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2.9. Tensor product finite elements. We define the space (), as the space of polynomials
which are of degree < k in each of the variables zq, ...z, separately. The dimension of the
space Qy is (k+ 1)™.

Example: k = 1:

Ql(zvy) :Co+C15E+C2y+C3$?J (n:2)7
Q1(z,y,2) = co + 1 + oy + c32 + cyxy + csxz + ceyz + crryz  (n=3).

Lemma 7. A polynomial q € Qy is uniquely determined by its values on the set

My, = {x = (i1 /k,is)k, ... in/k) €R" 1i; € {0,1,... k}, 1<j<n}

Example: k= 1: n=2: (0,0), (1,0), (0,1), (1,1)

q(z,y) = q(0,0)(1 —2)(1 —y) + q(1,0)z(1 —y) + ¢(0,1)y(1 — z) + q(1,1)zy.

Example: k = 2: n = 2: (0,0), (1/2,0), (1,0), (0,1/2), (1/2,1/2), (1,1/2), (0,1), (1/2,1),
(1,1).

2.10. Quadrilateral elements. These are defined by using bilinear mappings of a rectan-
gle, i.e., we define as the reference element the unit square K. Then we can define the
mapping

F(2,9) = ai(1 - 2)(1 - 9) + axi(l — §) + asg(1 — ) + as27.

that maps K to the quadrilateral K with vertices a1, as, as, as. To define the shape functions
on the element K, we begin with a set V of polynomial shape functions defined on the
reference element (e.g., the space Q1(Z,9)). We then define a space of functions on the
quadrilateral K by

Vi(K)={u: K —R:igpeV}

where U p(Z,9) = uoF(Z,9) = u(z,y). The complication here is that the elements in Vi (K)
need not be polynomials if the mapping F' is not affine, i.e., if K is not a parallelogram.
For example, consider the mapping (z,y) = F(Z,9) = (2,9(1 + 2)). Then Z = z and
g =vy/(1+ z). Hence, if we take V to be the span of 1, #, §, &4, then Vr(K) is the span of
Lix,y/(1+x),2y/(1+ ).

2.11. C* finite elements. The Argyris element is a C' finite element defined on each
triangle by a quintic polynomial with 21 degrees of freedom:

p(a:), (Op/0z)(a;), (Op/dy)(a;), (8%p/0x?)(as), (0°p/0xdy)(a:), (0%p/0y)(a;), 1 <i<3,
(Op/0On)(aiz), (Op/On)(ai3), (Op/On)(ass).

There are also other choices of degrees of freedom.
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2.12. Error estimates for piecewise polynomial interpolation — 1 dimension. The
error estimate we derived previously related the error in the finite element method to the
error in the approximation of the solution by the best approximation in the finite element
subspace. We now obtain bounds for this error by defining and analyzing the properties of
the finite element interpolant, considering the case of piecewise linear interpolation in detail.

We begin with the Taylor series expansion with integral remainder in one dimension.

F(s) — F(sg) = /S F'(t)dt = /S F’(t)%(t— s) dt

S0 S0

= F'(t)(t — s) [:=3, —/S F"(t)(t — s)dt = F'(s0)(s — sg) — /8 F"(t)(t — s)dt.

S0 S0

Hence, F(s) = F(so) + F'(s0)(s — s0) + /S F"(t)(s —t) dt.

S0

We next give a simple derivation of the error in 1-dimension. Let a < b be given points.
Then the linear function interpolating u at the points a and b is given by:
- r—a
u(a) +
b—a (a) b—a

To estimate the error u(x) — u;(x), we expand u(a) and u(b) in a Taylor series about the
point x, using the integral remainder formula given above.

u(a) = u(a:)+u'(a:)(a—x)+/a u"(t)(a—t) dt, u(b) = u(m)+u’(m)(b—x)+/ u"(t)(b—t) dt.

ur(z) = u(b).

b—=x T —a

Then uw(z) —ur(z) = u(z)

where

b—x)(t—a), a<t<ux

G(t,x) =

(t,) {(m—a b—t), x<t<b

Hence,
1 b 2 1 b b
_ 2 _ " < " 2 2
lu(z) — ur(z)| [(=NE /au (t)G(t,x)dt _—(b—a)Z/a [u" ()] dt/a |G(t, x)| dt,

and so

/ab lu(z) — up(z)]? de < C _1&)2 /ab lu” (t)|? dt /ab /ab |G (t,2)|* dt dz
= M/ab|u”(t)|2dt.

90
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Suppose now that we have a set of points xg, x1,..., 2y With z; —z;_1 =h;, 1 =1,..., N
and we denote by u; the continuous piecewise linear interpolant of u, i.e., a continuous
function that is linear on each subinterval [z;_1, z;] and satisfies u;(z;) = u(x;), i =0,..., N.

Then, applying the above formula with a = z;_; and b = z;, and assuming h; < h, we get

/x:N lu(z) — uy(z)]? do = 12:/:_1 lu(z) — ur(z)? do

— oo >n [ < s [ wop
90 =1 ' Ti—1 90 o ‘
h2 "
Hence, lu — UI”LQ[JCO,J:N} < \/%Hu ||L2[®’07$N]'

We can derive an error estimate for the derivative in a similar way.

u(b) — ufa) (b—z) —(a—x)

up(z) = T —a = u'() b—a
b a
+bia/ W) (b — 1) dt — bia/ ()@ — 1) dt.
Hence,  u/(z) —u}(x) = ~3 i - / u"(t)H(t, x) dt,

a—t, a<t<cx

where H(t,:p):{b_t r<t<b’

1 b b
Then  |u'(z) — u}(2)]* < m/ ]u”(t)|2dt/ H(t,z) dt,

and so

b b b —a)2 [t
/a |u/(z) — u}p(x)|? do < ﬁ/a |u”(t)|2dt/a H*(t,z)dtdr = %/ﬂ lu” () [? dt.

Translating these results to each subinterval and summing, we get

h
Hul - UIIHLQ[QTOJCN} < %||UNHL2[:80,:EN]'

If instead of continuous, piecewise linear interpolation, we define u; to the continuous
piecewise polynomial of degree < r that interpolates u at the mesh points and at r — 1
additional points in the interior of each subinterval, then the analogous estimates are:

lu = il 2oy < CR D™l 2y ongs 10— Uil L2img0n) < CRIID™ 0| 250 ) -



