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Abstract The purpose of this paper is to discuss the construction of a linear operator,
referred to as the bubble transform, which maps scalar functions defined on Ω ⊂ R

n

into a collection of functions with local support. In fact, for a given simplicial trian-
gulation T of Ω , the associated bubble transform BT produces a decomposition of
functions on Ω into a sum of functions with support on the corresponding macroele-
ments. The transform is bounded in both L2 and the Sobolev space H1, it is local, and
it preserves the corresponding continuous piecewise polynomial spaces. As a conse-
quence, this transform is a useful tool for constructing local projection operators into
finite element spaces such that the appropriate operator norms are bounded indepen-
dently of polynomial degree. The transform is basically constructed by two families
of operators, local averaging operators and rational trace preserving cutoff operators.
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1 Introduction

Let Ω be a bounded polyhedral domain in R
n and T a fixed simplicial triangulation of

Ω . That is, T consists of n-simplexes, and their union is the closure of Ω . Furthermore,
the intersection of any two simplexes is either empty or a common subsimplex of
each. The purpose of this paper is to construct a decomposition of scalar functions
on Ω into a sum of functions with local support with respect to the triangulation T .
The decomposition is defined by a linear map B = BT , referred to as the bubble
transform, which maps the Sobolev space H1(Ω) boundedly into a sum of local spaces
of the form H̊1(Ω f ), where f runs over all the subsimplexes of T and Ω f denotes
appropriate macroelements associated with f . Here, the space H̊1(Ω f ) consists of all
functions in H1(Ω f ), which are zero on the part of the boundary of Ω f , which is in
the interior of Ω . The map B is composed of local maps B f such that any u ∈ H1(Ω)

admits the decomposition

u =
∑

f

B f u.

The maps B f : H1(Ω) → H̊1(Ω f ) are local and bounded linear maps with the
property that for all values of r ≥ 1, if u is a continuous piecewise polynomial of
degree at most r with respect to the triangulationT , then B f u is a continuous piecewise
polynomial of degree at most r with respect to the restriction of the triangulation to
Ω f . Thus, the map B is independent of a particular polynomial degree r and so does
not depend on a particular finite element space.

To motivate the construction of the bubble transform, let us recall that the construc-
tion of projection operators is a key tool for deriving stability results and convergence
estimates for various finite element methods. In particular, for the analysis of mixed
finite element methods, projection operators which commute with differential opera-
tors have been a central feature since the beginning of such analysis cf. [7,8]. Another
setting where such operators potentially would be very useful, but hard to construct, is
the analysis of the so-called p-version of the finite element method, i.e., in the setting
where we are interested in convergence properties as the polynomial degree of the
finite element spaces increases. For such investigations, the construction of projection
operators which admit uniform bounds with respect to polynomial degree represents
a main challenge. In fact, so far, such constructions have appeared to be substantially
more difficult than the more standard analysis of the finite element method, where the
focus is on convergence with respect to mesh refinement.

Pioneering results on the convergence of the p-method applied to second-order
elliptic problems in two space dimensions were derived by Babuška and Suri [4]. An
important ingredient in their analysis was the construction of a polynomial preserving
extension operator. A generalization of the construction to three space dimensions in
the tetrahedral case can be found in [20], while hp-stable quasi-interpolation in the case
of low regularity is studied in [19]. The importance of polynomial preserving exten-
sion operators for the Maxwell equations was argued in [10]. Further developments of
commuting extension operators for the de Rham complex in three space dimensions
are for example presented in [11–14]. These constructions have been used to establish
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a number of convergence results for the p-method, not only for boundary value prob-
lems, but also for eigenvalue problems [6]. A crucial step in this analysis is the use of
so-called projection-based interpolation operators, cf. [5, Chapter3] and [10,11,17].
However, this development has not led to local projection operators which are uni-
formly bounded in the appropriate Sobolev norms. Some extra regularity seems to be
necessary, cf. [6, Section 6] or [17, Section 4], and as a consequence, the theory for the
p-method is far more technical than the corresponding theory for the h-method. This
complexity represents a main obstacle for generalizing the theory for the p-method
in various directions. The bubble transform introduced in this paper represents a new
tool, which will be useful to overcome some of these difficulties. In particular, the
construction of projection operators onto the spaces of continuous piecewise polyno-
mials, which are uniformly bounded in H1 with respect to the polynomial degree, is
an immediate consequence.

In practical computations, improved accuracy is often achieved by combining
increased polynomial degree and mesh refinement, an approach frequently referred to
as the hp-finite element method. However, throughout this paper, we consider the tri-
angulation T to be fixed. We let Δ j (T ) denote the set of subsimplexes of dimension
j of the triangulation T , while

Δ(T ) =
n⋃

j=0

Δ j (T )

is the set of all subsimplexes. Correspondingly, if f ∈ Δ(T ), then Δ( f ) denotes the
set of subsimplexes of f . We denote by Wr (T ) ⊂ H1(Ω) the space of continuous
piecewise polynomials of degree r with respect to the triangulation T and recall that
the spaces Wr (T ) admit degrees of freedom of the form

∫

f
u η, η ∈ Pr−1−dim f ( f ), f ∈ Δ(T ), (1.1)

where P j ( f ) denotes the set of polynomials of degree j on f . These degrees of
freedom uniquely determine an element in Wr (T ). In fact, the degrees of freedom
associated with a given simplex f ∈ Δ(T ) uniquely determine elements in P̊r ( f ),
the space of polynomials of degree r on f which vanish on the boundary ∂ f .

For each f ∈ Δ(T ), we let Ω f be the macroelement consisting of the union of
the elements of T containing f , i.e.,

Ω f =
⋃

{T | T ∈ T , f ∈ Δ(T ) },

while T f is the restriction of the triangulation T to Ω f . Two such macroelements in
the case of two space dimensions are illustrated below in Fig. 1 .

It is a consequence of the properties of the degrees of freedom that for each f ∈
Δ(T ), there exists an extension operator E f : P̊r ( f ) → W̊r (T f ). Here, W̊r (T f )

consists of all functions in Wr (T f ) which are identically zero on Ω\Ω f . Furthermore,
the space Wr (T ) can be represented by a direct sum,
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ba
Fig. 1 a Vertex macroelement. b Edge macroelement

Wr (T ) =
⊕

f ∈Δ(T )

E f (P̊r ( f )). (1.2)

Here, the symbol
⊕

has the interpretation of internal direct sum. However, in the rest
of this paper, we will find it convenient to use this symbol to denote the external direct
sum, which can be identified with the direct product. As a consequence,

⊕

f ∈Δ(T )

E f (P̊r ( f )) ⊂
⊕

f ∈Δ(T )

W̊r (T f ) ⊂
⊕

f ∈Δ(T )

H̊1(Ω f ).

The extension operators E f introduced above, defined from the degrees of freedom,
will depend on the space Wr (T ). In particular, they depend on the polynomial degree
r . However, it is a key observation that the macroelements Ω f only depend on the
triangulation T , and not on r . So for all r , there exists a decomposition of the space
Wr (T ) of the form (1.2), i.e., into a sum of subspaces of W̊r (T f ). Furthermore,
the geometric structure of these decompositions, represented by the simplexes f ∈
Δ(T ) and the associated macroelements Ω f , is independent of r , and this indicates
that a corresponding decomposition may also exist for the space H1(Ω) itself. More
precisely, the ansatz is a decomposition of any u ∈ H1(Ω) of the form u = ∑

f u f ,

where u f ∈ H̊1(Ω f ). The bubble transform, B = BT , which we will introduce
below, produces such a decomposition. As noted above, the transform is a bounded
linear operator

B : H1(Ω) →
⊕

f ∈Δ(T )

H̊1(Ω f )

that preserves the piecewise polynomial spaces in the sense that if u ∈ Wr (T ), then
each component of the transform, u f = B f u, is in W̊r (T f ) ⊂ H̊1(Ω f ). In fact, B is
also bounded in L2. The transform depends on the given triangulation T , but there is
no finite element space present in the construction.

We should note that once the transformation B is shown to exist, the construction
of local and uniformly bounded projections onto the spaces Wr (T ), with a bound
independent of r , is straightforward. We just project each component B f u ∈ H̊1(Ω f )
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by a local projection into the subspace W̊r (T f ). Since each local projection can be
chosen to have norm equal to one, the global operator mapping u to the local pro-
jections of B f u will be bounded independently of the degree r . Furthermore, this
process will lead to a projection operator since the transform preserves continuous
piecewise polynomials. In fact, there are similarities between the construction of pro-
jections just outlined, and the quasi-interpolation studied in [19], since both operators
are constructed from components with local support. However, for the construction
presented below, the local components B f u, produced by the bubble transform at
“the continuous level,” are a key ingredient. In contrast, for the construction given
in [19], the local components are computed directly from local projections of the
function u into the given finite element space, in the spirit of the Clément opera-
tor, and these local projections depend on the polynomial degree. Therefore, in this
case, p-stability can only be obtained by tracking the dependence on the polynomial
degree.

In fact, unisolvent degrees of freedom, generalizing (1.1), exist for all the finite
element spaces of differential forms, referred to as PrΛ

k(T ) and P−
r Λk(T ) and

studied in [1,3]. As long as the triangulation T is fixed, all these spaces admit degrees
of freedom with a common geometric structure, independent of the polynomial degree
r . Therefore, for all these spaces, there exist degrees of freedom generalizing (1.1) and
local decompositions similar to (1.2). So far, these decompositions have been utilized
to derive basis functions in the general setting, cf. [2], and to construct canonical, but
unbounded, local projections [1, Section 5.2]. By combining these canonical projec-
tions with appropriate smoothing operators, bounded, but nonlocal projections which
commute with the exterior derivative were also constructed in [9,22] and [1, Sec-
tion 5.4]. Furthermore, in [16] and [15], local decompositions and a double complex
structure were the main tools to obtain local and bounded cochain projections for the
spaces PrΛ

k(T ) and P−
r Λk(T ). However, none of the projections just described

will admit bounds which are independent of the polynomial degree r , while the con-
struction of projections with such bounds is almost immediate from the properties
of the bubble transform, cf. Sect. 4.3 below. Therefore, it is our ambition to gener-
alize the construction of the bubble transform given below to differential forms in
any dimension, such that the transform is bounded in the appropriate Sobolev norms,
it commutes with the exterior derivative, and it preserves the finite element spaces
PrΛ

k(T ) and P−
r Λk(T ). However, in the rest of this paper, we restrict the dis-

cussion to 0-forms, i.e., to ordinary scalar valued functions defined on Ω ⊂ R
n and

use the simpler notation Wr (T ) rather than PrΛ
0(T ) = P−

r Λ0(T ) to denote the
piecewise polynomial space of degree ≤ r on T .

