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2.7. Global bases for finite element spaces. We have seen that if the shape functions
V (T ) consist of polynomials and the degrees of freedom are of the form P (bi), where the
bi are points in the triangle T , then we can find a basis function φi ∈ V (T ) with the
property that φi(bj) = 1, if i = j and φi(bj) = 0, if i 6= j. Furthermore, we can then write

P (x) =
∑M

i=1
P (bi)φi(x).

The next step is to define basis functions for the full finite element space, Vh, not just
its restriction V (T ) to the triangle T . This can be done in a similar way, by now finding
functions φi ∈ Vh such that φi(bj) = 1, if i = j and φi(bj) = 0, if i 6= j, where now the values
u(bj) denote the total set of global degrees of freedom of a function u in the finite element
space.

A simple example is the set of continuous piecewise linear functions on a mesh of the
interval [0, 1] with mesh points 0 = x0 < x1 < . . . xN = 1. Then the continuous piecewise
linear function φi that satisfies φi(xi) = 1 and φi(xj) = 0 for j 6= i is given by:

φi(x) =



















0 0 ≤ x ≤ xi−1,

(x− xi−1)/(xi − xi−1) xi−1 ≤ x ≤ xi,

(xi+1 − x)/(xi+1 − xi) xi ≤ x ≤ xi+1,

0 xi+1 ≤ x ≤ 1.
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In two dimensions, the analogous continuous piecewise linear basis function is:

Note that the basis function corresponding to the degree of freedom u(bi) is non-zero only
on the triangles which have bi as one of its vertices.

Recall, that in order to find a finite element space, consisting of piecewise polynomials,
that is a subspace of H1(Ω), the subspace must belong to C0(Ω). In one dimension, we
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accomplish this by choosing u(xi) to be among the degrees of freedom for each mesh point
xi, and requiring it to be single-valued. This means that the values of the linear functions
on the interval [xi−1, xi] and [xi, xi+1] will be the same at the point xi. In two dimensions,
we need to choose u(bi) to be among the degrees of freedom for each vertex bi, since we
need (u|T )(bi) to have the same value, no matter which triangle T with common vertex bi

we consider. For piecewise linear functions, we have seen that this set of degrees of freedom
completely define the finite element space. If we consider two triangles with a common edge
joining the vertices ai and aj, and let x = (1− θ)ai + θaj be a point on that edge, then if
u is a linear function, u(x) = (1 − θ)u(ai) + θu(aj) Hence, if u1 = u|T1

and u2 = u|T2
are

linear functions defined on the triangles T1 and T2 with a common edge, and u1(ai) = u2(ai),
u1(aj) = u2(aj), then u1(x) = u2(x) for all x on the edge, and so u is continuous there.

For piecewise quadratics, if we choose as global degrees of freedom the values at the
vertices and the midpoints of the edges, we will again get continuity across edges, since
two quadratics in one variable that agree at three points, must be identical everywhere. In
general, two polynomials of degree ≤ r in one variable that agree at r + 1 points must be
identical, so this gives a way of choosing degrees of freedom that give global continuity.

2.8. Affine families of finite elements. To describe a finite element on an arbitrary
triangle in R

2 in a way that will simplify computations, we use the following idea. Let T̂
denote the reference triangle with vertices â1 = (1, 0), â2 = (0, 1), and â3 = (0, 0). Given
any triangle T with vertices a1 = (a11, a21), a2 = (a12, a22), a3 = (a13, a23), we can find

a unique invertible affine mapping FT mapping the triangle T̂ to the triangle T given by
x = FT (x̂) = BT x̂ + bT , where BT is an invertible 2 × 2 matrix and bT a two-dimensional
vector, satisfying: FT (âi) = ai, i = 1, . . . 3. In fact, we can easily show that

BT =

(

a11 − a13 a12 − a13
a21 − a23 a22 − a23

)

, bT =

(

a13
a23

)

.

Hence, we have the relations:

x1 = (a11 − a13)x̂1 + (a12 − a13)x̂2 + a13, x2 = (a21 − a23)x̂1 + (a22 − a23)x̂2 + a23.

