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Abstract

Perturbation arguments and finite element calculations are employed to study the nonlinear partial differential
equations governing morphological changes induced by curvature-driven diffusion of mass in the surface of an
axially symmetric body. Isotropy of surface properties is assumed. Second- and higher-order perturbation analyses
indicate that the familiar result of the linear theory of small amplitude longitudinal perturbations of a cylinder to
the effect that a long cylinder is stable against all perturbations with spatial Fourier spectra containing only
wavelengths less than the circumference of the cylinder does not hold in the full nonlinear theory. The perturbation
analyses yield criteria for determining when longitudinal perturbations with high wave-number spectra grow in
amplitude, after an initial decay followed by an incubation time, and result in break-up of the body into a necklace
of beads. The principal conclusions of the formal perturbation analyses are found to be in good accord with
numerical solutions obtained by finite element methods.

PASC: 68.35.Fx
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1. Introduction

We are concerned here with the changes of
shape induced in a materially isotropic and
homogeneous solid body B by mass diffusion
within the body’s bounding surface S. Following
Herring [1] and Mullins [2], we employ the
constitutive equation,

g=-KV,H. (1)

to relate the mass flux ¢ in S to the gradient in §
of the sum H of the principal curvatures of S.
The positive material constant K is proportional
to the surface self-diffusion coefficient of the

material of which B is composed. When, as we
assume here, there is no motion other than the
flux of mass ¢, balance of mass implies that the
rate v of advance of § along its exterior normal is
related as follows to the surface divergence of ¢
and the constant density p [2]:

pv +divig=0. (2)

We here assume that the surface S = S(¢) is
axially symmetric at each time ¢. To describe the
evolution of S, we employ 2 cylindrical coordi-
nate system with axis along the axis of symmetry
and express the radial coordinate r of a point on
S as a time-dependent function of the axial

0167-2789/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved

§SDI 0167-2789(95)00261-8



124 B.D. Coleman et al. / Physica D 89 (1995) 123-135

coordinate x: r = r(x, ). We regard the shape of
S at =0 as a perturbation of a circular cylinder
of radius a and write r(x,0)=r,(x)=a[l +
eu(x)].

In the axially symmetric case, Egs. (1) and (2)
yield a fourth-order partial differential equation
for r =r(x.r), which, after a change of units
equivalent to replacement of ¢ by a*pt/K, r by
ar, and x by ax, can be written

1 r
, X .
X(\r[1+(r‘)z]‘ T [1+(rx)z]3;z)‘]>tq (3)

where r,, 7., ... stand for ar/ot, ar/ax,... . In
the same dimensionless units, the initial con-
dition for Eq. (3) is

r(x, 0) = ry(x) = 1 + eu(x) ; (4)

u(x) is assumed to be given for all x, and £ >0 is
such that eu(x) > —1. In this paper we discuss
cases in which u is an almost periodic function.
The emphasis is laid on functions u that have a
finite Fourier spectrum and hence can be taken
to be of the form,

N
' . (2m c
u(x)=§(‘, sm(?l,\'Jrg) . ()
with ¢;, P,>0).
Linearization of Eq. (3) about the state r= |
yields the equation,

re+r +r.... =0, (6)

Xxaxx

which, since the work of Nichols and Mullins [3].
often has been used in the theory of surface
diffusion to investigate the stability of cylinders
against longitudinal perturbations.

The solution of the linear partial differential
equation (6) with r(x. 0) as in Egs. (4) and (35) is

re, ) =1+ew'"(x.1). (7)
where

N
w ) =2 ¢ e sin(k,x + @) . (8)

=1

with

k,=2w/P,>0 9
and (cf., Eq. (4) of [3])

alk)=k[1—k7]. (10)

A graph of « versus k is shown in Fig. 1. The
maximum value of a(k) is 1/4 and occurs at
k=2"""7As a(k,)>0 only for k, <1, the linear
theory yields exponential decay of the initial
perturbation whenever P, <2w for all i, i.e.,
whenever each period P, in Eq. (5) is less than
the circumference of the unperturbed cylinder.
In this paper we show that this conclusion does
not hold for the full nonlinear partial differential
equation (3).