The present paper is organized as follows. In Sect. 2, we present the main properties
of the transform and introduce some useful notation. The key tools needed for the
construction are introduced in Sect. 3. In particular, for any f ∈ Δ(T ), we introduce
a local average operator, A f , which is used to obtain local approximations near f .
For any u ∈ L2(Ω), the functions A f u are smooth away from f , and a Hardy-
type inequality, cf. [21], is used to characterize the error of the approximation (cf.
Lemma 3.4). The main results of the paper are derived in Sect. 4, where the Hardy-
type estimates are used as a fundamental tool to show that the components B f u are
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elements of H̊1(Ω f ) (cf. Lemma 4.3). However, the verification of some of the more
technical estimates is delayed until Sect. 5.

2 Preliminaries

We will use H1(Ω) to denote the Sobolev space of all functions in L2(Ω), which also
have the components of the gradient in L2, and ‖ · ‖1 is the corresponding norm. If
Ω ′ ⊂ Ω , then ‖ · ‖1,Ω ′ denotes the H1 norm with respect to Ω ′. The corresponding
notation for the L2-norms is ‖ · ‖0 and ‖ · ‖0,Ω ′ . Furthermore, if Ω f is a macroelement
associated with f ∈ Δ(T ), then

H̊1(Ω f ) = {v ∈ H1(Ω f ) | E̊ f v ∈ H1(Ω) },

where E̊ f : L2(Ω f ) → L2(Ω) denotes the extension by zero outside Ω f . In addition
to the macroelements Ω f , we also introduce the extended macroelements, Ωe

f , given
by Ωe

f = ∪{Ωg | g ∈ Δ0(T ) } (Fig. 2) .
It is a simple observation that if g ∈ Δ( f ), then Ωg ⊃ Ω f , while Ωe

g ⊂ Ωe
f .

2.1 An Overview of the Construction

The construction of the transformation B will be done inductively with respect to
the dimension of f ∈ Δ(T ). We are seeking a decomposition of the space H1(Ω)

with properties similar to (1.2). More precisely, we will establish that any function
u ∈ H1(Ω) can be decomposed into a sum, u = ∑

f u f , where each component u f ∈
H̊1(Ω f ). The map u �→ u f will be denoted B f , and the collection of all these maps
can be seen as a linear transformation B = BT : H1(Ω) → ⊕

f ∈Δ(T ) H̊1(Ω f )

with the following properties:

(i) u = ∑
f B f u, where the component map B f is a local operator mapping

H1(Ωe
f ) to H̊1(Ω f ).

(ii) B is bounded, i.e., there is a constant c, depending on the triangulation T , such
that

∑

f

‖B f u‖2
1,Ω f

≤ c‖u‖2
1, u ∈ H1(Ω).

Fig. 2 The extended
macroelement Ωe

f for
f = [y0, y1] and n = 2

fy0 y1
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(iii) B preserves the piecewise polynomial spaces in the sense that

u ∈ Wr (T ) �⇒ B f u ∈ W̊r (T f ).

In the special case when n = 1 and Ω is an interval, say Ω = (0, 1), a transform with
the above properties is easy to construct. In this case, T is simply a partition of the
form

0 = x0 < x1 < · · · < xN = 1.

The set Δ0(T ) is the set of vertices {x j }, while Δ1(T ) is the set of intervals of the
form (x j−1, x j ). If f = x j ∈ Δ0(T ), then Ω f = (x j−1, x j+1), with an obvious
modification near the boundary, while Ω f = f for f ∈ Δ1(T ). Let λi ∈ W1(T ) be
the standard piecewise linear “hat functions,” characterized by λi (x j ) = δi, j . For all
f = x j ∈ Δ0(T ), we let B f u = u(x j )λ j . By construction, B f u has support in Ω f .
Furthermore, the function

u1 = u −
∑

f ∈Δ0(T )

B f u

vanishes at all the vertices x j . If f = (x j−1, x j ) ∈ Δ1(T ) then Ω f = f . Therefore,
if for all f ∈ Δ1(T ), we let B f u = u1| f when x ∈ f and zero otherwise, then
B f u ∈ H̊1(Ω f ), and u = ∑

f ∈Δ(T ) B f u. In fact, it is straightforward to check that
all the properties (i)–(iii) hold for this construction.

In general, for n > 1, the restriction of u to a simplex f ∈ Δ(T ), denoted tr f u,
may not be well defined for u ∈ H1(Ω). Therefore, the simple construction above
cannot be directly generalized to higher dimensions. For example, when f is the vertex
x0, to define B f u, we introduce the λ0-weighted average of u given by

U (x) = 1

|Ω f |
∫

Ω f

u(λ0(x)x0 + [1 − λ0(x)]y) dy,

where λ0(x) is now the n-dimensional piecewise linear function equal to one at x0 and
zero at all other vertices. Note that if u is well defined at x0, then U (x0) = u(x0), while
if x ∈ Ω \ Ω f , then U (x) is just the average of u over Ω f . In general, for x �= x0,
U (x) has pointwise values. Note that U (x) depends only on λ0(x), so is constant on
level sets of λ0(x).

In fact, if we replace λ0(x) by a variable λ taking values in [0, 1] in the definition
of U (x) above, then we may view U as a function of λ, which we will call (A f u)(λ).
Hence, (A f u)(λ0(x)) = U (x). It is easy to check that if u is a piecewise polynomial
in x , then A f u is a polynomial in λ. Finally, if we define

(B f u)(x) = (A f u)(λ0(x)) − [1 − λ0(x)](A f u)(0), (2.1)

then B f u will have support on Ω f . The averaging operator A f just introduced is
closely related to a corresponding operator introduced in [23], where it is referred to
as the “spider-averaging operator.” However, a difference is that the operator in [23]
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Fig. 3 The level set
λ0(x) = 1/4 in the
macroelement Ωx0

x0

is defined from averages with respect to level curves, while the present operator uses
averages with respect to the domain bounded by the level curves (Fig. 3).

For simplexes f of higher dimension, the operators B f will be constructed recur-
sively by a process of the form

B f u = C f

⎛

⎜⎜⎝u −
∑

g∈Δ(T )

dim g<dim f

Bgu

⎞

⎟⎟⎠,

where C f is a local trace preserving cutoff operator, i.e., designed such that C f v is
close to v near f , but at the same time C f v vanishes outside Ω f . To also have C f v

in H1 will in general require compatibility conditions of v on ∂ f ⊂ ∂Ω f . We will
return to the precise definition of the operators B f and C f in Sect. 4 below.

2.2 Barycentric Coordinates

If x j ∈ Δ0(T ) is a vertex, then λ j (x) ∈ P1(T ) is the corresponding barycentric
coordinate, extended by zero outside the corresponding macroelement. If f ∈ Δm(T )

has vertices x0, x1, . . . , xm , then we write [x0, x1, . . . , xm] to denote convex combi-
nations, i.e.,

f = [x0, x1, . . . , xm] =
⎧
⎨

⎩ x =
m∑

j=0

α j x j |
∑

j

α j = 1, α j ≥ 0

⎫
⎬

⎭.

The corresponding vector field (λ0, λ1, . . . , λm) with values in R
m+1 is denoted λ f .

Hence, the map x �→ λ f (x), restricted to f , is a one-one map of f onto Sm , where

Sm =
⎧
⎨

⎩ λ = (λ0, . . . , λm) ∈ R
m+1 |

m∑

j=0

λ j = 1, λ j ≥ 0

⎫
⎬

⎭.
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Fig. 4 The map x �→ λ f (x) for n = 2 and m = 1

To the simplex Sm , we associate the simplex S c
m = [Sm, 0], given by

S c
m =

⎧
⎨

⎩ λ = (λ0, . . . , λm) ∈ R
m+1 |

m∑

j=0

λ j ≤ 1, λ j ≥ 0

⎫
⎬

⎭.

Hence, Sm is an m dimensional subsimplex of S c
m . For λ ∈ S c

m , we define

b(λ) = bm(λ) = 1 −
m∑

j=0

λ j ,

i.e., corresponding to the barycentric coordinate of the origin.
If f = [x0, x1, . . . , xm] ∈ Δm(T ), then the macroelements Ω f and Ωe

f are given
by

Ω f =
m⋂

j=0

Ωx j and Ωe
f =

m⋃

j=0

Ωx j .

The map x �→ λ f (x) maps Ω to S c
m , f to Sm , and the boundary ∂Ω f to ∂S c

m \Sm ,
cf. Fig. 4. In particular, Ω \ Ωe

f is mapped to the origin.
For each f = [x0, x1, . . . , xm] ∈ Δm(T ), we also introduce the piecewise linear

function ρ f on Ω by

ρ f (x) = 1 −
m∑

j=0

λ j (x) = b(λ f (x)).

As a consequence, the simplex f can be characterized as the null set of ρ f , while
ρ f ≡ 1 on Ω \ Ωe

f .
For each integer m ≥ 0, we let Im be the set of all subindexes of (0, 1, . . . , m), i.e.,

Im corresponds to all subsets of {0, 1, . . . , m}, where the ordering of the elements is
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disregarded. In particular, we count the empty set as an element of Im , such that Im

is a finite set with 2m+1 elements. We will use |I | to denote the cardinality of I . If
0 ≤ i ≤ m is an integer, then there are exactly 2m elements of Im which contain i ,
and 2m elements which do not contain i . For any I ∈ Im , we define PI : S c

m → S c
m

by

(PI λ)i =
{

0, i ∈ I,
λi , i /∈ I.

