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1. Introduction

The study of finite element exterior calculus has given increased
insight into the construction of stable and accurate finite element
methods for problems appearing in various applications, ranging
from electromagnetics to elasticity. Instead of considering the de-
sign of discrete methods for each particular problem separately,
it has proved beneficial to simultaneously study approximations
of a family of problems, tied together by a common differential
complex.

To be more specific, let @ c R" and let HA*(Q) be the space of
differential k forms « on @, which is in L?, and where its exterior
derivative, do, is also in L. The L* version of the de Rham complex
then takes the form

0— HAY Q) LHA'(Q) % .. LHA"(Q) — 0.

The basic construction in finite element exterior calculus is of a cor-
responding subcomplex
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where the spaces A¥ are finite-dimensional subspaces of HA*(Q)
consisting of piecewise polynomial differential forms with respect
to a partition of the domain Q. In the theoretical analysis of the sta-
bility of numerical methods constructed from this discrete complex,
bounded projections IT;, : HA*(Q) — A¥ are utilized, such that the
diagram

0 —HAYQ) —4 s HAYQ) —4— .. —L HA™MQ)—0

J{Hn J{Hn l Iy

0= 4 "= 4} A 0
commutes. For a general reference to finite element exterior calcu-
lus, we refer to the survey paper [2], and references given therein.
As is shown there, the spaces A} are taken from two main families.
Either A is one of the spaces P,4%(7) consisting of all elements of
HA¥(Q) which restrict to polynomial k-forms of degree at most r on
each simplex T in the partition 7, or Af = P, A*(7), which is a
space which sits between P, 4*(7) and P,_; A*(7) (the exact defini-
tion will be recalled below). These spaces are generalizations of the
Raviart-Thomas and Brezzi-Douglas—Marini spaces used to discret-
ize H(div) and H(rot) in two space dimensions and the Nédélec edge
and face spaces of the first and second kind, used to discretize
H(curl) and H(div) in three space dimensions.

A key aim of the present paper is to explicitly construct geomet-
ric decompositions of the spaces P,4*(7) and P, A*(7) for arbi-
trary values of r > 1 and k > 0, and an arbitrary simplicial
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partition 7~ of a polyhedral domain in an arbitrary number of space
dimensions. More precisely, we will decompose the space into a di-
rect sum with summands indexed by the faces of the mesh (of arbi-
trary dimension), such that the summand associated to a face is the
image under an explicit extension operator of a finite-dimensional
space of differential forms on the face. Such a decomposition is
necessary for an efficient implementation of the finite element
method, since it allows an assembly process that leads to local
bases for the finite element space. The construction of explicit local
bases is the other key aim of this work.

The construction given here leads to a generalization of the so-
called Bernstein basis for ordinary polynomials, i.e., O-forms on a
simplex T in R", and the corresponding finite element spaces, the
Lagrange finite elements. See Section 2.3 below. This polynomial
basis is a well known and useful theoretical tool both in finite ele-
ment analysis and computational geometry. For low order piece-
wise polynomial spaces, it can be used directly as a
computational basis, while for polynomials of higher order, this ba-
sis can be used as a starting point to construct a basis with im-
proved conditioning or other desired properties. The same will be
true for the corresponding bases for spaces of piecewise polyno-
mial differential forms studied in this paper.

This paper continues the development of geometric decomposi-
tions begun in [2, Section 4]. In the present paper, we give a prom-
inent place to the notion of a consistent family of extension
operators, and show that such a family leads to a direct sum
decomposition of the piecewise polynomial space of differential
forms with proper interelement continuity. The explicit notion of
a consistent family of extension operators is new to this paper.
We also take a more geometric and coordinate-independent ap-
proach in this paper than in [2], and so are able to give a purely
geometric characterization of the decompositions obtained here.
The geometric decomposition we present for the spaces P, A* here
turns out to be the same as obtained in [2], but the decomposition
of the spaces P,A* obtained here is new. It improves upon the one
obtained in [2], since it no longer depends on a particular choice of
ordering of the vertices of the simplex T, and leads to a more
canonical basis for P, A*.

The construction of implementable bases for some of the spaces
we consider here has been considered previously by a number of
authors. Closest to the present paper is the work of Gopalakrishnan
et al. [4]. They give a basis in barycentric coordinates for the space
P-A', where T is a simplex in any number of space dimensions. In
this particular case, their basis is the same as we present in Section
9. In fact, Table 3.1 of [4] is the same, up to a change in notation, as
the left portion of Table 9.2 of this paper. As will be seen below, ex-
plicit bases for the complete polynomial spaces P,A* are more
complicated than for the P, A* spaces. To our knowledge, the basis
we present here for the P, A* spaces have not previously appeared
in the literature, even in two dimensions or for small values of r.

Other authors have focused on the construction of p-hierarchi-
cal bases for some of the spaces considered here. We particularly
note the work of Ainsworth and Coyle [1], Hiptmair [5], and Webb
[7]. In [1], the authors construct hierarchical bases of arbitrary
polynomial order for the spaces we denote P,A*, k=0,...,3,
r > 1,and T a simplex in three dimensions. In Section 5 of [5], Hip-
tmair considers hierarchical bases of P; A" for general , k, and sim-
plex dimension. In [7], Webb constructs hierarchical bases for both
P,A* and P; A%, for k= 0,1 in one, two, and three space dimen-
sions. The approaches of these three sets of authors differ. Even
when adapted to the simple case of zero-forms, i.e., Lagrange finite
elements, they produce different hierarchical bases, from among
the many that have been proposed. Our approach is quite distinct
from these in that we are not trying to find hierarchical bases, but
rather we generalize the explicit Bernstein basis to the full range of
spaces P,A* and P; A¥.

In the present work, by treating the P, 4* and P; 4* families to-
gether, and adopting the framework of differential forms, we are
able to give a presentation that shows the close connection of these
two families, and is valid for all order polynomials and all order dif-
ferential forms in arbitrary space dimensions. Moreover, the view-
point of this paper is that the construction of basis functions is a
straightforward consequence of the geometric decomposition of
the finite element spaces, which is the key ingredient needed to
construct spaces with the proper interelement continuity. Thus,
the main results of the paper focus on these geometric
decompositions.

An outline of the paper is as follows: In the next section, we de-
fine our notation and review material we will need about barycen-
tric coordinates, the Bernstein basis, differential forms, and
simplicial triangulations. The P,A* and P, A* families of polyno-
mial and piecewise polynomial differential forms are described in
Section 3. In Section 4, we introduce the concept of a consistent
family of extension operators and use it to construct a geometric
decomposition of a finite element space in an abstract setting. In
addition to the Bernstein decomposition, a second familiar decom-
position which fits this framework is the dual decomposition,
briefly discussed in Section 5. Barycentric spanning sets and bases
for the spaces P,A%(T) and P, A*(T) and the corresponding sub-
spaces P,A%(T) and P; A*(T) with vanishing trace are presented
in Section 6. The main results of this paper, the geometric decom-
positions and local bases, are derived in Sections 7 and 8 for
P-A*(7) and P, A*(7). Finally, in Section 9, we discuss how these
results can be used to obtain explicit local bases, and tabulate such
bases in the cases of 2 and 3 space dimensions and polynomial
degree at most 3.

2. Notation and preliminaries
2.1. Increasing sequences and multi-indices

We will frequently use increasing sequences, or increasing
maps from integers to integers, to index differential forms. For
integers j,k,I,m, with 0 <k —j<m—1I, we will use X2(j: k,I: m)
to denote the set of increasing maps {j,...,k} — {l,...,m}, i.e,

2(j:kl:my={a:{j,....k} = {l,....m}jo(j) < o(i+1)<---
<a(k)}.
Furthermore, [o] will denote the range of such maps, ie., for

oceX(j:kl:m), [o] ={o@)|i=],..., k}. Most frequently, we will
use the sets X(0:k,0:n) and X(1:k,0:n) with cardinality

n+1 n+1 . .
< K+ 1 > or k ) respectively.  Furthermore, if

o€ 2(0:k,0:n), we denote by ¢* € X(1:n—k,0:n) the comple-
mentary map characterized by

[e]uo"] = {0,1,....n}. 2.1)

On the other hand, if 6 € X(1 : k,0: n),theno* € Z(0:n—k,0:n)is
the complementary map such that (2.1) holds.

We will use the multi-index notation o € NJ, meaning
o= (o1, -+, 0y) With integer o; > 0. We define x* = x}" ---x%, and
loff := >0y, We will also use the set NJ" of multi-indices
o= (0o, -+, 0ty ), With x* := x3° - - - x%». The support [o] of a multi-in-
dex a is {ijo; > 0}. It is also useful to let

[o, 0] =[] U[a], oeX(:kl:m).