We give here a perturbation analysis and
numerical calculations implying, among other
things, that when P, <2 for all i, although the
solution of Eq. (3) shows, for small t, a decay of
the sinusoidal perturbations described by Eqgs.
(4) and (§), if N =2 and if at least two distinct
numbers P,, P, in Eq. (5) are sufficiently close
that [P.' — P '|7'>2m, i.c., are such that |k, —
k|<1. then, after an incubation time whose
duration can be estimated, new sinusoidal terms
with wavelength greater than 2w appear in the
solution of Eq. (3). These new sinusoidal terms
grow in amplitude, and the surface eventually
departs far from cylindrical shape in a process

0.5
1,) p——
15 \

-1.0 \

-1.5 \

2.0 : et
0.0 0.5 1.0 1.5

k—
Fig. 1. The rate of growth o as a function of the wave
number & according to the dispersion relation (10).
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that, according to the numerical results reported
in Section 5, results in a finite time in break-up
of the body into separated subbodies. As we
observe in Sections 4 and 5, when P, <2m, i.e.,
k,>1, for all i, even if there is not a pair (i, j)
with 0 <|k, — k;| <1, it can happen that, again
after an incubation time, new sinusoidal terms
appear in the solution and grow, resulting in
break-up; a sufficient condition for this is that
the additive group generated by the numbers
k,=2m/P,, with P, as in Eq. (5), contain a
positive term less than 1, i.e.. that there be
integers m,, positive, negative, or zero, such that
0<IY mk <1

2. General properties of diffusion in axially
symmetric surfaces

For the remainder of the paper we employ for
r, x, and ¢ the dimensionless units of Egs. (3)
and (4). In these units, for an axially symmetric
body, Egs. (1) and (2) become

q=-H][t+(¢)]"". (11)
rrl = _(rQ)A’ s (12)
where

rH=[1+) ] "= (r 1+ )] "), (13)

To clarify the significance of Eq. (11) we note
that for a scalar-valued function 4 of x and .
such as H or r, h [1+(r,)’] ' *=|Vh|sign(h,).
which is the derivative at time ¢ of & with respect
to arclength along the curve defined in an (x. y)-
plane by the function y = r(x. t); if we write ¢ for
the unit vector tangent to this curve, then g = gt.
Elimination of ¢ from Eqs. (11) and (12) yields
Eq. (3).

The volume and surface area of the portion of
B between the planes x = X, and x = X, are

X,

V(i X, X)) = J P dx (14)

X,

X,

v X, X,) =2m J r[1+(r)7]' P dx. (15)
Xy

The surface area ¥(t; X,, X,), or, more precise-

ly, the product of this area with the surface

tension, may be identified with the Helmholtz

free energy of the indicated portion of B. When
r(x.t) obeys Eq. (3). we have

—) Ty — e
SV X, Xy =2l 1+ 0] (16)
X

a r(H,)*
77[ rlr.r, + HH,{]]X2

NI 17
[+ (7

X,
For a solution of Eq. (3) on (%, =) X [0, T') with
spatial period P, or, equivalently, a solution on
[0, P] x [0, T) obeying the boundary conditions,

0. 0y=r(P.ty, HO,t)=HP1t), (18a)
r(0. 0 =r(P.t). H0.0)=H/(P.1), (18b)
we write V(. P), W, P) for V(;0,P),

Y(t;0. P). and note that (16) and (17) yield
iV =0 19
V. P)=0, (19)

r(H,)’

i)
—Y(t. Py= -2 J——‘:dx
o Y P) w() [+

P

= —27:[ rg’[1+ (r,)7]"? dx
0

<0. (20)

Thus. for such solutions the volume V(t, P) is
preserved and the surface area W(t, P) is a
Lyapunov function that is strictly decreasing
when the total curvature H is not constant in x,
i.e.. when ¢ in Eq. (11) is not zero for all x.
When u in Eq. (4) and the corresponding
solution r of Eq. (3) are almost periodic in x, but
not necessarily periodic, the average volume,

(v) =,l(im Vi, -X. X)/2X , (21)



126 B.D. Coleman et al.

is independent of r. and the average area.
(df}(z):’l(im Y, -X. X)2X . (22)

is monotone decreasing in ¢ for t =0. When Eq.
(5) holds,

\
<v>:ﬂ[l+%F:E('f}. (23)
i
When the numbers P, in Eq. (5) are rationally
related, r is periodic with a period P that can be
taken to be any common integral multiple of all
the P, and then {(v)=V(. P)Y/P. {(y)(t)=
Y(t. P)/P.
Let r, be given by

mrl={(v). (24)

The number r, is in general not the radius a of
the unperturbed cylinder (which equals 1 in the
present units). In the case in which u obeys Eq.
(5). r, differs from a by terms €(¢7). In the next
section we employ the methods of perturbation
theory to study the behaviour of the quantity.

g(t) =sup |r(x.0) = r.\. (25)

measuring the departure. at time ¢, of the body
from cylindrical shape.