Hence, if I is nonempty, then PI maps the simplex S c
m to a portion of its boundary.

In particular, if I = {0, 1, . . . , m}, then PI maps S c
m into the origin of R

m+1, while
PI is the identity if I is the empty set. Finally, for any f ∈ Δm(T ) and I ∈ Im we
let f (I ) ∈ Δ( f ) denote the corresponding subsimplex of f given by f (I ) = {x ∈
f | PI λ f (x) = λ f (x) }. Hence, if I is the empty set, then f (I ) = f , while f (I ) is
the empty subsimplex of f if I = (0, 1, . . . , m) ∈ Im .

3 Tools for the Construction

The key tools for the construction are two families of operators, referred to as trace
preserving cutoff operators and local averaging operators.

3.1 The Trace Preserving Cutoff Operator on S c
m

Let w be a real-valued function defined on S c
m . For the discussion in this section, we

will assume that w is sufficiently regular to justify the operations below in a pointwise
sense. We will introduce an operator K = Km , which maps such functions w into a
new function on S c

m , with the property that the trace on Sm is preserved, but such that
the trace of Kmw vanishes on the rest of the boundary of S c

m . In fact, the operator Km

strongly resembles the extension operators discussed in [12], where the construction
utilizes correction terms associated with the various subsimplexes of S c

m . However,
in the present setting, where we will be working with functions which may not have a
trace on Sm , trace preserving operators seem to be a more useful concept. The operator
Km can be viewed as a sum of pullbacks, weighted by rational coefficients. However,
the operator Km preserves polynomials in an appropriate sense, cf. Lemma 3.1 below.
The operator Km is defined by

Kmw(λ) =
∑

I∈Im

(−1)|I |K I
mw =

∑

I∈Im

(−1)|I | b(λ)

b(PI λ)
w(PI λ), λ ∈ S c

m .

When m = 0, the set I0 has only two elements, the empty set and (0). Therefore, the
function K0 maps functions w = w(λ), defined on S c

0 = [0, 1], to

K0w(λ) = w(λ) − (1 − λ)w(0),
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such that (2.1) can be rewritten as B f u = (K0 ◦ A f )u(λ0(·)). We observe that
K0w(1) = w(1), K0w(0) = 0, and if w ∈ Pr then K0w ∈ Pr . Formally, we
can also argue that trSm (w − Kmw) = 0 for m greater than zero. This easily follows
since all the terms in the sum defining Km , except for the one corresponding to I = ∅,
i.e., I is the empty set, have vanishing trace on Sm due to the appearance of the term
b(λ) in the numerator. A corresponding argument also shows that the trace of Kmw

vanishes on the rest of the boundary of S c
m . Recall that the boundary of S c

m consists
of Sm and the subsimplexes

Sm,i = {λ ∈ S c
m | λi = 0 } i = 0, 1, . . . , m.

Furthermore, for a fixed i , let I ∈ Im be any index such that i /∈ I , and let I ′ ∈ Im

be given as I ′ = I ∪ {i}. For λ ∈ Sm,i , we have PI ′λ = PI λ, and therefore,

K I
mw(λ) − K I ′

m w(λ) = b(λ)

b(PI λ)
w(PI λ) − b(λ)

b(PI ′λ)
w(PI ′λ) = 0.

However, for a fixed i , the set Im is exactly equal to the union of indexes of the form
I and I ′. As a consequence, we conclude that Kmw is identically zero on Sm,i and
hence on ∂S c

m \ Sm . In particular, Kmw is zero at the origin.
The operator Km preserves polynomials in the following sense.

Lemma 3.1 Assume that w ∈ Pr (S c
m) with trSm w ∈ P̊r (Sm). Then Kmw ∈

Pr (S c
m), trSm (Kmw − w) = 0, and tr∂S c

m\Sm Kmw = 0.

Proof Assume that w ∈ Pr (S c
m), such that trSm w vanishes on the boundary of Sm .

To show that Kmw ∈ Pr (S c
m), we consider each term in the sum defining Kmw of

the form

K I
mw(λ) := b(λ)

b(PI λ)
w(PI λ).

If I = ∅, then K I
mw = w, while if I is the maximum set, I = (0, 1, . . . , m), then

K I
mw(λ) = b(λ)w(0, . . . , 0) which is linear. Therefore, it is enough to consider the

other choices of I , i.e., when K I
mw has an essential rational coefficient b(λ)/b(PI λ).

Note that since trSm w vanishes on the boundary of Sm , we can conclude that
w(PI λ) vanishes on {λ ∈ S c

m | b(PI λ) = 0 }. This means that w(PI λ) must be of the
form w(PI λ) = b(PI λ)w′(PI λ), where w′ ∈ Pr−1(Sm,I ). Here

Sm,I = {λ ∈ S c
m | PI λ = λ }.

As a consequence, K I
mw = b(λ)w′(PI λ) ∈ Pr (S c

m). Furthermore, trSm Kmw

= trSm w since all the terms K I
mw have vanishing trace on Sm , except for the one

corresponding to I = ∅. Finally, the property that the trace of Kmw vanishes on the
rest of the boundary of S c

m follows from the discussion given above. ��
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3.2 The Local Averaging Operator

Throughout this section, we will assume that f = [x0, x1, . . . , xm] ∈ Δm(T ), where
we assume that 0 ≤ m < n. For v ∈ L2(Ω f ) and λ ∈ S c

m , we let A f v(λ) be given
by

A f v(λ) =
∫
−
Ω f

v

⎛

⎝y +
m∑

j=0

λ j (x j − y)

⎞

⎠ dy,

where the slash through an integral means an average, i.e.,
∫
Ω f
− should be interpreted as

|Ω f |−1
∫
Ω f

. This operator is a generalization of the corresponding operator introduced
in Section 2 above in the special case when f is a vertex. If λ ∈ Sm , then the integrand
is independent of y, and therefore, A f v(λ) = v(x), where x = ∑

j λ j x j ∈ f .
Hence, at least formally, the operator λ∗

f ◦ A f , which is given by v �→ A f v(λ f (·)),
is the identity operator on f . We will find it convenient to introduce the function
G = Gm : S c

m × Ω f → Ω f given by

Gm(λ, y) = y +
m∑

j=0

λ j (x j − y) =
m∑

j=0

λ j x j + b(λ)y, λ ∈ S c
m, y ∈ Ω f ,

so that the operator A f can be expressed as

A f v(λ) =
∫
−
Ω f

v(Gm(λ, y)) dy = |Ω f |−1
∑

T ∈T f

∫

T
v(Gm(λ, y)) dy.

In fact, we observe that for each y ∈ Ω f , the map Gm(·, y) maps S c
m to Ω f , and the

operator A f is simply the average with respect to y of the pullbacks with respect to these
maps. It is a property of the map Gm that if y ∈ T , where T ∈ T f , then Gm(λ, y) ∈ T .

In fact, Gm(λ, y) is a convex combination of y and
(∑

i λi
)−1 ∑

i λi xi ∈ f .
A key property of the operator A f is that it maps the piecewise polynomial spaces

Wr (T f ) into the polynomial spaces Pr (S c
m).

Lemma 3.2 If v ∈ Wr (T ), then A f v ∈ Pr (S c
m). Furthermore, if λ ∈ Sm, then

A f v(λ) = v(x), where x = ∑m
j=0 λ j x j ∈ f .

Proof If v ∈ Wr (T ), then the restriction of v to each triangle in T f is a polyno-
mial of degree r . Furthermore, the map y �→ Gm(λ, y) maps each T to itself and
depends linearly on λ. Therefore, v(Gm(λ, y)) ∈ Pr (S c

m) for each fixed y. Taking
the average over Ω f with respect to y preserves this property, so A f v ∈ Pr (S c

m).
The second result follows from the fact that the integrand is independent of y and
equal to v(

∑
j λ j x j ), for λ ∈ Sm . ��

We will also need mapping properties of the operator λ∗
f ◦ A f . Since λ f maps all of Ω

into S c
m , the operator λ∗

f ◦ A f maps a function v defined on L2(Ω f ) to A f v(λ f (·))
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defined on all of Ω . It is a key result that this operator is bounded in L2 and H1. In
fact, we even have the following.

Lemma 3.3 Assume that f ∈ Δm(T ) and I ∈ Im, with m < n. The operator
λ∗

f ◦ P∗
I ◦ A f is bounded as an operator from L2(Ω f ) to L2(Ω), as well as from

H1(Ω f ) to H1(Ω).

The arguments involved to establish these boundedness results are slightly more
technical than the discussion above. Therefore, we will delay the proof of this lemma
and the proofs of the next three results below to the final section of the paper.

As we have observed above, the operator λ∗
f ◦ A f formally preserves traces on f .

A weak formulation of this result is expressed by the following Hardy-type inequality.

Lemma 3.4 Assume that f ∈ Δm(T ) with m < n. Then

∫

Ω

ρ−2
f (x)|v(x) − A f v(λ f (x))|2 dx ≤ c‖v‖2

1, v ∈ H1(Ω),

where the constant c = c(Ω,T ) is independent of v.

Since the function ρ f (x) is identically zero on f , this result shows that for any
v ∈ H1(Ω f ) “the error,” v − A f v, has a decay property near f .

The next result shows that the operator λ∗
f ◦P∗

I ◦A f preserves such decay properties.

Lemma 3.5 Assume that f ∈ Δm(T ) and I ∈ Im, with m < n, and let g = f (I ) ∈
Δ( f ). There is a constant c = c(Ω,T ), independent of v, such that

∫

Ω

ρ−2
g (x)|A f v(PI λ f (x))|2 dx ≤ c

[ ∫

Ω

ρ−2
g (x)|v(x)|2 dx + ‖gradv‖2

0

]

for all v ∈ H1(Ω), such that ρ−1
g v ∈ L2(Ω).

Finally, the following lemma will be a key ingredient in the proof of Lemma 4.2 to
follow.