If @ c R" and r > 0, then P,(£2) denotes the set of real valued poly-
nomials defined on Q of degree less than or equal to r. For simplic-
ity, we let P, = P,(R"). Hence, if Q has nonempty interior, then

dim P,(Q) = dim P, = (r Z n)‘ The case where Q consists of a sin-

o e N9
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gle point is allowed: then P,(Q) = R for all r > 0. For any , when
r < 0, we take P.(Q) = {0}.

2.2. Simplices and barycentric coordinates
Let T € R" be an n-simplex with vertices xo, X1, ..., X, in general

position. We let A(T) denote all the subsimplices, or faces, of T,
while 4,(T) denotes the set of subsimplices of dimension k. Hence,

the cardinality of 4,(T) is (Z er } . We will use elements of the set
2@G:k0:n) to index the subsimplices of T. For each

o€ X(j:k0:n), we let f, € A(T) be the closed convex hull of the
Vertices  Xq(),....Xo, Which we henceforth denote by
[Xs()» - - -, Xa(i)- Note that there is a one-to-one correspondence be-
tween 4,(T) and X2(0 : k,0 : n). In fact, the face f, is uniquely deter-
mined by the range of o, [o]. If f =f, for 6 € 2(j : k,0: n), we let
the index set associated to f be denoted by .#(f), i.e., #(f) = [o].
If f € 4,(T), then f* € 4,_1(T) will denote the subsimplex of T
opposite f, i.e., the subsimplex whose index set is the complement
of #(f) in {0,1,...,n}. Note that if 6 € X(0:k,0:n) and f =f5,
then f* = f-.

We denote by 45 21, ... i! the barycentric coordinate functions
with respect to T, so 4] € Py(T) is determined by the equations
(%) = 03, 0 <1i,j<n. The functions A form a basis for P;(T),
are non-negative on T, and sum to 1 identically on T. Moreover,
the subsimplices of T correspond to the zero sets of the barycentric
coordinates, i.e., if f = f; for 6 € 2(0: k,0 : n), then f is character-
ized by

f={xeTXHx) =0,ic[c]}

For a subsimplex f € A(T), the barycentric coordinates functions
with respect to f, {};_,, € P1(f), satisfy

H=trppll, i€ s(f). (2.2)

Here the trace map trrs: P1(T) — P;(f) is the restriction of the
function to f. Due to the relation (2.2), we will sometimes omit
the superscript T or f, and simply write /; instead of 4] or A{ . Note
that, by linearity, the map }.{ — I ie . #(f), defines a barycentric
extension operator E}_T : P1(f) — P1(T), which is a right inverse of
trrs. The barycentric extension E}‘Tp can be characterized as the un-
ique extension of the linear polynomial p on fto a linear polynomial
on T which vanishes on f*.

2.3. The Bernstein decomposition

Let T = [Xo,X1,...,%;] C R" be as above and {/;}!_, c P;(T) the
corresponding barycentric coordinates. For r > 1, the Bernstein ba-
sis for the space P.(T) consists of all monomials of degree r in the
variables /;, i.e., the basis functions are given by

(% =005 e e N0 o = 1. (2.3)

(It is common to take the scaled barycentric monomials (n!/a!)2* as
the Bernstein basis elements, as in [6], but the scaling is not rele-
vant here, and so we use the unscaled monomials.) Of course, for
f € A(T), the space P;(f) has the corresponding basis

{(@) e Ng", o =T, [e] €A (F)}-

Hence, from this Bernstein basis, we also obtain a barycentric
extension operator, E = E;; : P;(f) — P,(T), by simply replacing A{
by /! in the bases and using linearity.

We let 7,(T) denote the subspace of P,(T) consisting of polyno-
mials which vanish on the boundary of T or, equivalently, which
are divisible by the corresponding bubble function 4 --- 4, on T.
Alternatively, we have

Pr(T) = span{2*je € Ng", |o =1, [o] = {0,....n}}. (24)

Note that multiplication by the bubble function establishes an iso-
morphism P,_,_(T) = P.(T).

The Bernstein basis (2.3) leads to an explicit geometric decom-
position of the space P,(T). Namely, we associate to the face f, the
subspace of P,(T) that is spanned by the basis functions 1* with
[o] = #(f). We then note that this subspace is precisely E[P,(f)],
ie,

E[Pr(f)] = span{2*|o € Ng", |o| =1, [o] = #()}- (25)

Clearly,

Pi(T) = @ E[P:(f)], (2.6)
feA(T)

which we refer to as the Bernstein decomposition of the space P,(T).
This is an example of a geometric decomposition, as discussed in
the introduction. An illustration of the decomposition (2.6) is given
in Fig. 2.1.

Moreover, the extension operator E may also be characterized
geometrically, without recourse to barycentric coordinates. To ob-
tain such a characterization, we first recall that a smooth function
u: T — R is said to vanish to order r at a point x if

(@*u)(x) =0, e N§, |o| <r—1.
We also say that u vanishes to order r on a set g if it vanishes to or-
der r at each point of g. Note that the extension operator E = E; ; has

the property that for any u € P;(f), Eu vanishes to order r on f*. In
fact, if we set

P(T,f) = {w € P:(T)|w vanishes to order r on f*},
we can prove

Lemma 2.1. P,(T,f) = E[P;(f)] and for j € Py(f), Ex = Ef p it can be
characterized as the unique extension of u to Pr(T,f).

Proof. It is easy to see that E[P.(f)]C P(T,f). To establish the
reverse inclusion, we observe that if f* = {x;}, then w € P.(T) van-
ishes at f* if and only if it can be written in the form

= Z ¢,

ot|=r

where the sum is restricted to multi-indices i for which o; = 0. For a
more general set f*, this fact will be true for any i € .#(f*) and hence

Fig. 2.1. The Bernstein basis of P4(T) for a triangle T. One basis function is
associated with each vertex, three with each edge, and three with the triangle. The
basis functions associated with any face f are obtained by extending basis functions
for 24(f) to the triangle.
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o= > i

=1

lecs(h)
and so w € E[P:(f)]. O

We also note that it follows immediately from Lemma 2.1 that
the space E[P;(f)] appearing in the Bernstein decomposition (2.6) is
characterized by

E[P:(f)] = {®w € P(T)|w vanishes to order r on f*, trryw € Pr(f)}.

In this paper, we will establish results analogous to those of this
section for spaces of polynomial differential forms, and in particu-
lar, direct sum decompositions of these spaces analogous to the
Bernstein decomposition (2.6).

2.4. Differential forms

Next we indicate the notations we will be using for basic con-
cepts related to differential forms. See [2, Section 2] or the refer-
ences indicated there for a more detailed treatment. For k > 0,
we denote by Alt*V the set of real-valued, alternating k-linear
maps on a vector space V (with Alt’V = R). Hence, Alt*V is a vector

dimV

space of dimension K ) The exterior product, or the wedge

product, maps APV x Alt*V into AIEHV. If @ € Alt*V and v ¢ v,
then the contraction of w with o, w.v e Alt“'V, is given by
OV(V1,..., V1) = OV, V1, ..., Uk_1).

If Q is a smooth manifold (e.g., an open subset of Euclidean
space), a differential k-form on @ is a map which assigns to each
x € Q an element of AltkaQ, where T,Q is the tangent space to Q
at x. In case fis an open subset of an affine subspace of Euclidean
space, all the tangents spaces T,f may be canonically identified,
and we simply write them as Ty.

We denote by A(®) the space of all smooth differential k-forms
on Q. The exterior derivative d maps A*(Q) to A¥"1(Q). It satisfies
d o d =0, so defines a complex

0— AL 4@ .. L aQ) -0,

the de Rham complex. If F: Q — ', is a smooth map between
smooth manifolds, then the pullback F* : A*(Q') — A*(Q) is given by

(Fo)y(v1,0,..., 0) = O (DF«(v1), DFx(v2), . .., DF(wx)),

where the linear map DF, : TyQ — Ty 2 is the derivative of F at x.
The pullback commutes with the exterior derivative, i.e.,

F(dw) =d(Fw), oeAYQ),
and distributes with respect to the wedge product:
F(woan)=FwnFn.

We also recall the integral of a k-form over an orientable k-dimen-
sional manifold is defined, and

/F*w [ o, weca@) 2.7)
Q Q

when F is an orientation-preserving diffeomorphism.