3. Second-order perturbation analysis

When the function u in Eq. (5) is specified and
held fixed, r depends on ¢: we suppose that this
dependence is sufficiently smooth that we can

write, for all x and for ¢ in a set of the form
[0, T),

W)+ 0.
(26)

rix.t;e)=1+ew'(x.1)+ ew

By placing this expression in Eq. (3) and equat-
ing the coefficients of equal powers of ¢ on the
two sides of that equation. we obtain

wil o wlEwty =0, (27)

7 AR}
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( ’+(W( )+W ) _(Wll)) +2w(1) (1)

—w)T 2wl (28)
It follows from Egs. (4) and (26) that
w' ' (x, 0) = u(x) , (29)
w'(x.0)=0. (30)

Solution of Eq. (27) with the initial condition
(29) vyields the function w', and once w'" is
known, (28) and (30) determine w'?.

The linear theory of small perturbations of a
cylinder, which employs Eq. (6), is obtained by
neglecting terms @(e’) in Eq. (26) and hence
rests on Egs. (27). (29), and the approximate
relation (7). When u(x) is as in Eq. (5), the
solution of Egs. (27) and (29) is that shown in
Eqgs. (8)-(10).

To evaluate the term O(g”) in Eq. (26), we
place (8) in (28), employ (30), and obtain, after
some calculation,

N

W ) = A0+ 2 A, (1) cos(2kx +2¢,)
=1

+ 2

la=i<ij=N

+ AL jit)cos(tk, —k)x + ¢ — @)l (31)

[AL(, jit)cos((k, + k)x + ¢ + ¢)

where
N
A =4 X et - e, (322)
o 3 C;ﬁ(ki)
A0 =35300) - a(2k)
X [e2etk — g2k (32b)
o CleB+(k,# ;)
AU i) =— k)—alk,+k
ak,) + a(k)) — alk, + k)
x [eletki etk _ gatki k) (32¢0)
N o (ki k)
AL D= 0T ) —ate — K
a(k,) + atk,) — alk, - k;)
» [ela(k,)+a(k,)]1 —e®TR 0 (32d)
with « as in Eq. (10), k; as in Eq. (9), and
Bk) = kz[l + kz] , (33a)
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B (k. k) =lkk + ki +kI[1+kk]. (33b)
B (k. k)=lkk — ki —k'|[l—kk,]. (33¢)

When k;>1 for each /, the quantities a(k,).
a(2k,). a(k, +k,) are negative for each / and
j>i, and hence not only w'" but also all the
terms in w'*’, other than the constant term.
1¥,¢;. and possibly some of the form
flk; k1) cos((k, — k,)x + ¢, — ¢) with

k 3 ("(’,ﬁ (kl' k/)
JE b= G =) = atk) ~ k)
Xe(.(/\,rrk,b/~ (34)

will decay to zero exponentially with increasing ¢.
The coefficient |f(k,.k,:1)| of cos((k, —k,)x +
@, — @) is constant if [k, —k|=1: it grows ex-
ponentially in time if and only if

0< |k, — k<1 (35)

The period P, ; of the envelope of the sum of two
terms ¢, sin(2w/P, x + ¢;). ¢, sin(2w/P, x + ¢) in
Eq. (5) with P, > P, is given by

P=pP'-pP". (36)

The condition (35) for (exponential) growth of
| flk,, Kk 1)| is equivalent to the inequality

P, >2m. (37)

In other words. if one takes ¢ in Eq. (4) to be
sufficiently small that for short times the terms
O(e°) in Eq. (26) can be neglected, then pro-
vided each period P, in Eq. (5) is less than the
circumference. 2w, of the unperturbed cylinder.
and there is at least one pair (7, j) for which the
period of the envelope of the corresponding two
terms in Eq. (5) exceeds 2w, then for short times
r(x, t) will be well approximated by the expres-
sion

h N

N
T+e -t 2 ci+e> e e sintkx+¢).

i=1 =1

~ Tt

(38)

where each a(k;) is negative. Hence, after a
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brief time interval, r(x, r) will be close, for all x,
to the constant,

N 12
1.2 N, 2
r.=|1+1¢ C;

i—1

=1+¢e-!

¢+ 0, (39)
i=1
and the body will be nearly indistinguishable
from a cylinder. In a subsequent time interval,
however, r(x, ¢) will be approximated by

N

2 12 2

b+re ) ¢,
|

et 2 flkkst)cos(h, — k)x + ¢ — @),

.er

(40)

where f is as in Eq. (34) and I' is the set of pairs
(i.j) with 1<i<j<N and 0<|k, - k;|<1; in
that interval, g(r), defined in Eq. (25), will
increase.