Lemma 3.6 Assume that f = [x0, x1, . . . xm] ∈ Δm(T ) and I ∈ Im, with m < n
and such that 0 /∈ I . Furthermore, let I ′ = (0, I ). Then

∫

Ω

λ−2
0 (x)[A f v(PI λ f (x)) − A f v(PI ′λ f (x))]2 dx ≤ c‖gradv‖2

0,Ω f
, v ∈ H1(Ω f ),

where the constant c = c(Ω,T ) is independent of v.

We remark that A f v(PI λ f (x))− A f v(PI ′λ f (x)) = 0 outside Ωx0 . Therefore, the
integrand in the integral above should be considered to be zero outside Ωx0 .

4 Precise Definitions and Main Results

The transform B = BT will be defined by an inductive process which we now present.
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4.1 Definition of the Transform

We will define the map B by a recursion with respect to the dimension of subsimplexes
f ∈ Δ(T ). The map B can be defined on the space L2, but the more interesting
properties appear when it is restricted to H1. The main tool for constructing the
operator B are trace preserving cutoff operators C f which map functions defined on
Ω f into functions defined on all of Ω . The operators C f are defined by utilizing the
corresponding operators Km defined on S c

m . If f ∈ Δm(T ), with m < n, then

C f v = (λ∗
f ◦ Km ◦ A f )v = (Km ◦ A f )v(λ f (·)).

A more detailed representation of the operator C f is given by

C f v(x) =
∑

I∈Im

(−1)|I |
ρ f (x)

ρ f (I )(x)
A f v(PI λ f (x)), (4.1)

where we recall that f (I ) = {x ∈ f | PI λ f (x) = λ f (x) }. Observe that λ f

≡ (0, . . . , 0) outside Ωe
f and that all functions of the form Kmw are zero at the

origin in R
m+1. As a consequence, supp(C f v) is contained in the closure of Ωe

f . For
the final case when f ∈ Δn(T ) = T , we simply define the operator C f to be the
restriction to f , i.e., C f v = v| f .

If f ∈ Δ0(T ), i.e., f is a vertex, then B f = C f . More generally, for each
f ∈ Δm(T ) we define

B f u = C f um, where um =

⎛

⎜⎜⎝u −
∑

g∈Δ j (T )

j<m

Bgu

⎞

⎟⎟⎠. (4.2)

Alternatively, the functions um satisfy u0 = u and the recursion

um+1 = um −
∑

f ∈Δm (T )

C f um = um −
∑

f ∈Δm (T )

B f u.

As a consequence of the definition of the operator C f for dim f = n, it follows by
construction that u = ∑

f B f u. Furthermore, from the corresponding property of
the operator C f , it also follows that supp(B f u) is in the closure of Ωe

f . Also, by
Lemma 3.3 and from the fact that ρ f /ρ f (I ) ≤ 1, it follows directly that the operator
B f is bounded in L2. However, it is more challenging to establish that B f is bounded
in H1, and that B f u ∈ H̊1(Ω f ) for u ∈ H1(Ω).

4.2 Main Properties of the Transform

The main arguments needed for verifying the properties (i)–(iii) of the transform B,
stated in Section 2 above, will be given here. We will first establish that the piecewise
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polynomial space, Wr (T ), is preserved by the transform, i.e., we will show property
(iii).

Theorem 4.1 If u ∈ Wr (T ), then B f u ∈ W̊r (T f ) for all f ∈ Δ(T ).

Proof Assume that u ∈ Wr (T ). We will show that for all m, 0 ≤ m ≤ n, the following
properties hold:

um ∈ Wr (T ), with trg um = 0, g ∈ Δ j (T ), j < m, (4.3)

and
Bgu ∈ W̊r (Tg), g ∈ Δ j (T ), j < m. (4.4)

Here the function um is defined by (4.2). The proof of (4.3) and (4.4) goes by induction
on m. Note that for m = 0, these properties hold with u0 = u. Assume now that
(4.3) and (4.4) hold for a given m, m < n. Let v ≡ um ∈ Wr (T ). Then, for any
f = [x0, x1, . . . xm] ∈ Δm(T ), we have tr f v ∈ P̊r ( f ). Therefore, it follows from
Lemma 3.2 that

A f v ∈ Pr (S
c

m) and trSm A f v ∈ P̊r (Sm).

In fact, if λ ∈ Sm , then A f v(λ) = v(x), where x = ∑m
j=0 λ j x j ∈ f . But from

Lemma 3.1, we can then conclude that

(Km ◦ A f )v ∈ Pr (S
c

m), with trSm (I − Km)A f v=0, tr∂S c
m\Sm (Km ◦ A f )v=0.

However, this implies that

B f u = Cm
f um = (Km ◦ A f )v(λ f (·)) ∈ W̊r (T f ),

and with tr f B f u = tr f um . This property holds for all f ∈ Δm(T ). Therefore, since

um+1 = um −
∑

f ∈Δm (T )

B f u,

we can conclude that (4.3) and (4.4) hold with m replaced by m + 1. This completes
the induction argument. In particular, we have shown that B f u ∈ W̊r (T f ) for all
f ∈ Δm(T ), m < n. Furthermore, tr f un = 0 for all f ∈ Δn−1(T ). This means
that

un =
∑

T ∈T

un
T , un

T ∈ W̊r (T ), T ∈ T .

Since BT u = un
T for any T ∈ Δn(T ) = T , the proof is completed. ��

The next result will be a key step for showing properties (i) and (ii) of the transform.
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Lemma 4.1 Assume that f ∈ Δm(T ), with m < n, and that v ∈ H1(Ω f ) with
ρ−1

g v ∈ L2(Ω f ), where g = f (I ) for I ∈ Im. Define w = (ρ f /ρg)A f v(PI λ f (·)).
Then w ∈ H1(Ω) and ρ−1

f w ∈ L2(Ω).

Proof Since g ∈ Δ( f ), ρ f /ρg ≤ 1. Therefore, it follows directly from Lemma 3.3
that w ∈ L2(Ω). We also have from Lemma 3.5 that

∫

Ω

|ρ−1
f w|2 dx =

∫

Ω

|ρ−1
g A f v(PI λ f (x))|2 dx

≤ c
[ ∫

Ω f

|ρ−1
g v(x)|2 dx + ‖gradv‖2

0,Ω f

]
< ∞,

so the desired decay property of w follows. It remains to show that w ∈ H1(Ω). From
the identity

grad(ρ f /ρg) = ρ−1
g (gradρ f − ρ f

ρg
gradρg),

we obtain that |grad(ρ f /ρg)| ≤ c0ρ
−1
g , where c0 = c0(Ω,T ). Therefore, we can

conclude that

∫

Ω f

|(grad(ρ f /ρg))A f v(PI λ(x))|2 dx ≤ c2
0

∫

Ω f

|ρ−1
g A f v(PI λ(x))|2 dx .

Together with Leibnitz’ rule and the result of Lemma 3.3, this will imply that w ∈
H1(Ω). This completes the proof. ��
Lemma 4.2 Let f ∈ Δm(T ) with x0 ∈ Δ0( f ). Assume that v ∈ H1(Ω f ), with the
property that ρ−1

g v ∈ L2(Ω f ) for all g ∈ Δ j ( f ), j < m. Then λ−1
0 C f v ∈ L2(Ω).

Proof Assume first that m < n. Let I ∈ Im be any index set such that 0 /∈ I .
Furthermore, let I ′ = (0, I ) ∈ Im . In other words, x0 ∈ Δ(g) while x0 /∈ Δ(g′),
where g = f (I ) and g′ = f (I ′). The desired result will follow if we can show that

λ−1
0

[ρ f

ρg
A f v(PI λ f (·)) − ρ f

ρg′
A f v(PI ′λ f (·))

]

= λ−1
0

ρ f

ρg

[
A f v(PI λ f (·)) − A f v(PI ′λ f (·))

]
+ ρ f

ρgρg′
A f v(PI ′λ f (·)) ∈ L2(Ω).

However, Lemma 3.6 and the fact that ρ f /ρg ≤ 1 imply that the first term on the
right hand side is in L2. Furthermore, it follows by assumption that ρ−1

g′ v ∈ L2, and

therefore, Lemma 3.5 implies that the second term is in L2.
If m = n, then we recall that C f v is just v restricted to f . If f = [x0, x1, . . . , xn]

and g = [x1, . . . , xn], then ρ−1
g v = λ−1

0 v ∈ L2 by assumption. This completes the
proof. ��

123



Found Comput Math

The following result will be used to show that the components B f u are elements
of H̊1(Ω f ). The arguments given in the proof are closely related to characterizations
of H̊1 space in terms of distance-weighted L2 norms, cf. for example [18, Chapter 1,
Theorem 11.8].

Lemma 4.3 Let f = [x0, x1, . . . , xm] ∈ Δm(T ) and assume that v ∈ H1(Ω f ), with
the property that ρ−1

g v ∈ L2(Ω f ) for g ∈ Δ j ( f ), j < m. Define w = C f v. Then

w|Ω f ∈ H̊1(Ω f ) and w ≡ 0 on Ω \ Ω f .

Proof We first observe that w|Ω f ∈ H1(Ω f ). This is obvious if m = n, while for
m < n it follows from Lemma 4.1 that all the terms in the series of (Km ◦ A f )v(λ f (·))
have this property. To show that w ∈ H̊1(Ω f ), it is enough to show that for any vertex
x0 of f , w ∈ H̊1(Ωx0). Since the numbering of the vertices of f is arbitrary, this will
in fact imply that

w ∈ ∩m
j=0 H̊1(Ωx j ) = H̊1(Ω f ).