If @ is a submanifold of Q, then the pullback of the inclusion
Q'—Q is the trace map trg o : A(Q) — A*(Q). If the domain @ is
clear from the context, we may write tr, instead of tr,, and if
€' is the boundary of Q, 3Q, we just write tr. Note that if ' is a sub-
manifold of positive codimension and k > 0, then the vanishing of
Troo on & for w € A¥(Q) does not imply that w, € Alt*T,Q van-
ishes for x € @', only that it vanishes when applied to k-tuples of
vectors tangent to ', or, in other words, that the tangential part
of wy with respect to T,Q' vanishes.

If Q is a subset of R" (or, more generally, a Riemannian mani-
fold), we can define the Hilbert space L*A*(Q) > A*(Q) of L? differ-
ential k-forms, and the Sobolev space

HAY(Q) := {w e *A*(Q)|dw € [* A1 (Q)}.

The > de Rham complex is the sequence of mappings and spaces
given by

0— HA Q) LHA'(Q) L. L HA(Q) — 0. (2.8)

We remark that for Q c R", HA°(Q) is equal to the ordinary Sobolev
space H'(Q) and, via the identification of Alt"R" with R, HA"(Q) can
be identified with L?(Q). Furthermore, in the case n = 3, the spaces
Alt'R? and AIt’R? can be identified with R?, and the complex (2.8)
may be identified with the complex

grad curl div

0 — H'(Q) =5 H(curl;Q) = H(div;Q) = [*(Q) — 0.

2.5. Simplicial triangulations

Let Q2 be a bounded polyhedral domain in R" and .7~ a finite set
of n-simplices. We will refer to .7~ as a simplicial triangulation of Q if
the union of all the elements of .7 is the closure of Q, and the inter-
section of two is either empty or a common subsimplex of each. For
0 <j<n welet

-

Il
o

4(7)=J4(T) and A7) =

TeT J

(7).

In the finite element exterior calculus, we employ spaces of differ-
ential forms « which are piecewise smooth (usually polynomials)
with respect to 7, i.e. the restriction w|; is smooth for each
T € 7. Then for f € 4;(7) with j > k, tryo may be multi-valued,
in that we can assign a value for each T € 7 containing f by first
restricting w to T and then taking the trace on f. If all such traces
coincide, we say that trrw is single-valued. The following lemma,
a simple consequence of Stokes’ theorem, cf. [2, Lemma 5.1], is a
key result.

Lemma 2.2. Let @ € [ A¥(Q) be piecewise smooth with respect to the
triangulation 7. The following statements are equivalent:

(1) w € HAYQ),
(2) tryw is single-valued for all f € A, 1(7),
(3) trrw is single-valued for all f € 4;(7), k<j<n-1.

As a consequence of this lemma, in order to construct subspaces
of HA*(Q), consisting of differential forms o which are piecewise
smooth with respect to the triangulation 77, we need to build into
the construction that tryw is single-valued for each f € 4;(7) for
k<j<n-1.

3. Polynomial and piecewise polynomial differential forms

In this section, we formally define the two families of spaces of
polynomial differential forms P,4* and P; A*. These polynomial
spaces will then be used to define piecewise polynomial differen-
tial forms with respect to a simplicial triangulation of a bounded
polyhedral domain in R". In fact, as explained in [2, Section 3.4],
the two families presented here are nearly the only affine invariant
spaces of polynomial differential forms.

3.1. The space P, A

Let Q be a subset of R™. For 0 < k < n, we let P, 4*(Q) be the sub-
space of AX(Q) consisting of all we A¥Q) such that
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(v, V2, ..., ) € Pr(Q) for each choice of vectors
V1, Va,... Uy € R". Frequently, we will write P, A instead of
PrAk(R”). The space P, A* is isomorphic to P, ® Alt* and

dim P, A* = dim P, x dim Alt‘R"
_(r+n><n>_<r+k>(n+r)
"\ n k) \r n-k)

Furthermore, if QcR" with

dim P, A%(Q) = dim P, 4.
If T is a simplex, we define

P AK(T) = {w € P,AYT)|trw = 0}.

3.1)

nonempty interior, then

In the case k = 0, this space simply consists of all the polynomials
divisible by the bubble function Z¢ - - - A4, SO

PrA(T) = Ppy 1 A°(T). (3.2)
For k = n, the trace map vanishes, so we have
P AY(T) = P A™(T). (3.3)

3.2. The space P, A*

The Koszul differential x of a differential k-form @ on R" is the
(k — 1)-form given by
(KUJ)X(U1 PR Uk,]) = wX(X(X)7 Ulyonoy yk—l)7

where X(x) is the vector from the origin to x. For each r, x maps
Pr_14% to P,A*!, and the Koszul complex

1 K

0— P A" 5P AT 5 5P A SR -0,

is exact. Furthermore, the Koszul operator satisfies the Leibniz
relation

k(@A) = (Ko) A+ (Do A k), e ned
We define

(3.4)

Py A" = Pr ANRY) = Py A+ kP AR

From this definition, we easily see that P;A°=7,4° and
P A" = P,_1A". However, if 0 < k < n, then

Py A CP A TP Ak,
An important property of the spaces P; A" is the closure relation

Py A APy A C Py AR (3.5)
A key identity relating the Koszul operator xk with the exterior

derivative d is the homotopy relation

(dk + kd)w = (r+ kK)o, o e #A¥ (3.6)

where 7, A" is the space of homogeneous polynomial k-forms of de-
gree r.

Using the homotopy relation and the exactness of the Koszul
complex, we can inductively compute the dimension of P, A¥ as

. r+k—1 n+r
cAK = :
dim P; ( K )(n—k)

If @ ¢ R", then P; A¥(Q) denotes the restriction of functions in P; A
to Q, which implies that the space P, A*(Q) is isomorphic to P; A* if
Q has nonempty interior. Finally, we remark that although the Kos-
zul operator x depends on the choice of origin used to associate a
point in R" with a vector, the space P; A* is unaffected by the choice
of origin. We refer to [2] for more details on the spaces P, A*.
In particular, if TCR" is a simplex and fe 4;(T), then
tryP; AX(T) = P; A*(f), where the space P; AX(f) =P, A*(®) de-
pends on f, but is independent of T.

(3.7)

For a simplex T, we define
Py AKT) = {w € P; A4(T)|trw = 0}.
From the Hodge star isomorphism, we have that PHHAO(T) o
Prg1 AN(T) =P, ,A"(T) and that P,AY(T) = P,A%T) = P; A%(T).

r-n

Therefore (3.2) and (3.3) become

PANT) = P AT, PrA™(T) = P; AYT). (3.8)
These are the two extreme cases of the relation
PeANT) =Py AVHT), 0<k<n. (3.9)

But (3.8) can also be written

PoANT) 2 Py 1 ANT), PrAYT) 2P A%T),

(where we have substituted r—1 for r in the second relation),
which are the extreme cases of

Py ANT) 2 Py 1 A" HT), 0<k<n (3.10)

That the isomorphisms in (3.9) and (3.10) do indeed exist for all k
follows from Corollary 5.2 below.

3.3. The spaces P, A*(7) and P; A*(7)

For 7 a simplicial triangulation of a domain Q € R", we define

PA(T) = {w e P A¥(Q)|w|; € PANT) VT e T,
trrw is single-valued for f € 4;(7), k<j<n-1},

and define P, A*(7") similarly. In view of Lemma 2.2, we have
PA(T) = {w € HAYQ)|w|; € P,AXT) VT € 7},
P AT ) = {w e HAY(Q)|w|; € P, AXT) VT € 7}

4. Consistent extension operators and geometric
decompositions

Let 7 be a simplicial triangulation of Q c R", and let there be
given a finite-dimensional subspace X(T) of A*(T) for each T € 7.
In this section, we shall define the notion of a consistent family of
extension operators, and show that it leads to the construction of
a geometric decomposition and a local basis of the finite element
space

X(7) = {w e *A4Q)|w|; € X(T) VT

€ 7, trym is single-valued for f € A(7)}. (4.1)

We note that as a result of Lemma 2.2, X(7) c HA¥(Q).

For the Lagrange finite element space P,(7) = P,4%°(7), both
the Bernstein basis discussed in Section 2.3 and the dual basis dis-
cussed in the next section arise from this construction. One of the
main goals of this paper is to generalize these bases to the two
families of finite element spaces of k-forms.

We require that the family of spaces X(T) fulfills the following
consistency assumption:

trr X(T) = trp;X(T') whenever T, T' € 7 with f € A(T) N A(T').