Let v be the minimum value that g(r) must
have for a departure of the body from cylindrical
shape to be easily observable after g(¢) has
decayed and started to increase. A reasonable
value for v would be, say, 0.05. The time ¢, at
which g(¢) attains the value v after an initial
decrease may be called the incubation time (for
casily observable growth of a perturbation that,
according to the linear equation (6), would only
decay).

Our second-order perturbation analysis gives
the following relation for 7, in the case in which
there is precisely one pair (i, j) for which (35)
holds:

e flk, kit,)=v. (41)

This relation implies that ¢, varies slowly, i.e.,
logarithmically, with ¢. For large k&, a(k) de-
creases with increasing k as —k'. However,
since, as we have noted, on the interval 0 <k <1
where a(k) >0, the maximum value of a(k) is
only 1/4. ¢, can be orders of magnitude longer
than the time required for the initial decay of

g(1).
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The first numerical experiment reported in
Section 5 is a case in which N =2 with &, =5 and
k, = 11/2 and hence the relation (35) holds with
each k,>1. As we shall see, the growth in
perturbations predicted by Eqs. (31)-(34)
proceeds until there is a time r* and values x* of
x for which lim,_,,._ r(x*,¢) =0. As a topological
change occurs at ¢ =r* that results in a trans-
formation of the original infinitely long body into
separated subbodies of finite length, we call ¢*
the “time of break-up”.

4. Conclusions from higher-order analyses

Observations made in the previous section can
be extended to a perturbation analysis of order n
by replacing (26) with

ra i) =1+ 2 w0 + (Y (42)
[=1

and keeping in Eq. (3) all terms of order £
Among the results obtained in this way is the
following important generalization of the conclu-
sion about initial data with k, > 1 for each i, but
0<lk,—k|<1 for a pair (i. j): If. in Eq. (5).
N =2 and

k,>1 fori=1,.... N, (43a)

but there is an integer n =2 and N integers m,
that are positive, negative. or zero, such that

> |m,|=n, (43b)

N

0< 2, mk, <1. (43¢)

i=1
then, after an initial decay, the perturbation will
grow as a sum of exponential terms. each of
which is of the form,

C e cos(kx + ¢) . (44a)

with C constant and
N N

¢=lnm+ > me . (44b)
i1
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The perturbation analysis that gives the above
result yields also the conclusion that if for a
given positive integer # it happens that, for every
N-tuple (m,,...,m,) of integers m, that are
positive, negative, or zero and have 1=
< n, there holds

E:\;l Im,

2 mikl

=1

>1, (45)

then expansions of order n and less in ¢ yield the
conclusion that g(¢) decays to zero exponentially
with increasing ¢.

The second numerical experiment described in
Section 5 concerns a case in which N=3, k,>1
for each i, and there is no pair (i, j) with 0<
|k, = k;| <1, but the wave numbers k, are such
that the relations (43a)-(43c) hold for n =3 and
an appropriate triplet (m,,m,, m;). It there
turns out that although a term entering in the
analysis at order three in & determines the early
stages of the growth of the perturbation (after its
initial decay), another term, entering at order
five in ¢, strongly influences the configuration of
the body at later times.

The conclusions of the higher-order perturba-
tion analysis for the case in which Eq. (5) holds
suggest conjectures about solutions of Eq. (3)
for a more general case in which u is an almost
periodic function with a Fourier spectrum that is
not necessarily finite.

To state the conjectures we recall some facts
about almost periodic functions on the real line.
For such functions the averages,

n(k) = M{u(x) e ™}

z+X
:;Lnlx%f u(x)e " dx , (46)
are finite-valued, independent of the choice of z,
and vanish for all but a countable number of
values k; of k. For these values we may write the
corresponding Fourier coefficients n; =n(k;) in
the form: n, =, €', where ¢; = |n,| is the am-
plitude associated with the wave number or
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Fourier exponent k. It is customary to write (cf.

[4,5]):

u(x) ~ > R ur e =7 c;sin(kx + ¢) . (47)
=1 i=1

where ¢ = ¢ + m/2. We remark in passing that

the amplitudes ¢, obey Parseval’s equality:

Z ¢ =M {u(x)’} . (48)

A set o of real numbers is said to form an
additive group if for each pair (k. A) of numbers
in & both k + A and « — A are in «. We write
Mod(u) for the smallest additive group of real
numbers that contains all the Fourier exponents
of u (cf. [5]). For our present purposes it is
useful to define a number k = k(u) by

k = inf{|x|| x € Mod(u). k #0} . (49)

We have now assembled the apparatus needed
to formulate the following two assertions about
solutions of Eq. (3) for which u in Eq. (4) is a

non-constant almost periodic function on
(—oc~oo);

Assertion 1. If

k(u)>1, (50)

then, for & sufficiently small, g(¢) decays to zero
monotonically.