However, the property that w ∈ H̊1(Ωx0) is a consequence of the decay results
expressed in Lemma 4.2, i.e., that λ−1

0 w ∈ L2. For any ε > 0, let φε be a smooth
function on R such that φε ≡ 0 on (−ε/2, ε/2), φε ≡ 1 on the complement of (−ε, ε),
and such that φ′

ε(λ)λ is uniformly bounded, i.e.,

|φ′
ε(λ)| ≤ c/|λ|, ε

2
≤ |λ| ≤ ε, (4.5)

for some constant c. By construction, the functions vε ≡ φε(λ0(·))w are in H̊1(Ωx0),
and to show that w belongs to the same space, it is enough to show that the vε converge
to w, as ε tends to zero, in H1(Ωx0). However,

∫

Ωx0

|vε − w|2 dx =
∫

Ωx0

|[φε(λ0(·)) − 1]w|2 dx ≤
∫

Ωx0,ε

|w|2 dx → 0,

where Ωx0,ε = {x ∈ Ωx0 | λ0(x) ≤ ε }. This shows L2 convergence. Furthermore,

∫

Ωx0

|grad(vε − w)|2 dx ≤ 2
∫

Ωx0,ε

|gradw|2 dx + 2
∫

Ωx0,ε

|(grad[φε(λ0(·))]w|2 dx .

The first term goes to zero by the H1 boundedness of w, and as a consequence of (4.5)
and the L2 property of λ−1

0 w established in Lemma 4.2, the second term goes to zero
with ε. By completeness of H̊1(Ωx0), it follows that w ∈ H̊1(Ωx0), and therefore, it
is in H̊1(Ω f ).

We recall from the definition of the operator C f that w is identically zero on
Ω \ Ωe

f . Hence, it remains to show that w is identically zero on Ωe
f \ Ω f when

m < n. However, at each point in Ωe
f \ Ω f , at least one of the extended barycentric

coordinates associated with f is zero. Therefore, w in this region corresponds to a
pullback of w from ∂S c

m \ Sm , and this is zero since tr∂Ω f w = 0. ��
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Lemma 4.4 Let u ∈ H1(Ω) and define the functions um, 0 ≤ m ≤ n, by (4.2). Then
um ∈ H1(Ω) and ρ−1

f um ∈ L2(Ω) for all f ∈ Δ j (T ), j < m.

Proof The proof goes by induction on m. For m = 0, the result holds with u0 = u.
Furthermore, if the result holds for a given m < n, then um+1 ∈ H1(Ω) by Lemma 4.3.
It remains to show the decay property, i.e., that ρ−1

f um+1 ∈ L2(Ω) for all f ∈ Δ j (T )

for j ≤ m. For any f ∈ Δm(T ) we have

ρ−1
f (um−C f um) = ρ−1

f [um−A f um(λ f (·))]−ρ−1
f

∑

I∈Im
I �=∅

(−1)|I |
ρ f

ρ f (I )
A f um(PI λ(·)).

However, the first term on the right side is in L2 as a consequence of Lemma 3.4,
while Lemma 4.1 and the induction hypothesis implies that all the terms in the sum
are in L2. We can therefore conclude that for f ∈ Δm , ρ−1

f (um −C f um) is in L2(Ω).

To show that ρ−1
f um+1 is in L2, we express this as

ρ−1
f um+1 = ρ−1

f (um − C f um) +
∑

g∈Δm (T )

g �= f

ρ−1
f Cgum . (4.6)

Recall that by definition, Cgum is identically zero outside Ωe
g . On the other hand, if

g ∈ Δm(T ) and g �= f , then on each T ∈ T , such that f ∩ T �= ∅ and g ∩ T �= ∅,
there exists a vertex x0 ∈ g ∩ T which is not in f . Then λ0 ≤ ρ f on T , which implies
that

|ρ−1
f Cgum | ≤ |λ−1

0 Cgum | on T .

By repeating this for all T ⊂ Ωe
f , and by applying Lemma 4.2, we obtain that all the

terms in the sum (4.6) are in L2. Since f ∈ Δm(T ) is arbitrary, this shows the desired
decay result for all f ∈ Δm(T ). However, if g ∈ Δ( f ), then ρ−1

g (x) ≤ ρ−1
f (x), and

therefore, ρ−1
f um+1 ∈ L2 for all f ∈ Δ j (T ), j ≤ m. This completes the induction

argument and therefore the proof of the lemma. ��
The following result shows that the transform satisfies properties (i) and (ii) above.

Theorem 4.2 Assume that u ∈ H1(Ω). Then u = ∑
f ∈Δ(T ) B f u, where B f u ∈

H̊1(Ω f ) for each f ∈ Δ(T ). Furthermore, the transformation BT : H1(Ω) →⊕
f ∈Δ(T ) H̊1(Ω f ), with components B f , is bounded.

Proof We have already seen that u = ∑
f ∈Δ(T ) B f u. Furthermore, it is a consequence

of Lemmas 4.3 and 4.4 that each B f u ∈ H̊1(Ω f ). Finally, the boundedness of the
transformation can be seen by tracing the bounds derived in Lemmas 4.1–4.4 and by
utilizing the finite overlap property of the covering {Ω f } of Ω . ��
Corollary 1 The transform BT is L2 bounded, with supp B f u contained in the clo-
sure of Ω f for all u ∈ L2(Ω).
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Proof We have already seen that BT is L2 bounded, and with supp B f u contained
in the closure of the extended macroelement Ωe

f . However, due to the result of Theo-

rem 4.2 and the density of H1(Ω) in L2(Ω), this implies that supp B f u is contained
in the closure of Ω f . ��

4.3 Construction of Projections

The result of Theorem 4.2 leads immediately to the construction of locally defined
projections into the finite element spaces Wr (T ), which are uniformly bounded with
respect to the polynomial degree r . We just project each component B f u into the
space W̊r (T f ) by a local projection Q f,r . More precisely, the locally defined global
projections π = πT ,r will be of the form

πu =
∑

f ∈Δm (T )

Q f,r B f u,

where Q f,r is a local projection onto W̊r (T f ). The operator π will be a projection as a
result of Theorem 4.1. If Q f,r is taken to be the local H1-projection, with correspond-
ing operator norm equal to one, then Theorem 4.2 implies that π will be uniformly
bounded in H1 with respect to r . On the other hand, if Q f,r is taken to be the local
L2-projection, then Corollary 1 implies uniform L2 boundedness of π with respect to
r .

5 Proofs of Lemmas 3.3–3.6

To complete the paper, it remains to establish Lemmas 3.3–3.6, all related to properties
of the averaging operators A f . Recall that it is a property of the triangulation T of Ω

that the intersection of two elements of T is either empty or a common subsimplex of
each. It is a consequence of this that any simplex f ∈ Δ(T ), which is not contained
in the boundary ∂Ω , has the property that all its interior points are also in the interior
of Ω . In other words, any element of Δ(T ) is either contained in the boundary ∂Ω

or all its interior points are interior points of Ω .
Let f = [x0, x1, . . . , xm] ∈ Δm(T ) be as above. Throughout this section we

assume that 0 ≤ m < n. If T ∈ T f , and λ ∈ S c
m , we also let

A f,T v(λ) =
∫
−

T
v(Gm(λ, y)) dy,

such that

A f v =
∑

T ∈T f

|T |
|Ω f | A f,T v.

Before we derive more properties of the operator A f , we will make some observations,
which will be useful below. A simple calculation shows that for any r ∈ R we have
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∫

S c
m

b(λ)r dλ =
∫

S c
m−1

∫ b(λ′)

0
(b(λ′) − λm)r dλm dλ′

=
∫

S c
m−1

∫ b(λ′)

0
zr dz dλ′

=
∫ 1

0
zr
∫

z≤b(λ′)
dλ′ dz = |S c

m−1|
∫ 1

0
zr (1 − z)m dz.

Hence, we can conclude that
∫

S c
m

b(λ)r dλ < ∞, for r > −1. (5.1)

If f = [x0, x1, . . . xm] ∈ Δm(T ) and T is an element of T f , we let f ∗(T )

∈ Δn−m−1(T ) be the face opposite f . In other words, if T = [x0, x1, . . . , xn], then

f ∗(T ) = [xm+1, . . . , xn] = {x ∈ T | λ j (x) = 0, j = 0, 1, . . . , m }.

Any point x ∈ T can be written uniquely as a convex combination of x0, . . . , xm and
a point q = q f ∈ f ∗(T ), since

x =
n∑

j=0

λ j (x)x j =
m∑

j=0

λ j (x)x j + ρ f (x)q f (x), q f (x) =
n∑

j=m+1

λ j (x)x j/ρ f (x).

Define f ∗ = ∪T ∈T f f ∗(T ). Then f ∗ ⊂ ∂Ω f , and any x ∈ Ω f can be written as

x =
m∑

j=0

λ j (x)x j + ρ f (x)q f (x), q f (x) ∈ f ∗. (5.2)

The set f ∗ can alternatively be characterized as f ∗ = ∂Ωe
f ∩ ∂Ω f . An illustration of

the geometry of f , Ω f , and f ∗ is given in Fig. 5 below.
In fact, if m = n − 1 and f is an interior simplex, then f ∗ consist of two vertices

in Δ0(T ), while f ∗ is a single vertex if f ⊂ ∂Ω . On the other hand, if m < n − 1
and f is not contained in the boundary, then f ∗ is a closed, connected and piecewise
flat manifold of dimension n − m − 1. In the case when f ⊂ ∂Ω , the manifold f ∗ is
still connected.

Lemma 5.1 Assume that f ∈ Δ(T ) ∩ ∂Ω . Then f ∗ is connected.