(4.2)
In this case, we may define for any f € A(7), X(f) = trrX(T) where
T € 7 is any simplex containing f. We also define X(f) as the sub-

space of X(f) consisting of all w € X(f) such that tr;,» = 0. Note
that

trgsX(g) = X(f)

Consequently, for each such f and g we may choose an extension
operator Esg : X(f) — X(g), i.e., a right inverse of trg; : X(g) — X(f).

forall f,ge A(7) withfcCg. (4.3)
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We say that a family of extension operators Ef,, defined for all
f,g € A(7) with f C g, is consistent if

trgErp = Efrgetiisrg forall f.g.he A(7) withf,gCh. (4.4)
In other words, we require that the diagram
E
X(f) —= X
ltr | tr
E
X(fng — X
commutes.
One immediate implication of (4.4) is that for w € X(f),
trpgErnew = Ergoo forall f,g,he A(7) withfCgcCh. (4.5)

A second implication is:

Lemma 4.1.let heA(Z) and f,geA(h) with f¢g. Then
trpgw = 0 for all w € Epp X(f).

Proof. Let w = Efpu with u € )O((f). Since f ¢ g, we have fng c of,
and therefore try gt = 0. Then, by (4.4),
tl‘hg(l) = tl‘thf7hﬂ = Efmgvgtl'f‘mg,u =0. O

We now define an extension operator Ef :)O((f) — X(7) for each
f e A(7). Given u € X(f), we define E; it piecewise:

Erp iffCT,

4.6
0, otherwise. (4.6)

Bl = {
We claim that for each g € A(7), trgEs i is single-valued, so Ey i does
indeed belong to X(.7). To see this, we consider separately the cases
fCgand f ¢g. In the former case, if T € 7 is any simplex contain-
ing g, then f C T, and so

trrg[(Erpt)|7] = trrgEprpt = Ep gt

by (4.5). Thus tryg[(Efit)|;] does not depend on the choice of T con-
taining g, so in this case we have established that trgEfu is single-
valued. On the other hand, if f ¢ g then trrg[(Efut)|;] =0 for any T
containing g, either because f ¢ T and so (Efu)|; = 0, or by Lemma
4.1 if f C T. Thus we have established that all traces of E;t are sin-
gle-valued, and so we have defined extension operators
Ef : X(f) — X(7) for each f e A(7). We refer to E; as the global
extension operator determined by the consistent family of exten-
sion operators.
We easily obtain this variant of Lemma 4.1.

Lemma4.2. Letf,g € A(7), f ¢ g Then trgew =0 forall w € Ef)o((f).

Proof. Pick T € 7 containing g. If f € A(T), then we can apply
Lemma 4.1 with h = T. Otherwise, (E;u)|; = 0 for all u € X(f). O

The following theorem is the main result of this section.

Theorem 4.3. Let 7 be a simplicial triangulation and suppose that
for each T € 7, a finite-dimensional subspace X(T) of A*(T) is given
fulfilling the consistency assumption (4.2). Assume that there is a
consistent family of extensions operators Es ¢ for all f,g € A(7) with
fCg. Define E;, f € A(7) by (4.6). Then the space X(7) defined in
(4.1) admits the direct sum decomposition

@ EX(f).

X7)= feA(7)

(4.7)

Proof. To show that the sum is direct, we assume that
e @r =0, where «y € Err X(f), and prove by induction that
wy =0 for all f e A(7) with dim f <j. This is certainly true for
j < k, (since then A*(f) and, a fortiori, X(f) vanishes), so we assume
it is true and must show that w, = 0 for g € 4;.1(7). By Lemma
4.2,

0=trg| Y o | =trgw,.
feA(7)
Hence, o, = E,tryw; = 0. We thus conclude that the sum is direct,
and X(7) 2 @rear Er X(f).
To show that this is an equality, we write any w € X() in the
form
n-1 ) .
0=0"-Y (" - ),
=k

J:
where w* = w, and for k < j < n, @ € X(7) is defined recursively by

(})H] :0)}.* Z Eftrfa)’.

Fea(7)

We shall prove by induction that for k <j <n

el € X(f), fe 4(7). (4.8)

Assuming this momentarily, we get that *' — ' € Yy, . Er )O((f).
Also, w"|; =trrw" € X(T) for all Te 7, and w" = >, trr(w"|;).
Thus, w € ®rea Err X(f) as desired.

To prove (4.8) inductively, we first note it is certainly true if
j=k, since X(f) =X(f) for f € 4,(7). Now assume (4.8) and let
g€ 4;4(7). We show that tryaw/*! € X(g), by showing that
trp*! = 0 for h € 4;(g). In fact,

tl‘h(/L)jJrl = trhwi — Z tl‘thtl‘f(l)i.

fe4(7)

Now tryay e)o((f) by the inductive hypothesis, and therefore, by
Lemma 4.2, tryEtriyed =0 unless f=h, in which case
trpEptryay = tryel. Thus,

trha)”l = trhw’ — trha)’ =0.

This completes the proof of the theorem. O

Remark. By considering the case of a mesh consisting of a single
simplex T, we see that

X(T) = & ErX(f).

49
feA) “9)

The decomposition (4.7) is very important in practice. It leads
immediately to a local basis for the large space X(7) consisting
of elements Ep, where f ranges over A(7) and i ranges over a ba-
sis for the space X(f).

We close this section with the simplest example of this theory.
Let X(T) = P.(T) = P,A°(T) be the polynomial space discussed in
Section 2.3. Then (4.2) is fulfilled and the trace spaces X(f) are sim-
ply P.(f) for f € A(7). For f,g € A(7) with f C g, the trace operator
trg; and barycentric extension operator E;, are given in barycentric
coordinates as follows. If & € N3™ with [o] C.#(g), then

thYVM“ﬁ@MJW

0, otherwise.

For o € N§™ with || = r and [0] C.#(f), then E;,(/)* = (7%)*. We
now check that the family of barycentric extension operators is con-
sistent, i.e., we verify (4.4). We must show thatif f, g, h € A(7") with
f,g Ch, then

trhgErn(#)" = Epeggttysrg(#)”

for all multi-indices o with || = r and [o] C .#(f). Indeed, it is easy
to check that both sides are equal to (5)* if [o] C.#(g) and zero
otherwise. Note that, in this case, the decomposition (4.9) is simply
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the Bernstein decomposition (2.6). If we then define, as in the gen-
eral definition (4.1) above,

PAY(T) = {w e I*(Q)|w|; € PH(T) VT
€ 7, tryo is single-valued for f € A(7)},

then the decomposition (4.7) gives a decomposition of the space
P, A°(7), i.e., the space of continuous piecewise polynomials of de-
gree <T.

5. Degrees of freedom and the dual decomposition

Although our main interest in this paper is obtaining direct
sum decompositions for polynomial differential forms that are
analogous to the Bernstein decomposition for ordinary polynomi-
als, we include here a discussion of another decomposition, re-
ferred to as the dual decomposition, for completeness and as
an illustration of the general theory developed in the previous
section.

Before we consider the case of differential forms, we review the
corresponding decomposition for polynomials. For the construc-
tion of finite element spaces based on the local space P,(T), a basis
for the dual space P,(T)" is given, with each basis element associ-
ated to a subsimplex of T. This is referred to as a set of degrees of
freedom for P,(T). The degrees of freedom then determine the int-
erelement continuity imposed on the finite element space. Indeed,
in the classical approach of Ciarlet [3], the degrees of freedom and
their association to subsimplices is used to define a finite element
space. For this purpose, what matters is not the particular basis of
P+(T)", but rather the decomposition of this space into the spaces
spanned by the basis elements associated to each simplex. For
the standard Lagrange finite elements, this geometric decomposi-
tion of the dual space is

P(T) = & WH(T.f),

51
feA(T) ( )

where

Wi(g.f) = (¥ € Py(g) () = /f (trg s )1, 1 € Praimsr(F)}.

We note that for w € P(h), tryyw is uniquely determined by
Sgeag) Wi (R 8).