Assertion 2. Suppose that k:(u) <1. i.e., that
Mod(u) contains at least one number « with

0<|k|<1. (51)

Then

(a) (weak assertion) g(r) does not approach 0 as ¢
increases,

(b) (strong assertion) break-up occurs in a finite
time, i.e., there is a * < = and points x* with
lim, . r(x*,1)=0.
These assertions are suggested by the per-
turbation analyses. _
As regards the first assertion: If k(u) > 1, then,
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for each positive integer N, the inequality (45)
holds for every N-tuple (k,, ..., ky) of Fourier
exponents k, of wu and every N-tuple
(m,,..., m,) of integers m, that are positive,
negative, or zero; therefore, whenever the sum-
mation in Eq. (47) is replaced by a sum over a
finite number of terms, for every positive integer
n a perturbation analysis of order n yields the
conclusion that g(¢) decays to zero exponentially
with increasing .

If the hypothesis of the second assertion is
assumed, then the relation (51) holds with « =
LN mk, (again with (k,,...,ky) a list of
Fourier exponents of 4 and each m, a positive,
negative or zero integer). If one now defines n
by Eq. (43b), then a perturbation analysis of
order n, based on a replacement of the right-
hand side of (47) by a sum over an arbitrarily
large number of terms, provided those with the
exponents (k,, ..., k,) are included, yields the
conclusion that, perhaps after an initial decay,
g(t) will grow exponentially.

Albeit we do not yet have rigorous proofs of
the assertions, the observations just made and
several numerical studies of the type reported
below have convinced us of the correctness of
Assertion 1 and the strong form of Assertion 2.

When u is P-periodic, Mod(u) is the set of all
positive, negative, or zero integral multiples of
k =2w/P. Hence the first assertion implies that,
as expected, if u is periodic with a period less
than the circumference, 2w, of the unperturbed
cylinder, then g(¢) decays to zero monotonically.
If u is periodic with a period exceeding 2, then,
according to the second assertion (and our per-
turbation analyses) g(r) does not approach 0,
and, according to the strong form of the asser-
tion. break-up occurs in a finite time.

For a quasiperiodic function « that is a sum of
a finite number of periodic functions with
periods P,,...,P,....P,, Mod(u) is just the
additive group generated by the N numbers &, =
2w/P,. and hence, when such a function u is
specified in Eq. (4), it is usually not difficult to
deduce definite implications of the two asser-
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tions; the exceptional cases are. of course. those
in which k(u)=1.

5. Numerical solutions

We have developed a family of space—time
finite element approximation schemes for obtain-
ing numerical solutions of Eq. (3) on sets of the
form M=[0,P])x[0.T) with the periodic
boundary conditions seen in Egs. (18) [6]. In the
approximation schemes the analogue V(t. P) of
the total volume V(. P) is constant in time, i.c.,
is, in an exact sense, a conserved quantity, and
the analogue lI~’(_t. P) of the surface area W(r. P)
decreases in time and hence serves as a
Lyapunov function.

Let us write

Qx, 1) =Lr(x, 1) (52)
and observe that Eq. (13) can be written.
H=[20+ Q)] "~

QR0+ ", . (53)

The approximation schemes employ a varia-
tional principle that rests upon the observation
that each solution of Eq. (3) that obeys Egs.
(18) corresponds to a pair (£2, H) of functions on
M that obey the variational equations.

(Q18) + QOH.20 +@)) '7g) =0.
(54a)

(HI&) = (2 +Q)) 17| &)
(2,20 +W)") '?lE) =0, (54b)

for all sufficiently smooth test functions ¢, ¢ on
M with

{0, =((P.1).

The L°-inner product of functions on [0, P] is
indicated here by the notation:

V. 5)y=¢&P.1). (55)

(vle) = | vinew.n dr. (56)

In the numerical studies reported below, we
have used initial data of the form seen in Egs.
(4) and (5) with the numbers P, in Eq. (5)
rationally related. The calculations were done
with the simplest of the finite element schemes
we have described in Ref. [6], namely that in
which 2 is approximated by functions piecewise
linear in x and ¢, and H is approximated by
functions piecewise linear in x and piecewise
constant in .