Proof Let q0 and q1 be two points on the manifold f ∗. We need to show that these
points can be connected by a continuous curve in f ∗. For any s ∈ (0, 1) the points yi ,
i = 0, 1, given by

yi = 1 − s

m + 1

m∑

j=0

x j + sqi
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Fig. 5 The macroelement
Ω f ⊂ R

3, where f is the line
from x0 to x1 and f ∗ is the
closed curve connecting
x2, x3, x4

x0 x1

x2

x3

x4

f

f ∗

are in Ω f , and can be made arbitrarily close to the barycenter of f , x f , by choosing s
sufficiently small. Since the polyhedral domain Ω is, in particular, a Lipschitz domain,
it follows that the two points y0 and y1 can be connected by a continuous curve

{y(t) | t ∈ [0, 1] } ⊂ Ω,

such that y(0) = y0, y(1) = y1. Furthermore, the curve can be made arbitrary close to
the barycenter x f by adjusting the parameter s and the chosen curve. However, since
the barycenter is an interior point of f for m > 0, all points in Ω which are sufficiently
close to x f are also in Ω f . Therefore, by applying the representation (5.2), we obtain
that the curve y(t) is of the form

y(t) =
m∑

j=0

λ j (y(t))x j + b(λ(y(t)))q(t),

where q(t) = q f (y(t)) ∈ f ∗. Since λ j (y0) = (1−s)/(m +1) for j = 0, 1, . . . m, and
hence, b(λ(y0)) = s, it follows easily from the identities y(0) = y0 and y(1) = y1
that q(0) = q0 and q(1) = q1. This completes the proof. ��

The map x �→ (λ f (x), q f (x)) defines a map from Ω f to S c
m × f ∗, with an inverse

given by

(λ, q) �→ x = q +
m∑

j=0

λ j (x j − q) = Gm(λ, q). (5.3)

To express the derivative of the map, we write q ∈ f ∗(T ) in the form q = q̂
+∑n−1

i=m+1 qi ti , where q̂ is the barycenter of f ∗(T ) and tm+1, . . . , tn−1 ∈ R
n is

an orthonormal basis for the tangent space of f ∗(T ). Then the derivative of the map
(5.3), with respect to λ and q, can be expressed as the n × n matrix

[x0 − q, x1 − q, . . . , xm − q, b(λ)tm+1, . . . , b(λ)tn−1].
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Hence, by the scaling rule for determinants and manipulating columns, the determinant
of this matrix is equal to

b(λ)n−m−1 det([x0 − q̂, . . . , xm − q̂, tm+1, . . . , tn−1]) := b(λ)n−m−1 J ( f, q).

For each T ∈ T f , J ( f, q) is a constant, i.e., J ( f, ·) is a piecewise constant function
on f ∗. Therefore, for the fixed mesh T , there exist constants ci = ci (Ω,T ) > 0,
such that

c0 ≤ J ( f, q) ≤ c1, f ∈ Δ(T ), q ∈ f ∗. (5.4)

The coordinates (λ, q) ∈ S c
m × f ∗ can be seen as generalized polar coordinates

for the domain Ω f . The change of variables

x �→ (λ f (x), q f (x)) ∈ S c
m × f ∗

leads to the identity

∫

T
φ(λ f (x), q f (x)) dx =

∫

S c
m

∫

f ∗(T )

φ(λ, q)J ( f, q) dq b(λ)n−m−1 dλ, (5.5)

for any T ∈ T f , and any real-valued function φ on S c
m × f ∗(T ). Here dq means

integration with respect to the standard Lebesgue measure derived from the embedding
of the tangent space of f ∗(T ) into R

n−m−1. Furthermore, by summing over all T ∈
T f , we obtain

∫

Ω f

φ(λ f (x), q f (x)) dx =
∫

S c
m

∫

f ∗
φ(λ, q)J ( f, q) dq b(λ)n−m−1 dλ, (5.6)

where the integral over f ∗ should be interpreted as a sum over the two points of f ∗
in the case m = n − 1.

The function Gm has the property that Gm(λ f (x), q f (x)) = x , and it satisfies the
composition rule

Gm(λ, Gm(μ, y)) = Gm(λ′, y) where λ′ = λ + b(λ)μ. (5.7)

In particular, the matrix associated with the linear transformation λ �→ λ′ is (m +
1) × (m + 1) given by I − μeT , where e denotes the vector with all elements equal 1.
Using the formula det(I + xyT ) = 1 + y · x (which we will use on several occasions
in the remainder of the paper), this matrix has determinant b(μ). Furthermore, b(λ′)
= b(λ)b(μ). Letting y = Gm(μ, q) and applying the identity (5.5) in the variable y,
we can rewrite A f,T v(λ) as

A f,T v(λ) = |T |−1
∫

S c
m

∫

f ∗(T )

v(Gm(λ, Gm(μ, q))J ( f, q) dq b(μ)n−m−1 dμ,

(5.8)
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f

T

g

Fig. 6 The case when T ′ ⊂ Ωe
f , but T ′ /∈ T f (enclosed in the thick lines). Here g = f ∩ T ′

A key property, which is a special case of Lemma 3.3, is that the operator λ∗
f ◦ A f,T

is bounded in L2. To see this, observe that we obtain from (5.4), (5.6), (5.7), and
Minkowski’s inequality in the form ‖ ∫ g(μ) dμ‖ ≤ ∫ ‖g(μ)‖ dμ, that

‖A f,T v(λ f (·))‖0,Ω f

≤ c
∫

S c
m

( ∫

Ω f

∫

f ∗(T )

|v(G(λ f (x), G(μ, q))|2 dq dx
)1/2

b(μ)n−m−1 dμ

≤ c
∫

S c
m

( ∫

S c
m

b(λ)n−m−1
∫

f ∗(T )

|v(G(λ, G(μ, q))|2 dq dλ
)1/2

b(μ)n−m−1 dμ

≤ c
∫

S c
m

( ∫

S c
m

b(λ′)n−m−1
∫

f ∗(T )

|v(G(λ′, q))|2 dq dλ′)1/2
b(μ)−1+(n−m)/2 dμ,

where we have substituted λ′ = λ + b(λ)μ. However, by letting (λ′, q) �→ x
= G(λ′, q), we obtain from (5.5) that

‖A f,T v(λ f (·))‖0,Ω f ≤ c
∫

S c
m

(∫

T
|v(x)|2 dx

)1/2

b(μ)−1+(n−m)/2 dμ

= c‖v‖0,T

∫

S c
m

b(μ)−1+(n−m)/2 dμ ≤ c1‖v‖0,T ,

where we have used (5.1) and the fact that the exponent satisfies −1 + (n − m)/2 ≥
−1/2. This shows that the operator λ∗

f ◦ A f,T is bounded as an operator from L2(T )

to L2(Ω f ). Furthermore, if T ′ ∈ Δ(T ) such that T ′ ⊂ Ωe
f , but T ′ /∈ T f , we let

g = f ∩ T ′. Then g ∈ Δ( f ) and A f,T v|T ′ = Ag,T v|T ′ (Fig. 6).
By utilizing the argument just given with respect to g instead of f , we can conclude

that λ∗
f ◦ A f,T is bounded from L2(T ) to L2(Ωe

f ). In particular, on the boundary of
Ωe

f , (λ∗
f ◦ A f,T )v is constant with value
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A f,T v(0) =
∫
−

T
v(y) dy.

In fact, this is also the value of (λ∗
f ◦ A f,T )v in Ω \Ωe

f , and we can therefore conclude

that λ∗
f ◦ A f,T is bounded from L2(T ) to L2(Ω). Since the operator A f is a weighted

sum of the operators A f,T , we can also conclude that λ∗
f ◦ A f is bounded from L2(Ω f )

to L2(Ω).
A completely analogous argument, essentially using that differentiation commutes

with averaging, also shows that λ∗
f ◦ A f is bounded from H1(Ω f ) to H1(Ω). We just

observe that

gradA f,T v(λ f (·)) =
∫
−

T
(DGm)T gradv(Gm(λ f (·), y)) dy.

Here DGm = DGm(y) is the derivative of Gm(λ f (x), y) with respect to x , given as
the n × n matrix

DGm =
m∑

j=0

(x j − y)(gradλ j )
T ,

and this matrix is uniformly bounded with respect to y. We have therefore established
Lemma 3.3 in the special case when I is the empty set.

Proof (Proof of Lemma 3.3) We need to show that the operators λ∗
f ◦ P∗

I ◦ A f are

bounded from L2(Ω f ) to L2(Ω) and from H1(Ω f ) to H1(Ω) for all I ∈ Im . As in
the discussion above, it is sufficient to consider each of the operators λ∗

f ◦ P∗
I ◦ A f,T

for all T ∈ T f . However, the operator λ∗
f ◦ P∗

I ◦ A f,T is equal to λ∗
g ◦ Ag,T , where

g = f (I ) = {x ∈ f | PI λ f (x) = λ f (x) }, and as a consequence, the desired result
follows from the discussion above. ��
Proof (Proof of Lemma 3.4) Since the function ρ f is identically equal to one outside
Ωe

f and the operator λ∗
f ◦ A f is bounded in L2, it is enough to show that

∫

Ωe
f

ρ−2
f (x)|v(x) − A f v(λ f (x))|2 dx ≤ c‖gradv‖2

0,Ωe
f
, v ∈ H1(Ω).

Furthermore, it is enough to show the corresponding result for each of the operators
A f,T , i.e., to show that

∫

Ωe
f

ρ−2
f (x)|v(x) − A f,T v(λ f (x))|2 dx ≤ c‖gradv‖2

0,Ωe
f
, v ∈ H1(Ω), (5.9)

for all T ∈ T f . In fact, it will actually be enough to show that

∫

Ω f

ρ−2
f (x)|v(x) − A f,T v(λ f (x))|2 dx ≤ c‖gradv‖2

0,Ω f
, v ∈ H1(Ω). (5.10)
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To see this, assume that (5.10) has been established. If T ′ ∈ T , such that T ′ ⊂ Ωe
f ,

but T ′ /∈ T f , we let g = f ∩ T ′. On T ′ we then have ρ f = ρg , (λ f )i = (λg)i if
xi ∈ g, and (λ f )i = 0 otherwise. In particular, A f,T v = Ag,T v on T ′. From (5.10),
applied to g instead of f , we then obtain

∫

T ′
ρ f (x)−2|v(x) − A f,T v(λ f (x))|2 dx ≤

∫

Ωg

ρg(x)−2|v(x) − Ag,T v(λg(x))|2 dx

≤ c‖gradv‖2
0,Ωg

.