Consequently, if f C h € A(T), we may define an extension oper-
ator Fp = Fyy : Pr(f) — P;(h), determined by the conditions:

/ (trpgFrpo)n = / (trrgm)n, N € Prdmg-1(8), &€ A(f),
&g g

l[/(th(U) = Oa l// € Wr(hag)7 gc A(h)~ gg—f

To apply the theory developed in Section 4, we need to check that
the extension operator is consistent, i.e., that it satisfies (4.4). For
f.gch, let weP(f), and set p:=Fjggltlipe € Pr(g),
V= tragFrpw € Pr(g). For any face e CgNf, trgell =ty = trgeV.
Therefore, y(u) = y(v) for all y € W,(g,e) with e € A(g) such that
e Cf. Also, for e € A(g) with e¢f, it follows from the definition of
the extension that for all y € W,(g,e), y(1) =0 = y(v). Thus, we
have shown that the extension operators Fy; form a consistent fam-
ily. The decomposition

Fi [P ,
feeAa(T) f‘T[Pr (f)}

7>r(T) =
corresponding to (4.9), is now called the decomposition dual to
(5.1). Furthermore, from Theorem 4.3 we obtain a corresponding di-
rect sum decomposition for the assembled space P,(7) = P, A%(7)
of the form (4.7).

In the remainder of this section, we present analogous results
for the spaces P, A*(T) and P; A¥(T). This will be based on the fol-

lowing decompositions of the dual spaces P, 4*(T)* and P; A¥(T)",
established in [2, Section 4, Theorems 4.10 and 4.14].

Theorem 5.1.
1. For each f € A(T) define
WHT.f) = {y € PrA"(T) (@)
- /f trry@ A1 for some 1] € Pr_gim ;A" f”‘(f)}.

Then the obvious mapping Py, g (A™ /™ (f) — W(T.f) is an iso-
morphism, and

AT = WX(T,f).
PrAXT) fQGAB(T) (T.f)

2. For each f € A(T) define
Wi (T.f) = {v e P AT ()
- / trr;w A 1 for some 1 € Prydim 1A f”‘(f)}.
f

Then the obvious mapping Pr.i—dgim f1 A I (f) — WX (T f) is an
isomorphism, and

P AT = & WS (T.f).
FeA(T)

Note that as in the polynomial case, if @ € P,4*(T), then trr;w
is determined by the degrees of freedom in W¥(T, g) for g € A(f). In
particular, if w € P, A*(T) such that all the degrees of freedom asso-
ciated to the subsimplices of T with dimension less than or equal to
n — 1 vanish, then @ € P, A*(T). The corresponding property holds
for the spaces P, A*(T) as well.

An immediate consequence of this theorem are the following
isomorphisms, that will be used in the following section.

Corollary 5.2.
PAKT) =P

r+k-n

A"KT) and P ANT) = Py AVHD).

As in the case of O-forms, if f ¢ h € A(T), we define an extension

operator Ff} : P,A*(f) — P,A"(h), determined by the conditions:

/(tl‘/—,gF}{,:Cl)) A ’7 = /(tl‘fyg(l)) A 1/]7 17 € ’Pr:rk—dim gAdim g—k(g)7
4 4

geAf). W(Ffw) =0, yeWi(hg), geAh), ggf.

We  may similarly  define an  extension  operator
Fff Py AX(f) — Py A*(h). The verification of the consistency of
these families of extension operators is essentially the same as for
the space P,(T) given above, and so we do not repeat the proof.

6. Barycentric spanning sets

Let T = [xp,...,X,] C R" be a nondegenerate n-simplex. The
Bernstein basis described in Section 2.3 above is given in terms
of the barycentric coordinates {4}!,  P;(T). The main purpose
of this paper is to construct the generalization of the Bernstein ba-
sis for the polynomial spaces P,4*(T) and P; A*(T). In the present
section, we will give spanning sets and bases for these spaces and
for the corresponding spaces with vanishing trace expressed in
barycentric coordinates. Note that the bases given in this section
depend on the ordering of the vertices. These are not the bases
we suggest for computation.

For convenience we summarize the results of the section in the
following theorem, referring not only to the n-dimensional simplex
T, but, more generally, to any subsimplex f of T. Here, we use the
notation
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A2, = di g Ao NdA € ATy (6.1)

for f € A(T), 6 € (1 : k,0 : n) with [¢] C.#(f), and ¢/, for the Whit-
ney form defined in (6.3).

Theorem 6.1. Let f € A(T).

1. Spanning set and basis for P, A*(f). The set
(OGN dH e e N3 || = 1,0 € Z(1 : k,0: n), [o, 0] C.#(f)}
is a spanning set for P,A*(f), and
{OD*dX o e Ng™ |l = 1,0 € Z(1: k,0: n), [, 0] C.2(f),
min[o] > min.#(f)}

is a basis.
2. Spanning set and basis for P, A*(f). The set

{*dA joe e NQ™ ol = 1,0 € 2(1:k,0:n), [o, 0] = 2 (f)}
is a spanning set for P, A*(f), and
{* A joo e NQ™ el = 1,0 € Z(1:k,0:n),

[o,0] = 7(f) o =0 if i <min[.#(f) \ [a]]}

is a basis.
3. Spanning set and basis for P;A"(f). The set

{(F)* ¢ lue NG o =1 — 1,0 € £(0: k,0:n), [, 6] C.o(F)}

is a spanning set for P A*(f), and
(Y Jlee NI Ja| =7 — 1,0 € Z(0 : k,0: ),
[a,0]C #(f), ;=0 if i <min[o]} (6.2)

is a basis.
4, Spanning set and basis for 75;Ak(f). The set

()¢l e NO" Ja| =1 — 1,0 € 2(0: k,0: 1), [o,0] = .2(f)}

is a spanning set for P A*(f), and
(D¢ Je e NG |o| =1 —1,0 € 2(0: k,0: n),
[o,0] =2(f), i =01if i <min[o]}

is a basis.

6.1. Barycentric spanning set and basis for P, A*(T)

Observe that dJ; € Alt'R". Furthermore, d/; (xj —y) =g forany y
in the subsimplex opposite x;. In particular, tryyd/; = 0 for any sub-
simplex f € A(T) with x; ¢ f or equivalently i € .#(f*). Furthermore,
{dJi}!, is a spanning set for Alt'R", and any subset of n elements is
a basis. Therefore, writing dJ, for dil, the set

{dis|l0 € 2(1:k,0:n)}
is a spanning set for AIt‘R", and the set
{dlslc € Z(1:k,1:n)}

is a basis. The forms di, € Alt‘R" have the property that for any
f € A(T) with dim f > k,

trrpdis =0 if and only if [o] N7 (f*) # 0.

More generally, for polynomial forms of the form 2*di, € P,A*(T)
and dim f > k, we observe that

trrs(2"dis) =0 if and only if [o, 0] N.7(f*) # 0.

In particular, if k<n, then *di, € P.AYT) if and only if
[o,0] = {0,...,n}.

Taking the tensor product of the Bernstein basis for P.(T), given
by (2.3), with the spanning set and basis given above for Alt‘R", we
get that

Proposition 6.2. The set
{2Pdisloe e NJ" jo) = 1,0 € 2(1:k,0:n)}
is a spanning set for P, A*(T), and
{2Pdisloe e NJ" o) = 1,0 € 2(1:k,1:n)}
is a basis.
Restricting to a face f € A(T), we obtain the spanning set and
basis for P, A*(f) given in the first part of Theorem 6.1.
6.2. Barycentric spanning set and basis for P; A*(T)

For f € A(T) and 0 € 2(0: k,0:n) with [o] C.#(f), define the
associated Whitney form by

k —
¢h = (V)i di g AN AL A A dE (6.3)
i=0

Just as we usually write % rather than 4/ when the simplex is clear
from context, we will usually write ¢, instead of ¢T. We note that if
k = 0, so that the associated subsimplex f; consists of a single point
X, then ¢, = /. It is evident that the Whitney forms belong to
P1AX(T). In fact, they belong to P; A%(T). This is a direct conse-
quence of the identity

Kd/la = qba - ¢(T (0)

which can be easily established by induction on k, using the Leibniz
rule (3.4). In fact, the set

(6.4)

(¢, € 2(0:k,0:n)}

is a basis for Py A*(T). Furthermore, trr;¢, = disy A -+ A digy is @
nonvanishing constant k-form on f=f;, while trrs¢, =0 for
f € A(T), f # f . Therefore, we refer to ¢, as the Whitney form asso-
ciated to the face f;.

For 0 € 2(0:k,0:n) and 0 <j <k, we let ¢; be the Whitney
form corresponding to the subsimplex of f, obtained by removing
the vertex o (j). Hence,

j-1

(/)aj‘ = Z(*l)iig(i)dig(o) VARERWAN d;bg(i) VARERIWAN d;,g(,‘) /AR d;ho'(k)
i=0
k . —_— —_—
— Z (71)’/10-(,')(1/10—(0) JARERIA dﬂuo-(i) JARERIAN d)\.o—(i) /ARER dlg(k).
i=j+1

From this expression, we easily obtain the identity

k

> (~1Yigp; =0, o€ Z(0:k0:n).