For the first numerical experiment the initial
data correspond to the function,

ro(x) = 1+5x 10 ?[sin(11x/2) +sin(5x)] ,  (57)

which has minimum period 4 and has k, =11/
2>1, k,=5>1, |k, —k,| =1/2<1. According
to the second-order perturbation analysis, the
two sinusoidal terms with &, >1 should decay
rapidly, and after this decay, which in the pres-
ent case lasts until approximately ¢ =2 X 1077,
r(x, t) should be, for a while, close to a cosine
function of x which has period 4w and an
amplitude growing as e*''*" with a(1/2) = 3/16.
For the finite element calculation the interval of
x values was chosen to have length 8, i.e., twice
the minimum period of r,, and was discretized
into 512 equal segments. For the time interval
0 <t<5x107" that contains the times of rapid
decay of g(t), the time step, At, was chosen to be
10 "*; during the early growth phase, i.e., for
5% 1077 <r=<28.05, Ar was set equal to 1077,
for 28.05 < =<28.27234 = r*, the time steps were
chosen so that Ar decreased rapidly as ¢ ap-
proached ¢*.

In Fig. 2 there are graphs of r versus x for
several values of . The initial data are shown in
Fig. 2a. In Fig. 2b at r=10"" remnants of the
terms 5 X 10 7sin(5x) and 5x 10 *sin(11x/2)
can be seen perturbing the function 7(-, t) given
by
Ax.t)y=r,+ £ f(5,11/2:¢) cos(x/2) (58)

with ¢*=2.5x10"" and f is as in (34). At
t=1.63x 1077, g(¢) attains its minimum value,
and at that time the difference between r(x, )
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Fig. 2. The radius r as a function of x at various 1 for r,(x) as
in Eq. (57): (a) t=0: (by =10 " (wavy line). r=1.63 x
10 % (e) t=0.1. 5. 10. 13 the dashed curve gives the results
of the second-order perturbation analysis at 7 = 15: (d) 7 = 28.
28.25, 28.27234.

and F(x.r) is not detectable on the scale em-
ployed for r of Fig. 2b. Fig. 2c contains graphs
for values of ¢ at which r(x. ) is close to Hx,t).
The earliest time at which the second-order
perturbation analysis gives results, plotted with
dashed curves, that are distinguishable from the
finite element results. on the scale of Fig. 2c, is
t=15. Fig. 2d contains graphs of r versus ¢ for ¢
close to the time ¢* of break-up. In the present
case, r(x*,t*) =0 at x* = 2w = 4mwn.

Fig. 3, which is drawn with equal scales for the
ordinate and the abscissa, shows profiles of the
axially symmetric body whose surface is given by
r = r(x, t). The initial configuration is seen in Fig.
3a. At a time t~ 10" the body is of cylindrical
shape to within an error of the order 0.1% in r.
If we set v = 0.05, then the finite-element results
yield 19.55 for the incubation time, i.e.. the first
value, ¢, of ¢ at which g(z) attains the value v
after g(¢) has decayed to its minimum value, and
hence the configuration seen in Fig. 3b is that at
the incubation time. In the present case the
incubation time ¢, accounts for about 69% of the
time t* required for the perturbed cylinder to
evolve into the “necklace of beads™ seen in Fig.
3t.

Table 1 contains for selected values of g the
times ¢ at which they are attained according to
the finite-element calculations () and the sec-

e

N A —

(bj

()

e)

(f) 77/ ~X/~\\ B 7777//&‘

Fig. 3. Configurations attained at selected times before the
break-up implied by the initial data of Eq. (57): (a) t =0; (b)
1=20:(cy1=23;(d) r =25.5: (e) £ = 28: (f) r = r* = 28.27234.

ond-order perturbation analysis (f,). We note
that here . and ¢, agree to within 5% until
g=0.2.

The two numerical experiments we report here
are cases in which the full nonlinear equation (3)
yields a finite value for the time t* of break-up,
but the linear equation (6) yields decay of the
perturbation without subsequent growth, and
hence no break-up. (The one previous numerical
study of nonlinear effects in the evolution of
longitudinal perturbations of a cylinder of which
we are aware is that of Marinis and Sekerka
[7. 8] and is based on a finite difference scheme.
For ecach numerical experiment they report, the

Table 1

Values of r at which specified values of g are obtained when
r. is as in Eq. (57): 1 is obtained from the finite element
calculation : ¢, from the second-order perturbation analysis

4 143 fp (te = tp)/tg)
0.0500 19.55 19.72 0.009
0.1061 23.05 23.74 0.030
(0.1959 25.55 27.81 0.050
(1.5396 28.05 32.4]1 0.155
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initial data are equivalent to a single sinusoidal
term with k<1 and hence the condition (43)
does not hold, the linear theory yields a finite
value for the time r* of break-up, and the
concept of an incubation time ¢, does not arise,
for there is no initial decay of the perturbation.
In the cited work, Marinis and Sekerka give
examples in which calculations are carried out up
to time ¢*, and it is reported that, as our analysis
and calculations also indicate, Eq. (3) yields a
smaller value of ¢* than Eq. (6).) In general.
linearization of Eq. (3) about the equilibrium
state in which r is independent of x leads one to
overestimate the time required for break-up or
to miss the phenomenon completely.