By combining this with (5.10), we obtain (5.9).
The rest of the proof is devoted to establishing the bound (5.10). We start by

introducing a new averaging operator Ã f,T by

Ã f,T v(λ) =
∫
−

f ∗(T )

v(Gm(λ, q)) dq =
∫
−

T
v(Gm(λ, q f (y)) dy,

where the second equality follows from (5.5) and the fact that J ( f, q) is constant for
q ∈ f ∗(T ). We will estimate the two terms

∫

Ω f

ρ−2
f (x)|v(x) − Ã f,T v(λ f (x))|2 dx,

∫

Ω f

ρ−2
f (x)| Ã f,T v(λ f (x))

−A f,T v(λ f (x))|2 dx .

If m = n−1 and T ∈ T f , then f ∗(T ) is just a single vertex and Ã f,T v(λ f (x)) = v(x)

for x ∈ T . Furthermore, if f is on the boundary of Ω , then Ω f = T , so in this case,
the estimate for v − Ã f,T v(λ f (·)) is trivial. If m = n − 1 and f is an interior simplex,
then T f consists of two simplexes, say T and T−. For x ∈ T−, we have

Ã f,T v(λ f (x)) − v(x) = v(Gm(λ f (x), q)) − v(x) = v(x + ρ f (x)(q − q−)) − v(x),

where q and q− are the single vertices in f ∗(T ) and f ∗(T−), respectively. Let

x̂ = Gm(λ f (x), x f ) = x + ρ f (x)(x f − q−) ∈ f,

where x f is the barycenter of f . We will utilize a piecewise linear path from x ∈ T−
to Gm(λ f (x), q) = x̂ + ρ f (x)(q − x f ) ∈ T via the point x̂ ∈ f . We then obtain

ρ f (x)−1( Ã f,T v(λ f (x)) − v(x)) =
∫ 1

0
[gradv(x ′(t)) · (q − x f )

+ gradv(x ′−(t)) · (x f − q−)] dt,

where the curve x ′(t) ≡ x̂ + tρ f (x)(q − x f ) is in T , while the curve x ′−(t)
≡ x + tρ f (x)(x f − q−) is in T−. From Minkowski’s inequality, we obtain
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( ∫

Ω f

ρ f (x)−2|v(x) − Ã f,T v(λ f (x))|2 dx
)1/2

≤ c
∫ 1

0

( ∫

T−
|gradv(x ′(t))|2 dx +

∫

T−
|gradv(x ′−(t))|2 dx

)1/2
dt.

In the first integral with respect to x above, we make the substitution x �→ x ′. The
matrix associated with this transformation is I + (x f −q− + t (q − x f ))(gradρ f (x))T

with determinant

1 + gradρ f (x) · [(x f − q−) + t (q − x f )]
= 1 + [ρ f (x f ) − ρ f (q−)] + t gradρ f (x) · (q − x f ) = tδ,

where δ = gradρ f (x) · (q − x f ) for x ∈ T−. Since x and q are on the opposite sides
of f , δ < 0, and we obtain

∫

T−
|gradv(x ′(t))|2 dx ≤ (|δ| t)−1‖gradv‖2

0,T .

We use a similar approach for the second x integral above, where we use the substitution
x �→ x ′−. The associated matrix is I + t (x f − q−)(gradρ f (x))T with determinant

1 + tgradρ f (x)) · (x f − q−) = 1 + t[ρ f (x f ) − ρ f (q−)] = 1 − t.

Arguing as above we obtain
∫

T−
|gradv(x ′−(t))|2 dx ≤ (1 − t)−1‖gradv‖2

0,T−

Using these facts, we then obtain
( ∫

Ω f

ρ f (x)−2|v(x) − Ã f,T v(λ f (x))|2 dx
)1/2

≤ c
∫ 1

0
[(|δ| t)−1 + (1 − t)−1]1/2 dt ‖gradv‖0,Ω f

≤ c1‖gradv‖0,Ω f . (5.11)

This is the desired bound for v − Ã f,T v(λ f (·)) when dim f = m = n − 1.
If m < n − 1, we will utilize the fact that then f ∗ is connected. As observed above,

this is easily seen if f is an internal simplex, while the case of boundary simplexes is
treated in Lemma 5.1. From (5.4) and (5.6), we obtain

∫

Ω f

ρ f (x)−2|v(x) − Ã f,T v(λ f (x))|2 dx

≤ c
∫

S c
m

b(λ)n−m−3
∫

f ∗
|v(Gm(λ, q)) − Ã f,T v(λ)|2 dq dλ. (5.12)
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However, the interior integral above admits the estimate

∫

f ∗
|v(Gm(λ, q)) − Ã f,T v(λ)|2 dq ≤ cb(λ)2‖gradv(Gm(λ, ·))‖2

0, f ∗ . (5.13)

To see this, observe that

Ã f,T v(0) =
∫
−

f ∗(T )

v(Gm(0, q)) dq =
∫
−

f ∗(T )

v(q) dq

only depends on the restriction of v to f ∗, is bounded in L2( f ∗(T )), and reproduces
constants on f ∗. By the connectivity of f ∗ and Poincaré’s inequality, we therefore
can conclude that

∫

f ∗
|v(q) − Ã f,T v(0)|2 dq ≤ c‖gradv‖2

0, f ∗ , (5.14)

for all functions v ∈ H1( f ∗). The estimate (5.13) now follows by a scaling argument.
For a fixed λ ∈ S c

m , introduce the function v̂ defined on f ∗ by

v̂(q) = v(Gm(λ, q)) with gradv̂(q) = b(λ)gradv(Gm(λ, q)).

Then Ã f,T v̂(0) = Ã f,T v(λ), and therefore, the estimate (5.13) follows directly from
(5.14) applied to v̂. Furthermore, by (5.12), (5.13), and (5.1), we obtain

∫

Ω f

ρ f (x)−2|v(x) − Ã f,T v(λ f (x))|2 dx

≤ c
∫

S c
m

b(λ)n−m−1
∫

f ∗
|gradv(Gm(λ, q))|2 dq dλ

≤ c1‖gradv‖2
0,Ω f

, (5.15)

for all v ∈ H1(Ω f ). Together with the estimate (5.11), we have therefore estab-
lished the desired estimate for v − Ã f,T v(λ f (·)) for all f ∈ Δ(T ) with dim f ≤ n
−1. To complete the proof, we need a corresponding estimate for Ã f,T v(λ f (·))
−A f,T v(λ f (·)). For any λ ∈ S c

m , we have

Ã f,T v(λ) − A f,T v(λ) = −
∫
−

T
[v(Gm(λ, q f (y)) − v(Gm(λ, y))] dy

= b(λ)

∫
−

T

∫ 1

0
gradv(Gm(λ, (1 − t)q f (y) + t y)) · (y − q(y)) dt dy.

However, writing

y =
m∑

j=0

λ j (y)x j + ρ f (y)q f (y),
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it is easy to check that

Gm(λ, (1 − t)q f (y) + t y) = Gm(λ′, q f (y)),

where λ′ = λ′(λ, t, λ f (y)) and

λ′(λ, t, μ) = λ + tb(λ)μ, λ, μ ∈ S c
m, t ∈ R.

Therefore, we can use (5.5) to rewrite the representation of Ã f,T v(λ)− A f v(λ) in the
form

Ã f,T v(λ) − A f v(λ) = b(λ)

|T |
·
∫ 1

0

∫

S c
m

b(μ)n−m−1
∫

f ∗(T )

gradv(Gm(λ′(λ, t, μ), q)) · (y − q)J ( f, q) dq dμ dt,

where y = Gm(μ, q). Hence, it follows by Minkowski’s inequality and (5.6) that

( ∫

Ω f

ρ−2
f (x)[ Ã f,T v(λ(x)) − A f,T v(λ(x))]2 dx

)1/2

≤ c
∫ 1

0

∫

S c
m

b(μ)n−m−1
( ∫

Ω f

∫

f ∗
|gradv(Gm(λ′(λ f (x), t, μ), q))|2dq dx

)1/2
dμ dt

≤ c
∫ 1

0

∫

S c
m

b(μ)n−m−1
( ∫

S c
m

b(λ)n−m−1
∫

f ∗
|gradv(Gm(λ′, q))|2dq dλ

)1/2
dμ dt,

where λ′ = λ′(λ, t, μ). To proceed, we make the substitution λ �→ λ′. The matrix asso-
ciated with this transformation is I − tμeT , with determinant b(tμ). Here, as above,
e is the vector with all components equal to one. Furthermore, b(λ′) = b(λ)b(tμ).
Since b(tμ) ≥ b(μ), it follows, again using (5.1) and (5.6), that

( ∫

Ω f

ρ−2
f (x)[ Ã f,T v(λ f (x)) − A f,T v(λ f (x))]2 dx

)1/2

≤ c
∫ 1

0

∫

S c
m

b(μ)n−m−1

b(tμ)(n−m)/2

( ∫

S c
m

b(λ′)n−m−1
∫

f ∗
|gradv(Gm(λ′, q))|2dq dλ′)1/2

dμ dt

≤ c
∫

S c
m

b(μ)−1+(n−m)/2
( ∫

S c
m

b(λ′)n−m−1
∫

f ∗
|gradv(Gm(λ′, q))|2dq dλ′)1/2

dμ

≤ c‖gradv‖0,Ω f

∫

S c
m

b(μ)−1+(n−m)/2 dμ ≤ c‖gradv‖0,Ω f .

Together with (5.11) and (5.15), this completes the proof of (5.10), and hence, the
lemma is established. ��
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Proof (Proof of Lemma 3.5) For f ∈ Δm(T ) and I ∈ Im , with m < n, we have to
show

∫

Ω

ρ−2
g (x)|A f v(PI λ f (x))|2 dx ≤ c [

∫

Ω

ρ−2
g (x)|v(x)|2 dx + ‖gradv‖2

0],

where g = f (I ) ∈ Δ( f ). We observe that

A f v(PI λ f ) =
∑

T ∈T f

|T |
|Ω f | Ag,T (λg).

However, by (5.9), we have

∫

Ω

ρ−2
g (x)|v(x) − Ag,T v(λg(x))|2 dx ≤ c ‖v‖2

1,

and by the triangle inequality this implies that

∫

Ω

ρ−2
g (x)|Ag,T v(λg(x))|2 dx ≤ c

[∫

Ω

ρ−2
g (x)|v(x)|2 dx + ‖gradv‖2

0

]
.

