next consider the degrees of freedom for higher order polynomials: Define aij to be the
midpoint of the edge joining ai and aj. We can show that we can write every polynomial of
degree ≤ 2 defined on T in the form:

P2(x) =
3

∑

i=1

λi(2λi − 1)P (ai) +
∑

i<j

4λiλjP (aij).

Note that the term λ3(2λ3 − 1) = 0 everywhere along the line segment joining a1 and a2

and when λ3 = 1/2, which includes the midpoint of the edges joining a1 to a3 and joining
a2 to a3. Furthermore λ3(2λ3 − 1) = 1 at a3. In addition 4λ1λ2 = 0 at all vertices and at
a13 and a23 and equals 1 at the midpoint a12.

To represent cubic polynomials, we define for i 6= j, aiij = (2/3)ai + (1/3)aj and a123 =
(1/3)(a1 + a2 + a3) Then we can write every cubic polynomial in the form

P3(x) =
3

∑

i=1

λi(3λi − 1)(3λi − 2)/2P (ai) +
∑

i 6=j

9λiλj(3λi − 1)/2P (aiij) + 27λ1λ2λ3P (a123).

Note that in each of these cases, we have degrees of freedom for the space of shape
functions V (T ) of the form P (bi), where the bi are points in T . Corresponding to each of
these degrees of freedom, we can find a basis function φi ∈ V (T ) with the property that
φi(bj) = 1 if i = j and φi(bj) = 0 if i 6= j. We then can write an arbitrary P ∈ V (T ) in the

form P (x) =
∑M

i=1
P (bi)φi(x). Here M is the dimension of the space V (T ). If the degrees

of freedom are unisolvent, then the number of degrees of freedom must also equal M .
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In general, if Tn is an n-simplex with vertices aj, 1 ≤ j ≤ n + 1, then for a given integer
k ≥ 1, any polynomial p ∈ Pk, the set of polynomials of degree ≤ k, is uniquely determined
by its values on the set:

Lk(Tn) = {x =
n+1
∑

j=1

λjaj,
n+1
∑

j=1

λj = 1, λj ∈ {0,
1

k
, . . . ,

k − 1

k
, 1}, 1 ≤ j ≤ n+ 1}.

Example: n = 2, k = 1. Linear polynomials on a triangle are uniquely determined by
their values at the 3 vertices. So dimL1(T2) = 3.

Example: n = 2, k = 2. Quadratic polynomials on a triangle are uniquely determined by
their values at the 3 vertices and the midpoints of the three edges. So dimL2(T2) = 6.

Example: n = 2, k = 3. Cubic polynomials on a triangle are uniquely determined by their
values at the 3 vertices, two points on each edge, and at the centroid of the triangle. So
dimL3(T2) = 10.

Example: n = 3, k = 1. Linear polynomials on a tetrahedron are uniquely determined by
their values at the 4 vertices. dimL1(T3) = 4.

Example: n = 3, k = 2. Quadratic polynomials on a tetrahedron are uniquely determined
by their values at the 4 vertices and the midpoints of the 6 edges. dimL2(T3) = 10.