The solution corresponding to Eq. (57) pro-
vides an example of a case in which the sepa-
rated subbodies formed at time ¢* remain star
shaped with respect to a fixed point on the x-axis
for all +>t*, and hence the evolution of a
subbody can be studied for ¢>t* by re-
parameterizing its surface with spherical coordi-
nates. In the present case, the subbodies are
congruent and for ¢>t* are star shaped with
respect to the mid-points of successive values of
x*. The distance d from such a mid-point, x,,. t0
a point on the surface of the subbody containing
x, was expressed as a function of ¢ and the
colatitude ¢ from the x-axis. Results obtained
for t > t* employing a finite element program for
d(¢, t) analogous to that employed to calculate
r(x, t) for t <t* are shown in Fig. 4. The reader
will note that when /=7 —r*=0, 107, and 10 '
the subbody is convex, and that this convexity,
which is not present for 7 =1, returns before
{ =4. (Similar examples of such departure and
return to convexity were given by Courtney and
Lee [9] in their numerical study, with a finite
difference scheme, of the cylinderization of
plates by surface diffusion. a phenomenon that
gives rise to problems with different symmetry
than those we consider here. Experiments show-
ing the phenomenon of cylinderization in a
rolled nickel-tungsten alloy containing plate-like
inclusions were reported by Malzahn Kampe,

D
(/\
N
6\/\)

N

Fig. 4. Configurations attained at times ¢ =*+{ after the
break-up implied by the initial data of Eq. (57): (a) 7 =0; (b)
=10 % (@ i=10""; (d) i=1: (e) i=4; (f) F=10.

Courtney, and Leng [10].) In the theory of Egs.
(1) and (2), i.e., in the theory of motion by
Laplacian of mean curvature, there is no ana-
logue of Huisken’s theorem [11] in the theory of
motion by mean curvature to the effect that a
surface convex at one time is convex at all later
times.

The subbody configuration shown in Fig. 4 for
{ =10 is spherical in the sense that for it d is
constant in ¢ to 6 figures. The set of spheres
obtained in this way is the final equilibrium state
of the original perturbed cylinder.

The initial data for the second numerical
experiment correspond to the function

3
ro(x)=1+5x107° > sin(k,x) ,

i=1

k, =21/5, ky,=3, ky=3/2, (59)

which has minimum period 20w/3. In the present
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case, not only is each k, greater than 1, but, for
i#j, |k, — k;|>1. Hence first-order and second-
order perturbation analyses both yield the con-
clusion that the perturbation should decay. How-
ever, as k,+k,—k, =3/10, there is a triplet
m = (m,, m,, m,) such that (43b) and (43c) hold
with n=3. (In fact, m and —m with m=
(—1,1,1) are the only such triplets). We may
therefore conclude that a third-order analysis
will show that the perturbation grows after its
initial decay. In the early stages of this growth
phase, r as a function of x is expected to show 2
turning points in the interval 0<x <20w/3,
although the initial data show 28 turning points
in that interval. There are triplets m for which
(43b) and (43c) hold with n=4, eg., m=
(—=1,2, —1), but no such triplet yields an abso-
lute value for the sum in (43c) other than 3/10.
Among the triplets for which (43b) and (43c)
hold with n =5, there are some, e.g., m=
(=2,3,0), which yield 6/10 for the absolute value
of the sum in (43¢). As

a(0.6) = 0.2304 > (0.3) = 0.0819 (60)

terms appearing in a fifth-order perturbation
analysis with period 10w/3 will influence the
configuration at later times. When these terms
become important, r as a function of x is ex-
pected to show 4 turning points in the interval
0=x<20w/3.

For the finite element calculations employing
Eq. (59), the interval 0=<x=<20mw/3, whose
length equals the minimum period of r,. was
discretized into 512 equal segments; Af was
chosen to be 10™* for the time interval 0 <7<
5% 10~ that contains the times of rapid decay of
the modes in the initial data with & =21/5 and 3:
for ¢ in the interval 5 X 10"~ <1 <64.78, At was
set equal to 1077; in the interval 64.78 <1<
64.7862 = t*, Ar was chosen so as to decrease
rapidly as ¢* is approached.