=0

(6.5)

Correspondingly, for j ¢ [a], we define
¢ja = ljd/l(,— — d)»j A Qg

Thus, modulo a possible factor of —1, ¢;, is the Whitney form asso-
ciated to the simplex [x;,f;]. For these functions, we obtain

j;[a:] o = (/;[(;] A,) g — (;]] d@) A,
= (Z A,») dis + (/Z d;,j> Ay = (zn: ;,j) diy = diy.

j¢lo) jelo) o
(6.6)
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Now consider functions of the form 2*¢,, where ot € N3, |oe| = 1 — 1,
o€ 2(0:k,0:n). It follows from the relation (3.5) that these func-
tions belong to P; A*(T). In fact, they span. From the identity (6.5)
we know that these forms are not, in general, linearly independent.
The following lemma, cf. [2, Lemma 4.2], enables us to extract a basis.

Lemma 6.3. Let x be a vertex of T. Then the Whitney forms
corresponding to the k-subsimplices that contain x are linearly
independent over the ring of polynomials P(T).

Using these results, we are able to prove:
Proposition 6.4. The set
{Ppslo e NI o =17~ 1,0 € Z(0: k,0:n)}. (6.7)
is a spanning set for P A*(T), and
{2*pgle e NI |aj=r—1, 6 € £(0:k,0:n), o; =0if i < min[o]}
(6.8)
is a basis.

Proof. Let oo € N§™, with |¢| =r—1,and p € X(0: k— 1,0 n). The
identity (6.6) implies that

2tdi, = Z iy,
i)

and hence all forms in P,_; A*(T) are in the span of the set given by
(6.7). Furthermore, if 0 € 2(0: k, 0 : n), we obtain from (6.4) that

K(*d2g) + 12y (0) = i* ¢y,

and therefore all of x[P,_; A**'(T)] is also in the span. By the defini-
tion of the space P; A*(T), it follows that (6.7) is a spanning set. To
show that (6.8) is a basis, we use the identity (6.5) to see that any
form given in the span of (6.7) is in the span of the forms in (6.8).
Then we use Lemma 6.3, combined with a simple inductive argu-
ment, to show that the elements of the asserted basis are linearly
independent. For details, see the proof of Theorem 4.4 of [2]. O

Restricting to a face f € A(T), we obtain the spanning set and
basis for P; A*(f) given in the third part of Theorem 6.1.

6.3. Spaces of vanishing trace

In this subsection, we will derive spanning sets and bases for the
corresponding spaces of zero trace. This will be based on the results
obtained above and Corollary 5.2, which leads to the dimension of
these spaces. We first characterize the space P; A%(T).

Proposition 6.5. The set
{Phslo e NI o =17 — 1,0 € Z(0: k,0:n),[o,0] = {0,...,n}}
is a spanning set for P; A*(T) and
{P gl e NI jo| =17 —1, 60 € 2(0:k,0:n),
[o,6] ={0,...,n}, oz =0if i <min[c]}
is a basis.
Proof. Since [o,0] ={0,...,n}, each of the forms /*¢, is con-
tained in P; A*(T). Moreover, the condition o; = 0 if i < min[a]

reduces to ¢(0) = 0 in this case. Lemma 6.3 implies that the forms
*¢, for which o(0) = 0 are linearly independent. The cardinality

of this set is equal to (Z)dim Pr_nik.1 Which is equal to
dim P; A*(T) by Corollary 5.2. This completes the proof. O

Restricting to a face f € A(T), we obtain the spanning set and
basis for P; A(f) given in the fourth part of Theorem 6.1.
Finally, we obtain a characterization of the space P,A*(T).

Proposition 6.6. The set
{diglee NQ" Jo| =1, 0 € Z(1:k,0:n), [o,0] ={0,...,n}}
is a spanning set for P,A*(T), and
{2digloee N3, jo| =1, 0 € Z(1:k,0:n), [o,0]
={0,...,n}, 0, =01if i <min[o*[} (6.9)

is a basis.

Proof. Since [o,0]={0,...,n}, each of the forms i*di, is
contained in P,A*(T). Furthermore, we have seen in Corollary
52, that P.ANT)=P., A" %T), whence, dim P,AYT)=

= Prtk—n

<;i}<> <rj;k>. On the other hand, the cardinality of the set

given by (6.9) can be computed as >~ A; - B;, where A; is the number
of elements ¢ € X(1 : k,0 : n) with min[¢*] = j, and for each fixed
such o, B; is the number of multi-indices « satisfying the conditions
of (6.9), namely

A= (n—1.> and B;= <r+k7}.71>.
k—j n—j

Hence, the cardinality of the set is given by

SN
NSO

Here the first identity follows from a binomial identity of the form

(5)()- (G0

while the second is a standard summation formula. Hence, the car-
dinality of the set given by (6.9) is equal to the dimension of
P, A%(T). To complete the proof, we show that the elements of the
set (6.9) are linearly independent. Denote the index set by

S:={(o,0) eNI" x Z(1:k,0:n)||o| =1, [or, 6] = {0, ...,n}, o
=0if i < min[o*]},

so we must show that if

Z CocAdis = 0,

(o,0)€S

(6.10)

for some real coefficients c,,, then all the coefficients vanish. Since
the Bernstein monomials 2* are linearly independent, (6.10) implies
that for each o € NJ™ with || =1,

Coodly = 0.
{ol(2.0)eS}

(6.11)

First consider a multi-index o with oy > 0. Then the definition of the
index set S implies that min [¢*] = O for all the summands in (6.11).
Since the corresponding d/, are linearly independent, we conclude
that all the c,; vanish when o > 0. Next consider o with og = 0 but
o1 > 0. If (o, 0) € S, then min[o*] = 1, and again we conclude that
C,s = 0. Continuing in this way we find that all the c,, vanish, com-
pleting the proof. O

Restricting to a face f € A(T), we obtain the spanning set and
basis for P, 4%(f) given in the second part of Theorem 6.1.

7. A geometric decomposition of P, A*(T)

In this section, we will apply the theory developed in Section 4
with X(T) = P, A¥(T) to obtain a geometric decomposition of
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P, A%(7) into subspaces E;[P; A*(f)], where E; is the global exten-
sion operator constructed as in Section 4 from a consistent family
of easily computable extension operators. The resulting decompo-
sition reduces to the Bernstein decomposition (2.6) in the case
k=0.

We first note that if T,T'e€ 7 with fe A(T)NA(T') then
trr Py ANT) = trp Py ANT') = Py A¥(f). Hence, the assumption
(4.2) holds. Furthermore, for f,g € A(77) with fCg, we define
E=Efl Py AX(f) — P; A%(g) as the barycentric extension:

VL () s, o, 0] C L (f). (7.1)

This generalizes to k-forms, the barycentric extensmn operator EfT
on P, introduced in Section 2.3. Since the forms (/ ¢>f are not lin-
early independent, it is not clear that (7.1) well- deﬁnes E. We show
this in the following theorem.

Theorem 7.1. There is a unique mapping E = E}‘;‘g” from P, AK(f) to
P AX(g) satisfying (7.1).

Proof. We first recall from part 3 of Theorem 6.1 that the set
()¢l e NI o) =r—1,0 € 2(0: k,0:n), [o,0] C.A(f), %
=0if i < min[o]}

is a basis for P, A*(f). Hence, we can uniquely define an extension E
by (7.1), if we restrict to these basis functions. We now show that
(7.1) holds for all (¥)*¢! with [a,6]C.#(f). To see this, we use
the identity (6.5). Consider forms (#)*¢., which do not belong to
the given basis, i.e.,, s := min [o] < min [¢]. Write /* = /*/; and let
pe2(0:k+1,0:n) be determined by [p] = {s} U[c]. Then, by
(6.5),

k+1 .
(;“)14)0' = Z(_])Jil;“l}/lp(i)(ﬁpj:

=

and so

e = Z

k+1 i
(E)dE =D (1) (E) 5 4t

J=1

1056\6
WY

I

Hence
k+1 . k+1
ORCAED S V- (VAN I S VR V) VS

0j
j=1 ! j=1

_ (Ag)“ S
and the proof is completed. O
Theorem 7.2. The family of extension operators E is consistent, i.e.,
for all f,g,h € A(7) with f,g Ch, and all » € P; A*(f),
trthf'h(,U = Efmg,gtrfmga).