The desired result follows by summing over T ∈ T f . ��
Proof (Proof of Lemma 3.6) Let m < n, f = [x0, x1, . . . xm] ∈ Δm(T ), I ∈ Im

with 0 /∈ I and I ′ = (0, I ). We must show that

∫

Ωx0

λ−2
0 (x)[A f v(PI λ f (x)) − A f v(PI ′λ f (x))]2 dx ≤ c‖gradv‖2

0,Ω f
, v ∈ H1(Ω f ).

We recall that for any T ∈ T f , we have A f,T v(PI λ f (·)) = Ag,T v(λg(·)), where
g = f (I ) ∈ Δ( f ). Similarly, A f,T v(P ′

I λ f (·)) = Ag,T v(Pλg(·)), where (Pλg)0 = 0,
and (Pλg)i = (λg)i for i �= 0. The desired estimate will follow if we can show

∫

Ωx0

λ−2
0 (x)[Ag,T v(λg(x)) − Ag,T v(Pλg(x))]2 dx ≤ c‖gradv‖2

0,T , (5.16)

for all v ∈ H1(T ), T ∈ T f . In fact, it is enough to show that

∫

Ωg

λ−2
0 (x)[Ag,T v(λg(x)) − Ag,T v(Pλg(x))]2 dx ≤ c‖gradv‖2

0,T . (5.17)

To see this, assume that T̂ ∈ Tx0 such that T̂ /∈ Tg . Let ĝ = g ∩ T̂ . Then T̂ ∈ Tĝ ,

and (λĝ)i = (λg)i for all the components of λg which are not identically zero on T̂ .
Therefore, (5.17), applied to ĝ instead of g, will imply that

∫

T̂
λ−2

0 (x)[Ag,T v(λg(x)) − Ag,T v(Pλg(x))]2 dx ≤ c‖gradv‖2
0,T .
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By carrying out this process for all possible T̂ ∈ Ωx0 \ Ωg and combining it with
(5.17), we obtain (5.16).

The rest of the proof is devoted to establish (5.17). Without loss of generality, we
can assume that g = [x0, x1, . . . , x j ] such that

Ag,T v(Pλg) =
∫
−

T
v(G j (λg, y) + λ0(y − x0)) dy.

We have

Ag,T v(Pλg) − Ag,T v(λg) =
∫
−

T
[v(G j (λ, y) + λ0(y − x0)) − v(G j (λ, y))] dy

= λ0

∫
−

T

∫ 1

0
gradv(G j (λ, y) + tλ0(y − x0))

· (y − x0) dt dy,

where λ = λg ∈ S c
j . If we express y as y = G j (μ, q), where μ = λg(y) and

q = qg(y), we further obtain that

G j (λ, y) + tλ0(y − x0) =
j∑

i=0

λi xi + [tλ0 + b(λ)]y − tλ0x0

=
j∑

i=0

λi xi + [tλ0 + b(λ)]
[ j∑

i=0

μi xi + b(μ)q
]

− tλ0x0

=
j∑

i=0

λ′
i xi + b(λ′)q = G j (λ

′, q),

where λ′ = λ′(λ, t, μ) is given by

λ′
0 = (1 − t)λ0 + [tλ0 + b(λ)]μ0

and where

λ′
i = λi + [tλ0 + b(λ)]μi , i > 0.

Using the identity (5.5), we therefore have

Ag,T v(Pλg) − Ag,T v(λg)

= λ0

|T |
∫

S c
j

b(μ)n− j−1
∫ 1

0

∫

g∗(T )

gradv(G j (λ
′, q)) · (G j (μ, q) − x0) dq dt dμ,
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where λ′ = λ′(λ, t, μ) and λ = λg . We note that

b(λ′) = b(λ)b(μ) + tλ0b(μ) ≥ b(λ)b(μ).

Using this, we have from Minkowski’s inequality and (5.5) that

( ∫

Ωg

λ−2
0 (x)|Ag,T v(Pλg(x)) − Ag,T v(λg(x))|2 dx

)1/2

≤ c
∫

S c
j

b(μ)n− j−1
∫ 1

0

( ∫

Ωg

∫

g∗(T )

|gradv(G j (λ
′(x), q))|2 dq dx

)1/2
dt dμ

≤ c
∫

S c
j

b(μ)(n− j−1)/2
∫ 1

0

( ∫

S c
j

b(λ′)n− j−1
∫

g∗(T )

|gradv(G j (λ
′, q))|2 dq dλ

)1/2
dt dμ,

where λ′ = λ′(λ, t, μ) is given above, and λ′(x) = λ′(λg(x), t, μ). To complete
the argument, we make the substitution λ �→ λ′. The matrix associated with this
transformation is given by

I − μeT + t (μ − e0)e
T
0 = (I − μeT )(I − te0eT

0 ),

with determinant (1 − t)b(μ), where e0 denotes the vector with first component 1 and
all other components equal to 0. Therefore, we obtain

( ∫

Ωg

λ−2
0 (x)|Ag,T v(Pλg(x)) − Ag,T v(λg(x))|2 dx

)1/2

≤ c
∫

S c
j

∫ 1

0

b(μ)−1+(n− j)/2

(1 − t)1/2

( ∫

S c
j

b(λ′)n− j−1
∫

g∗(T )

|gradv(G j (λ
′, q))|2 dq dλ′)1/2

dt dμ

≤ c
( ∫

T
|gradv(x)|2 dx

)1/2
,

where (5.1) and (5.5) have been used for the final inequality. This completes the proof
of (5.17) and hence of the lemma. ��
Acknowledgments The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agree-
ment 339643.

References

1. Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus, homological
techniques, and applications, Acta Numerica 15 (2006), 1–155.

2. Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Geometric decompositions and local bases
for spaces of finite element differential forms, Comput. Methods Appl. Mech. Engrg. 198 (2009),
no. 21-26, 1660–1672.

3. Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus: from Hodge
theory to numerical stability, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 2, 281–354.

4. Ivo Babuška and Manil Suri, The optimal convergence rate of the p-version of the finite element method,
SIAM J. Numer. Anal. 24 (1987), no. 4, 750–776.

123



Found Comput Math

5. Daniele Boffi, Franco Brezzi, Leszek F. Demkowicz, Ricardo G. Durán, Richard S. Falk, and Michel
Fortin, Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathemat-
ics, vol. 1939, Springer-Verlag, Berlin, 2008, Lectures given at the C.I.M.E. Summer School held in
Cetraro, June 26–July 1, 2006, Edited by Daniele Boffi and Lucia Gastaldi.

6. Daniele Boffi, Martin Costabel, Monique Dauge, Leszek Demkowicz, and Ralf Hiptmair, Discrete
compactness for the p-version of discrete differential forms, SIAM J. Numer. Anal. 49 (2011), no. 1,
135–158.

7. Franco Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from
Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8
(1974), no. R-2, 129–151.

8. Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Com-
putational Mathematics, vol. 15, Springer-Verlag, New York, 1991.

9. Snorre H. Christiansen and Ragnar Winther, Smoothed projections in finite element exterior calculus,
Math. Comp. 77 (2008), no. 262, 813–829.

10. Leszek Demkowicz and Ivo Babuška, p interpolation error estimates for edge finite elements of variable
order in two dimensions, SIAM J. Numer. Anal. 41 (2003), no. 4, 1195–1208.

11. Leszek Demkowicz and Annalisa Buffa, H1, H(curl) and H(div)-conforming projection-based inter-
polation in three dimensions. Quasi-optimal p-interpolation estimates, Comput. Methods Appl. Mech.
Engrg. 194 (2005), no. 2-5, 267–296.

12. Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators.
I, SIAM J. Numer. Anal. 46 (2008), no. 6, 3006–3031.

13. Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators.
II, SIAM J. Numer. Anal. 47 (2009), no. 5, 3293–3324.

14. Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators.
Part III, Math. Comp. 81 (2012), no. 279, 1289–1326.

15. Richard S. Falk and Ragnar Winther, Double complexes and local cochain projections, Numer. Methods
Partial Differential Equations (2014), Published online 30 October 2014.

16. Richard S. Falk and Ragnar Winther, Local bounded cochain projections, Math. Comp. 83 (2014),
no. 290, 2631–2656.

17. Ralf Hiptmair, Discrete compactness for the p-version of tetrahedral edge elements, http://arxiv.org/
abs/0901.0761 (2009).

18. J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol.
I, Springer-Verlag, New York-Heidelberg, 1972, Translated from the French by P. Kenneth, Die
Grundlehren der mathematischen Wissenschaften, Band 181.

19. J. M. Melenk, hp-interpolation of nonsmooth functions and an application to hp-a posteriori error
estimation, SIAM J. Numer. Anal. 43 (2005), no. 1, 127–155.

20. Rafael Muñoz-Sola, Polynomial liftings on a tetrahedron and applications to the h-p version of the
finite element method in three dimensions, SIAM J. Numer. Anal. 34 (1997), no. 1, 282–314.

21. B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, vol.
219, Longman Scientific & Technical, Harlow, 1990.

22. Joachim Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp. 77 (2008), no. 262,
633–649.

23. Joachim Schöberl, Jens M. Melenk, Clemens Pechstein, and Sabine Zaglmayr, Additive Schwarz pre-
conditioning for p-version triangular and tetrahedral finite elements, IMA J. Numer. Anal. 28 (2008),
no. 1, 1–24.

123

http://arxiv.org/abs/0901.0761
http://arxiv.org/abs/0901.0761

	The Bubble Transform: A New Tool for Analysis  of Finite Element Methods
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 An Overview of the Construction
	2.2 Barycentric Coordinates

	3 Tools for the Construction
	3.1 The Trace Preserving Cutoff Operator on mathcalSmc
	3.2 The Local Averaging Operator

	4 Precise Definitions and Main Results
	4.1 Definition of the Transform
	4.2 Main Properties of the Transform
	4.3 Construction of Projections

	5 Proofs of Lemmas 3.3--3.6
	Acknowledgments
	References