If we invert this relationship, we find that

x̂1 = [(a22 − a23)(x1 − a13)− (a12 − a13)(x2 − a23)]/ det(BT ),

x̂2 = [−(a21 − a23)(x1 − a13) + (a11 − a13)(x2 − a23)]/ det(BT ).

Given a set of shape functions p̂ ∈ V (T̂ ) on the reference triangle T̂ , we then define the

set of shape functions V (T ) on the triangle T = FT (T̂ ) by:

V (T ) = {p : p(x) = p̂ ◦ F−1

T (x) = p̂(x̂), p̂ ∈ V (T̂ )}.

With these definitions, we can translate the degrees of freedom and basis functions on the
reference element to degrees of freedom and basis functions on an arbitrary triangle. For
example, if we take as degrees of freedom on the reference triangle the values of a polynomial
p̂ at the points x̂i, i.e., p̂(x̂i), then the degrees of freedom on the triangle T will be the values
p(x) satisfying p(x) = p̂(x̂). In the case of linear functions, this means the values at the



NUMERICAL SOLUTION OF PDES 25

vertices of the triangle, since the map FT is constructed to map vertices to vertices. We
have already shown that the basis functions for linear functions on a triangle corresponding
to vertex degrees of freedom are given by the barycentric coordinate functions λi(x). By

the presentation above, this means that if we denote by λ̂i(x̂), the barycentric coordinates

on the reference triangle, then we have λ̂i(x̂) = λi(x). To get an understanding about
how these mappings work, consider the following example. Let T be the triangle with
vertices a1 = (1, 0), a2 = (0, 1) and a3 = (1, 1). We can map T̂ to T by the mapping
x = FT (x̂) = BT x̂+ bT , where

BT =

(

0 −1
−1 0

)

, bT =

(

1
1

)

, i.e., x1 = 1− x̂2, x2 = 1− x̂1.

Then

λ1(x) = λ̂1(x̂) = x̂1 = 1− x2,

λ2(x) = λ̂2(x̂) = x̂2 = 1− x1,

λ3(x) = λ̂3(x̂) = 1− x̂1 − x̂2 = x1 + x2 − 1.

Thus, we can construct basis functions in terms of the barycentric coordinates on the
reference triangle and then map them to obtain the basis functions on the general triangle.

We can use these ideas to calculate the integrals in the finite element method. For example,
to calculate an integral of the form

∫

T

∇u · ∇v dx dy =

∫

T

(

∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

)

dx dy,

we transform the integral to the reference triangle by making the change of variable x =
Bx̂+ b. Since v̂(x̂, ŷ) = v(x, y), we get by the chain rule that

∂v

∂x
=

∂v̂

∂x̂

∂x̂

∂x
+

∂v̂

∂ŷ

∂ŷ

∂x
,

∂v

∂y
=

∂v̂

∂x̂

∂x̂

∂y
+

∂v̂

∂ŷ

∂ŷ

∂y
.

Now x̂ = B−1(x− b), so

∂x̂

∂x
= B−1

11 ,
∂x̂

∂y
= B−1

12 ,
∂ŷ

∂x
= B−1

21 ,
∂ŷ

∂y
= B−1

22 .

Hence,
(

∂v/∂x
∂v/∂y

)

= (B−1)T
(

∂v̂/∂x̂
∂v̂/∂ŷ

)

, i.e., ∇v = (B−1)T ∇̂v̂.

Since (B−1)T = (BT )−1, we also have ∇̂v̂ = BT∇v. By the change of variable formula, we
get

∫

T

∇u · ∇v dx dy =

∫

T̂

(B−1)T ∇̂û · (B−1)T ∇̂v̂| detB| dx̂dŷ

= | detB|

∫

T̂

(∇̂û)TB−1(B−1)T ∇̂v̂ dx̂dŷ.
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In the case of piecewise linear functions,

∂v̂

∂x̂
= v̂(â1)− v̂(â3) = v(a1)− v(a3),

∂v̂

∂ŷ
= v̂(â2)− v̂(â3) = v(a2)− v(a3).

We then compute
∫

Ω

∇u · ∇v dx dy =
∑

T

∫

T

∇u · ∇v dx dy.