Proof. It is enough to establish this result for w = (¥)*¢f, with
[o, 6] C.#(f), since such w span P; A*(f). Now for such pairs

(o, @), Epnl()* L] = (2")* 9" and then
f\o _ (;“g)“d)iv lf [[OC, O']gﬂ(fﬂg),
tnsEral(4) 5] = {0, otherwise.

On the other hand,

A . /
try g (7 )¢}, = {O (@), if [, 0] CI(f NE),

otherwise,

and hence

) es, if [o,0]C s (fng),
Efrgotr, el = ( o T ’
srastiyss(#)' 05 { 0, otherwise.

From Theorem 4.3, we obtain the desired geometric decomposi-
tion of P, A¥(7).

Theorem 7.3

PrANT) = 8, E¢[P; A%(f).

dlm (f>
where E; : P- A*(f) — P, A*(7) denotes the global extension operator
determined by the family E"_;’.

The final part of Theorem 6.1 furnishes an explicit spanning set
and basis for P, A*(f), and so this theorem gives an explicit span-
ning set and basis for P; A*(77). We discuss these explicit represen-
tations further in Section 9.

We now turn to a geometric characterization of the extension
operator E:P;A*(f) — P, A¥T,f). To this end, we say that a
smooth k-form w e A*(T) vanishes to order r at a point x if the
function x—cwy(v4,...,7,) vanishes to order r at x for all
v1,..., U € R", and that it vanishes to order r on a set g if it van-
ishes to order r at each point of the set. Note that the extension
operator E = E'”’ has the property that for any u e P;A*(f),
E’” u vamshes to order r on f*. In fact, if we set

P AN, f) = {w € P; AX(T)|w vanishes to order r on f*},
we can prove

Theorem 7.4. P; AXT.f) = E[P; AX(f)] and for peP;A(f),
Eu= E’”’,u can be characterized as the unique extension of u to
Py AT,

Proof. We note that the second statement of the theorem follows
from the first, since trr; from E[P; A*(f)] to P; A*(f) has a unique
right inverse. Since E[P; A*(f)] C P; A*(T,f), we only need to prove
the opposite inclusion. Without loss of generality we may assume
that f = [Xmi1,.. ., X}, f* = [Xo, - .., Xm], for some 0 < m < n. We pro-
ceed by induction on m. When m = 0, we may assume without loss
of generality that the vertex xo is at the origin. Now
P A* = Py A* + 1c#,_1 A1 (where #, denotes the homogeneous
polynomials of the degree r). Since k., A1 C #, A%, every ele-
ment o € k#,_, A" vanishes to order r at the origin. On the other
hand, no non-zero element of P,_; A* vanishes to order r at the ori-
gin. Thus P, AX(T,f) = k#,_, A1, It follows from [2, Theorem 3.3]
that

dim P; AX(T,f) = dim K., A 1(T)

(r+n=1\/r+k-1
(o)

= dim E[P; 4(f)]

) = dim P; AX(f)

and since E[P; AX(f)] € P; A(T.f), E[P; A*(f)] = P, AX(T,f).

Now suppose that w vanishes to order r on the m-dimensional
face [xo,...,%n] with m > 0. Let T' = [x1, ..., Xn], @ = tr;p®. Then
w' e P;A"(T’) vanishes to order r on the (m — 1)-dimensional face
[X1,...,Xm], so, by induction, @' =E;pu for some uec Py A% (f).
Furthermore, since w vanishes to order r at xo, we can use the
result established above for m=0 to conclude that
® = Ep 7' = Ep 7Ep . However, it follows immediately from
(7.1) that Ep TEf r = Err, and hence the two spaces are equal, and
the theorem is established. O
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8. A geometric decomposition of P.*(T)

In this section, we again apply the theory developed in Section
4, this time with X(T) = P,A%(T). In this case condition (4.2) is
obvious, since trr P, A*(T) = P, A(f). In view of the previous sec-
tion, one might hope that we could define the extension operator
as

(N di - 0 di,.

However, this does not lead to a well-defined operator. To appreci-
ate the problem, consider the space P, A'(T), where T c R? is a tri-
angle spanned by the vertices xo,X;,X2, and let f = [x;,x;]. Then
A+ di) =0, but Jda(dis + dig) = —2172dk # 0.

To remedy this situation, we will show that for f,g € A(T) with
f Cg, a consistent extension operator E = E}‘;g P AN — PAR(g)
is given by
() iy v ()Y,

where y*¢ is defined as follows. We first introduce forms
yM€ ¢ Alt'T, defined by

[o, o] C 7 (f), (8.1)

Y = dE - Z di, ies(f), (8.2)
Je 7(f)
and then define l//zf'g € Alt“T, by
8=y SN AYE aeZ(1:k0:n), [a]Cs(f). (83)

A geometric interpretation of y%/¢ will be given below.
First we show that E is well-defined and is, in fact, an extension
operator.

Theorem 8.1. There is a unique mapping E:E}‘;:P,Ak(f)ﬂ
P, AX(g) satisfying (8.1). Moreover, it is an extension operator:
trng}‘:ga) = w for w € PrAX(f).

Proof. By the first part of Theorem 6.1, the set
{N*dE jo e NO™ || = 1,0 € X(1 : k,0
n), [o, ] C #(f), min[c] > min.#(f)}

is a basis for P, 4*(f). Hence, we can define an extension E by (8.1), if

we restrict to the basis functions. We now show that (8.1) holds for
all (#)*di with [a, 6] C.7(f), i.e., also when min[c] = min.#(f).
Writing d/ig — dlgay Adipy, and using the fact that Y7, d# =0
on the face f, we can write

A, =— " dif ndil,.

jes(f)
j#o()

Hence,

E[(#)*di) = ~E[()" Y di ndZ)=—(5)" 3 yiEayple

Jer) Jer)
j#o1) Jj#a(l)
_ o, 0f
= ()%,
where in the last step we have used the fact that 37,_, ¢ = 0.

That E is an extension operator follows directly from the
observation

trrp, = di

which holds since 37, d).Jf. =0on the face f. O

Theorem 8.2. The family of extension operators E is consistent, i.e.,
forall f.g.h € A(7) with f,g Ch and all w € P,A*(f),

tl'thf.’h(U = Efﬁg,gtrf‘fﬁgw.

Proof. It is enough to establish this result for w = (¥)*d%, with
[o,6]C.#(f). Now for such pairs (x,0), En[(Z)*(d¥),] =
(M*y:h To determine tryg[(A")* “f"} we con51der three cases.
When [o]C.#(f), but [o]Z.7(g), trhg[( *yxh =0, since
try [(AM] = 0. If [] C #(f N g), then try g [(A")” ] = (/%)% so we need
only compute tr, ;y%/". We do this by first considering try ;i*/" for
ie s(f).Ifie #(fng), we have

]e 7(f) jes(frg)

s i
tl'h_g(//;x‘f’h = tl‘hg (d/ulh Z dlh> = d)‘lg — ﬁ Z d);g

- l//lg«fﬁgvg_

On the other hand, if ie #(f)\ .#(fng), then since o; =0,
Yy =dif and so trygy!/" =0. Combining these results, we
obtain

(;vg)xlpﬁfﬂg«g’

trng By n[()"d27) = { 0 if [0, 0]C A (f Ng).

: otherwise.
But
A& die if [a, 0] CA(fNE)
try gl )] = 4 ¢ e e 7
rorgl(A) dAg] = { 0, otherwise,

and hence

() petres, if o, 0] Co(Fng),
0, otherwise.

Efeg gty g () i) = { O

From Theorem 4.3, we obtain the desired geometric decomposi-
tion P, A*(7).

Theorem 8.3

AT = @ EPAY)).
feA(7)
dim f>k

where Ey : P, A¥(f) — P, A(7") denotes the global extension operator
determined by the family Ef;.

Combining this result with the second part of Theorem 6.1, we
obtain an explicit spanning set and basis for P; 4*(7) (see Section
9).

We now turn to a geometric characterization of the extension
operator E = Ek’ P AY(f) — P, AX(T,f). First, we will motivate
the choice of E and in particular the forms W‘f‘g by establishing
some additional properties of these forms. Observe that any mul-
ti-index o determines a convex combination of the vertices x; of
T, namely

= |O(‘71 Zamxm eT,
m

and if [o]] c #(f), then x,, € f. For each such multi-index o, we then
define the vectors

1
e > (X — X)),

meJ(f)

Ly =Xy — X =

le 7(f).

