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2.13. Error estimates in higher dimensions. One can derive similar estimates in higher
dimensions, but the proofs are more complicated.

In the case of piecewise linear interpolation, one first shows that on a triangle T ,

‖u− uI‖L2(T ) ≤ CTh
2
T |u|2,T , |u|22,T = ‖uxx‖

2
L2(T ) + ‖uxy‖

2
L2(T ) + ‖uyy‖

2
L2(T ).

To get this result, define

Fi(s) = u([1− s]x+ sxi, [1− s]y + syi).

To simplify notation, let ξi(s) = [1− s]x+ sxi, ηi(s) = [1− s]y + syi. Then,

F ′
i (s) = ux(ξi(s), ηi(s))(xi − x) + uy(ξi(s), ηi(s))(yi − y),

F ′′
i (s) = uxx(ξi(s), ηi(s))(xi − x)2 + 2uxy(ξi(s), ηi(s))(xi − x)(yi − y)

+ uyy(ξi(s), ηi(s))(yi − y)2.

Using the one-dimensional Taylor series, we have

u(xi, yi) = Fi(1) = Fi(0) + F ′
i (0) +

∫ 1

0

F ′′
i (t)(1− t) dt

= u(x, y) + ux(x, y)(xi − x) + uy(x, y)(yi − y) +

∫ 1

0

F ′′
i (t)(1− t) dt.

Next recall that the linear interpolant uI of u may be written uI(x, y) =
∑3

i=1 λiu(xi, yi),
where λi = λi(x, y) are the barycentric coordinates. Then using the Taylor series given
above, and the identities

∑3
i=1 λi = 1,

∑3
i=1 λixi = x,

∑3
i=1 λiyi = y, we get

uI(x, y) =
3
∑

i=1

λiu(xi, yi) = u(x, y)
3
∑

i=1

λi + ux(x, y)
3
∑

i=1

(xi − x)λi

+ uy(x, y)
3
∑

i=1

(yi − y)λi +
3
∑

i=1

λi

∫ 1

0

F ′′
i (t)(1− t) dt

= u(x, y) +
3
∑

i=1

λi

∫ 1

0

F ′′
i (t)(1− t) dt.

Setting Ri =
∫ 1

0
F ′′
i (t)(1− t) dt, we can show

(

3
∑

i=1

λiRi

)2

≤
3
∑

i=1

∫

T

R2
i .

Then
∫

T

(uI − u)2(x, y) dx dy =

∫

T

(

3
∑

i=1

λiRi

)2

dx dy ≤

3
∑

i=1

∫

T

R2
i dx dy.

A typical term on the right hand side of the above looks like
∫

T

(x− xi)
4

[
∫ 1

0

(1− t)uxx(ξi(t), ηi(t)) dt

]2

dx dy.
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Need some technical estimates to complete the proof, but can see that |x − xi| ≤ h on the
triangle T gives the power of h in the estimate and that second derivatives come in.

If we assume that hT ≤ h for all T , then as in the one-dimensional case, we get

‖u− uI‖
2
L2(Ω) =

∑

T

∫

T

(u− uI)
2 dx dy ≤ C

∑

T

h4
T |u|

2
2,T ≤ Ch4

∑

T

|u|22,T = Ch4|u|22,Ω.

Thus, we finally obtain

‖u− uI‖L2(Ω) ≤ Ch2|u|2,Ω.

To get estimates for the derivatives, we usually make the assumption that the mesh is
shape regular. Let hT denote the diameter of T and ρT the diameter of the largest ball
contained in T . Define the shape constant σT = hT/ρT . If we consider a family of meshes
Th, 0 < h < 1, we say that the family is shape regular if for all T ∈ Th and all 0 < h < 1,
σT ≤ C independent of T and h. One can then show that

‖∇u−∇uI‖L2(T ) ≤ CTh|u|2,T ,

where CT depends on the shape constant σT , and then for shape regular meshes, we have by
summing the squares of this inequality that

‖∇u−∇uI‖L2(Ω) ≤ Ch|u|2,Ω.

If instead of continuous, piecewise linear interpolation, we define uI to be the continuous
piecewise polynomial of degree ≤ r interpolating u at the degrees of freedom, then the
analogous estimates are:

‖u− uI‖L2(Ω) ≤ Chr+1|u|r+1,Ω, ‖∇u−∇uI‖L2(Ω) ≤ Chr|u|r+1,Ω,

where

|u|2r+1,Ω =
∑

|α|=r

‖Dαu‖2L2(Ω).

2.14. Order of convergence estimates for Ritz-Galerkin approximation schemes.

We now return to the approximation of the variational problem: Find u ∈ V such that

a(u, v) = F (v), for all v ∈ V,

by the standard Ritz-Galerkin approximation scheme:

Find uh ∈ Vh such that a(uh, vh) = F (vh), for all vh ∈ Vh.

We have previously established that under the conditions

a(v, v) ≥ α‖v‖21, |a(u, v)| ≤ M‖u‖1‖v‖1, |F (v)| ≤ K‖v‖1,

we have the quasi-optimal error estimate

‖u− uh‖1 ≤
M

α
‖u− vh‖1, for all vh ∈ Vh.



32 NUMERICAL SOLUTION OF PDES

The interpolation error estimate derived above then shows that if we choose the space Vh

to consist of continuous piecewise polynomials of degree ≤ k and the solution u ∈ Hr+1(Ω)
with 1 ≤ r ≤ k, then

‖u− uh‖1 ≤ Chr|u|r+1.

We observe, however, that the error ‖u − uI‖L2 ≤ Chr+1|u|r+1. We next show that the
same improved order of convergence in L2(Ω) also holds for the error u− uh.

Lemma 8. Suppose Ω is a convex polygon. Then, under the hypotheses stated above,

‖u− uh‖L2(Ω) ≤ Ch‖u− uh‖1 ≤ Chr+1|u|r+1.

Proof. The proof uses a combination of elliptic regularity and duality. For simplicity, we
consider only the variational formulation corresponding to the boundary value problem:

−∆u = f in Ω, u = 0 on ∂Ω,

i.e., V = H̊1(Ω), a(u, v) =
∫

Ω
∇u · ∇v dx, F (v) =

∫

Ω
fv dx. More general problems can be

done in a similar way. For such problems, the following regularity result for the solution u
is known: Given f ∈ L2(Ω), there exists a constant C independent of u and f , such that
‖u‖2 ≤ C‖f‖L2(Ω). Note that the equation says that the combination ∂2u/∂x2 + ∂2u/∂y2 ∈
L2(Ω). The regularity result says that each of the second derivatives ∈ L2(Ω) and satisfies
the indicated bound. To establish the lemma, we introduce the “dual problem”: Find
w ∈ V = H̊1(Ω) such that

a(v, w) = (u− uh, v), for all v ∈ V,

i.e., w is the solution of the boundary value problem:

−∆w = u− uh in Ω, w = 0 on ∂Ω.

The dual problem is chosen to have the same form as the original boundary value problem,
but where f is replaced by the error u − uh. From the elliptic regularity result, we know
that w satisfies ‖w‖2 ≤ C‖u− uh‖L2 . Then, using Galerkin orthogonality,

‖u− uh‖
2
L2 = (u− uh, u− uh) = a(u− uh, w) = a(u− uh, w − wI)

≤ M‖u− uh‖1‖w − wI‖1 ≤ C‖u− uh‖1h‖w‖2 ≤ Ch‖u− uh‖1‖u− uh‖L2 .

Hence,
‖u− uh‖L2 ≤ Ch‖u− uh‖1 ≤ Chr+1|u|r+1.
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