A graph of Eq. (59) is shown in Fig. 5a. In
Figs. 5b-d, g(r) increases as ¢ increases. The
minimum value of g is attained at a time close to
t =12, the earliest time for which r as a function
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Fig. 5. The radius 7 as a function of x at various f with ry(x)
as in Eq. (59): (a) =0 (g=0.1393); (b} 1=12 (g=2.07 x
107Y). r=14 (g=2.49x107%), =16 (g=2.97x107"); (¢
1=25 (g=7.58x107"), 1=27.5 (g=1.06x10""), 1=30
(g=1.55%10 %) (d) 1=62.5 (g=0.2107), t=64.5 (g=
0.5027), 1 =1* = 64.7862.

of x is shown in Fig. 5b. (At times between 0 and
=12, g decays.) The finite element calculation
confirms the expectation that when the decay
ceases, the terms in the third-order perturbation
analysis with wave number k,+k, —k, =3/10
give 2 turning points to the graph of r versus x
(for 0 =<x <20m/3). The terms in the fifth-order
perturbation analysis with wave number 3k, —
2k, = 6/10 give 4 turning points to r versus x at
the times for which such graphs are shown in
Fig. 5¢c. As we see in Fig. 5d, the 4 turning points
remain present until r=r*.

Calculated profiles of the body for selected
times between ¢ =0 and ¢* are shown in Fig. 6.
The range of x is again 0 < x <20w/3. The initial
profile is seen in Fig. 6a. For each ¢ for which
results are shown in Figs. 5 and 6, the corre-
sponding value of g is given in the figure caption.
If we again set v =0.05, then we here have
t, =57, and the incubation time ¢, is about 88%
of the break-up time *.

In this numerical experiment, the break-up at
1=1t* again results in subbodies that are con-
gruent and star shaped. In Fig. 6f, which shows
the profile at time t*, we see that r has a local
minimum with r>0 at x_ . . =x*+10%/3.
Using the point (x, 7) = (X in 10c» 0) as the origin
of a spherical coordinate system (with the x-axis
again the polar axis) we followed the evolution
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(c)

(d)

Fig. 6. Configurations attained at selected times before the
first break-up implied by the initial data of Eq. (59): (a)r=0
(£=0.1393): (b) 1 =57 (g =0.0481); (c) t = 60 (g =0.1035);
(d) r=62.5 (g=0.2107): (e) t=64.5 (g=0.5027); (f) 1=
t* =64.7862.

of a subbody for +>¢* until a second time of
break-up, £**. The results are shown in Fig. 7.
where the range of x is from x] =2.74071 to
x; =x{ +20m/3. At time = ¢** =* +0.02724,
the subbody formed at ¢=1t* breaks into two
congruent subbodies. The evolution of these two
subbodies was followed for r>¢** by re-
parameterizing the surface of each using a
spherical coordinate system with origin on the
x-axis at (dimensionless) distance 5 from the
nearest point such that (x, r) = (x**, 0) with x**
obeying r(x**, t**) = 0. The results obtained this
way for t>1**, seen at the bottom in Fig. 7.
show that the closed surfaces formed at r=¢**
evolve to form spheres after losing and regaining
the convexity they have at /**+. We found that
at the time r=¢**+8 cach of these closed
surfaces is close to a sphere in the sense that H/2
at each of the 401 mesh points employed in its
discretization equals, to within 6 significant fig-

Fig. 7. Configurations attained at times after the time * of
the first break-up implied by the initial data of Eq. (59).
From the top down: r=r*+7 with f=0, 107*, 2x 1077,
2.724x 107°. At the bottom are shown configurations at
times £ = ** + with =0, 10 ", §x 107", 2, 8.

ures, (41-r/3V)”3 with V its volume. Thus, in this
case, the final equilibrium state of the body with
the profile seen in Fig. 6a is an infinite collection
of separated spheres, each of which has volume

V=(PIM)v), (61)

where (v) is as in Egs. (21) and (23), P =207/3
is the minimum period of u, and M =2 is the
number of congruent subbodies formed in an
interval of length P at the final break-up time
[

In the two numerical experiments we have
discussed here, the final break-up resulting from
a perturbation with the periods P, in Eq. (5)
commensurate gives rise to congruent subbodies.
(The volume of the spheres forming the equilib-
rium state attained at the end of the first numeri-
cal experiment is given by Eq. (61) with P=4x
and M =1 the number of congruent bodies
formed in an interval of length P at time t*.)
However, it is not difficult to show that there is
not a general rule to the effect that when the
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periods P; in Eq. (5) are both commensurate and
such that the final equilibrium state of the
perturbed cylinder is a necklace of separated
spheres, these spheres are congruent. Examples
of perturbations evolving into equilibrium states
made up of spheres not all congruent will be
discussed in a subsequent paper.
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