Clearly, for each such o, R" decomposes as the direct sum
Ty @ span{ty|l € #(f*)}, where T; denotes the tangent space of f.
See Fig. 8.1. This decomposition defines a projection operator
P=P;,:R" — T; determined by the equations Pv = v for v € Ty
and Pt,; = 0 for | € #(f*). Hence, we have

P; Alt‘Ty = {a € Alt'R"|aty = 0,1 € #(f*)}. (8.4)

Furthermore, since d;(x, — X;) = 6jm for any j € #(f), m € #(f), and
le 7(f*), we get for [o]] C 7(f),
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Fig. 8.1. T = [x0,X1,%,%3], f = [Xo, 1], & = (3,1,0,0), R® = T & span{ty,, t3,}.
YT (ty) = dii(ty) — z dii(ty) ,é o — Z o
Jeﬂ(f Jef(f
(8.5)

It follows that
Vel (v, v = v (Por, - Py

= trr TPy, - Poy)

=di (Pvy, -, Pvy). (8.6)

Hence, in the language of pullbacks,
VT =Py, di,

where Pf*, is the pullback of Ps,, and so
Erg[(¥)*dif) = (75)"Py, d2L,.

Recall that the geometric characterization in the previous section
hinged upon the fact that a form in 7; A4*(T) which vanishes to order
r on f* and has vanishing trace on f must vanish identically. Now
this is not true for an arbitrary element of the larger space
P, A¥(T). Returning to the example given at the beginning of this
section, where T = [xq,X1,X;] and f = [x;,x,], the form

@ = 247a[d2 +d2y) = =iy addg € PoAN(T)

Table 9.1

Bases for the spaces P, A' and P, A", n =2.

r A PrA!

Edge [x;,x;] Triangle [x;, x;, X;] Edge [x;,x;] Triangle [x;, X;, X;]

1 bij 2i %, A dA,

2 {40, %} i iy X b ,12 di, ; dJ; 24§ Ao, 2ig iy
A Ajduj — i) 2o di;

3 R kY A A 2 dAJ ABdi {24 24, 1Y a2 o,

(i 24y 1Yo bir 7 )d(2) — 1) {04, 74, Y aidae i

2iARd(2 = 20) (A Ay addi

vanishes to second order at f* = {xo}. However, trrfw also vanishes.
Thus, additional conditions on w will be needed in order to insure
that w is uniquely determined by trryw. We say that w vanishes
to order r* on f~, if w vanishes to order r on f* and the following con-
ditions hold:

ity =0, L€ 7(f), [a] CA(f), [of =T (8.7)

Here ag = ]'[jE ma;‘j; with Oy =t V, the directional derivative
along the vector tj := X; — X;. The contraction operator  is defined
at the start of Section 2.4.

Note that oy, = d; for i,j € #(f), j € #(f). It follows that if
o, p € Ng, with |a| = |B| =1, [a], [] € #(f), and | € #(f*), then

0pi*=0 fora#p and " =oal (8.8)
Setting
AT, f) = {w e P A*

we can now give the geometric description of the extension opera-
tor E.

Theorem 8.4. P,AXT,f) = E[P,A*(f)] and for pe P.AX(f),
Eu E]’fr,u can be characterized as the unique extension of u to

ANTf).

(T)|w vanishes to order r* on f*},

Proof. We note that the second statement of the theorem follows
from the first, since trr; from E[P,A*(f)] to P,A*(f) has a unique
right inverse. To prove the first statement, we first show that
E[P,AX(f)) C P, A¥(T,f). Observe first that E[(¥)*(d¥),] = i*y*T
vanishes to order r on f* since (1)* does. Next, note that (8.8) tells
us that of [2*y!") = oy’ T if p = o and vanishes if g is any other
multi-index of order r with [B] C .#(f). Therefore, the conditions
(8.7) for vanishing of order r* are reduced to verifying the condi-
tions z//”fTthd =0 for all I € #(f*). However, this follows immedi-
ately from the definition of the wedge product and (8.5).

To show that P, A¥(T,f) C E[P;A¥(f)], we use Lemma 2.1 to see
that any element w € P,A(T,f) admits a representation of the
form

W= Z a,)*

[e]c#(f)
Jof=r
for some a, € Alt“R". However, invoking (8.8) and (8.7), we con-
clude that, if w vanishes to the order r* on f*, then a,.t, = 0 for
all I € .#(f*), and hence by (8.4), a, € Py 1Alt"Tf It therefore follows
from (8.6), that w € E[P,A*(f)]. O

9. Construction of bases

From Theorem 7.3, (4.6), Theorem 7.1, and part 4 of Theorem
6.1, one immediately obtains explicit formulas for a spanning set
and basis for P, A*(77), with each spanning and basis form associ-
ated to a particular face f € A(7). The forms associated to f vanish

Table 9.2
Bases for the spaces Py A" and P; A%, n = 3.
r Py A P; A2
Edge [x;,x;] Face [x;, x;, xy] Tet [x;, X}, Xk, Xi] Face [x;, x;, xi] Tet [x;, Xj, Xk, Xi]
1 bij Pijk
2 {4, 4} i Ak Pijs 2 Pik {20 445 2k} ijic Jiijier 2 Piji
o s 2iPikt
3 {32, 72, i%s} by {45 455 21} 2 i Zklaij {45457 2 ik {24 %5 2 Y i
{40, 44, A} 2 b 2P {4i%4, A i2k, 421} Bk {2, 24 aes 2} kit

A2k Pip {2, 45 24, 21} 25 ikt
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Table 9.3
Basis for the space P,A', n=3.

r Edge [x;,x;] Face [x;, Xj, X;] Tet [x;, Xj, Xk, Xi]

1 /l,'d/lj, }.jdi,’

2 22doy, 22d2g, 2325d(%5 — Ay) 2i2iday, Aideddy, Ajondly

3 Rdij, 2 25d(22; — %) {04, 2} 225000, 2320 d (20 — 25 — %) Jidiadig, 2ty

2 dig, 2i23d(3 — 24) {04, 2} iy 22 d (205 — 25 — 2y Jidtad2g, 2 d A d g

{25, 2} iy
and

Table 9.4

Basis for the space P, 42, n = 3.

r Face [x;, X;, x;] Tet [x;, Xj, Xk, Xi]
1 QA A d2g, Aidig N dag, 2qdij A dig

Jpdig Ndd, Jiddis Nd(2 — 25)

2dig N diy, 2ikid (2 — 25) Adoy

7 d/lj A di, ).l').kd/lj A d(/ﬂuk —A)

3 Jpdii Nddy, B3dig Adiy, 23 di; A dig

22 eddi Ny — 7). Zi20d2 Ad (2 — 22)
REA(224 — 24) A diy, 2 d2 N (20 — )
2325 d(J5 — 274) A A, Aidpdds A (2 — 224)
2idjd (205 — 25 — 2) NA(22y — 2 — %)

Jhdy A ddy, Ajidy A diy
/lj).kd/li Adiy, /lilld/lj A dy
/l,'/lkdij Adiy, /li;\,jd;.k Adly
O iy A

Ui 2aer Y2005 A iy
{lj, Akes 7.1}}Ljikd;ui Adiy
Uiy 24, 2aes A ddy A dige
Uhis 25, ey M} Ay A iy
{2, lj, ks ).l}llilljdi.k Adiy

on simplices T € 7 that do not contain f, while for T containing f,
the spanning and basis forms are given by

(Y Lo e NI |o| =7 — 1,0 € Z(0: k,0: n), [or, 0] = #(f)}
and

{ODY* ¢l e N |a| =1 = 1,0 € Z(0: k,0 : n), [or, 6] = £ (f),
o; =0 if i <min[o]},

respectively. Note that the spanning set is independent of the order-
ing of the vertices, while our choice of basis depends on the order-
ing of the vertices. Other choices of basis are possible as well, but
there is no one canonical choice.

The same considerations give an explicit spanning set and basis
for P, A*(7), based on Theorem 8.3, (4.6), Theorem 8.1, and part 2
of Theorem 6.1. The corresponding formulas for the spanning set
and basis are:

{0 Y Mo e NS o =1,0 € Z(1:k,0: 1),

{0 Y Mo e N9 o = 1,0 € Z(1:k,0:n), [0, 6] = #(f),
o; =0 if i < min[I(f) \ [o]]},

respectively, where %/ is defined by (8.2) and (8.3).

Bases for the spaces P;A" and P, A* are summarized in Tables
9.1-94forn=2,3,0 <k <n, r=1,2,3. In the tables, we assume
i <j < k <1, and recall that the Whitney forms ¢;; and ¢y, are given
by:

(f)ij = /lid),j — ;Ljd/lh ¢ijk = }vid},j A d/l/( — ;vjd},,‘ A d}vk + /lkd)v,‘ A d)_,
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