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Abstract. Our focus is on explicit £nite element discretization of transient, linear hyperbolic
systems in arbitrarily many space dimensions. We propose several ways of generating suit-
able “explicit” meshes, and sketch @{h"+1/2) error estimate for a discontinuous Galerkin
method. Continuous methods are also considered brieay. This paper parallels [2] in large part,
while using a different approach in the analysis.

1 Introduction

The problem of interest to us here is a linear, symmetric hyperbolic system
u ou
EuzaJr;Aia—wiJrBu:f, (x,t) € Rr =02 x[0,T], (1)

whereu is anm-vector and the matrice$; arem x m, symmetric, and constant. We
assume? is a bounded polyhedral domainil and denote its boundary dy((2).
Likewise, we denote the boundary of the space-time dofaiy I"({2r). Along
I'(£27), the unit outer normak = (n,,n:) = (n1,...,nn,n:) has eithem, =0
orn; = 0.

An appropriate set of initial and boundary conditions for (1) is

u=g att =0,
(D—Mu=0 onI(22) x [0,T], 2

whereD = Zf.vzl n;A; and N + N* > 0. Problem (1)-(2) has the form of a
Friedrichs system [4] for which a unique solution is guaranteed under certain restric-
tions.

An example of (1)-(2) is the wave equation in two space dimensions:

wtt*wmz*wyy:fa

w, w; given att = 0,
w=0o0nI() x[0,T].

* The authors were supported in part by NSF grant DMS-9704556 and DARPA grant 4-
23685, respectively .
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With uy = wy, us = wy, us = wy, this can be written as

0 0-1 00 O 0
uy+| 000 Ju,+|00 -1 |u,=1{0
-10 0 0-10 f
For this system,
0 0 —Nnq
D=1 0 0 —-ng|,
—Nny1 —Ng 0
and we may take
0 0 ny
N: O O no
—N1 —N2g 2

Of the many previous £nite element treatments of the general problem (1)-(2)
and its related non-transient counterpart (e.g., [1], [5], [7], [8]), we know of none
which is explicit, i.e., develops an approximate solution in an element by element
fashion. This is our focus, in the setting of arbitrarily largeand N.

The key mesh requirement for explicitness is that

N
M =nd + ZnZ-AZ-
i=1

be de£niteon all interior (i.e,Z I'(2) x [0,T]) faces of each elemedt where
(n.,n;) denotes the unit outer normal 6. We denote by, (K) (L out( K)) the por-
tion of I'(K') for which M is negative (positive) de£nite. The above explicitness con-
dition will hold if all element faces are inclined sufEciently toward #xyperplane

to make|| Eﬁil n; A;|| < |n:¢|. The sign ofn; will then indicate the direction of ex-
plicitness. In addition to the de£niteness condition, we assume the eigenvaldgs

of M are bounded away from zero:

AM)| > 7 > 0. 3)

With an “explicit” mesh, we can discretize (1)-(2) via the following extension of
the discontinuous Galerkin method:

a(un,vn)k = (fion)x,  alloy, € Sy(K), (4)
ow ol = (Lo [ e [ WD @

The approximation subspag (K) is comprised of polynomials of total degreen
over K or is annth degree tensor product spaeg, € S, (K) is the £nite element
approximation, and , ) x denotes thd.?(K) inner product{ *(K) denotes the in-
tersection, if any, of'(K') with I"(£2) x [0, T'. In generalu;, will be discontinuous
on interelement boundaries. We denotafjyandu; its upstream and downstream
limits, respectively, and use the notatipn,] = u)” — u;, .
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We will sketch the derivation of the following error estimate fgr as de£ned
by (4)-(5):

g, =l o)+ llun —ullf, + 0D (1Co(un —u)ll%
KC.QT

+ > [fun = ullf, ) < OB, (6)
KCQr

This is an extension of the standard error estimate, £rst given in [6], for the discontin-
uous Galerkin method. We use the notatjelf. p for the normoni7*(D), D C Q2r,
omitting k£ when it has value zero, and denote "surfat&horms (e.g., ovefi,(K))

by | - |. The principal part of is denoted by, andC' denotes a generic constant
independent ok but which, in general, is different at each occurrence.

The estimate (6) is essentially the same as that obtained in [2]. We use a differ-
ent approach here, however, establishing (6) directly without £rst showing existence
and stability ofu;,. Also, we employ an additional test functiosy,(= Lo(up, —uy),
wherewu; is an interpolant ofu) not used in [2], which eliminates the need for a
technical assumption made in [2] (that each element be convex or have “sufEciently
many” faces in comparison to, the degree of approximation). It also allows (6) to
be obtained with an arbitrary optimal order interpolant.

An outline of the paper is as follows. k2 we detail the requirements for an ex-
plicit mesh, and ir§3 we describe some ways to generate such a mesji \ve
outline the derivation of the estimate (6) for the discontinuous Galerkin method. Fi-
nally, in §5, we brieay consider a pair of continuous explicit £nite element methods
for (1)-(2), which work well for the simplest casg C R!, but have signi£cant short-
comings when generalized to higher dimension.

2 Requirements for explicitness

To elucidate the domain of dependence properties of (1), we consider the homoge-
neous equation

0 <, 0
£0U:07 ‘COEE'FZAZa—IZ
i=1

in a generic polyhedral elemeht in the interior of the space-time domain. Integrat-
ing againstu, we get

N
f{ w'Mu=0, M=nl+)» nA;. (7)
I'(K) i=1

We require thaf\/ bede£niteon each face of (K). This will be the case if{ can
be chosen so theﬂth\il n;A;|| < |ne| on I'(K). A sufEcient condition for this is
|7 | 1

Ine] = /N max; || A

(8)
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The sign ofn; will then indicate the ineow and outaow portions B{K'), and the
aow direction will be that of increasing We also require the incow and outaow
portions ofl"(K') to be connected; otherwise explicit development of a solution will
not be possible.

Assuming)/ is de£nite on each face 6f(K'), we may recast (7) as

/ ul Mu :/ ul (—M)u,
Touw(K) In(K)

where I'ou(K) (Iin(K)) denotes the portion of (K) where M (—M) is positive
de£nite. Applying (3),

e < O ((mas 1001

Thusu = 0 on Iip(K) impliesu = 0 on Io(K). Now for an arbitrary point
(x*,t*) € K, we may construct a smaller polyhedral elematitC K such that
In(K') C Iin(K) and(x*, t*) € Iow(K'). Integrating against over K’, we infer
thatu(z*,t*) = 0if u = 0 on[h(K). Thusu = 0 on I}, (K) impliesu = 0
throughoutk'.

In a similar way, we may obtain a local stability result for a discrete model of (1).
Suppose

Loup = fr, in K,

wherew;,, € S;,(K) is given onli,(K). Reasoning as before, we conclude that if
frn=0in K andu, = 0 onIi(K), thenu;, = 0in K. Sinceu,, in K may be re-
garded as the solution of a linear algebraic system with flagadu,, on I}, (K), we
infer that|lu|| x can be bounded by a linear combination®f |,k and|| £ || x .
Applying the appropriate scaling, we get for this bound:

lunllic < € (Vilunlry o + bl falc) -

Equivalently, for any,, € Sj,(K),
lonllzc < € (VAlol ) + bl Covallxc ) ©)

We will use this bound later.
We brieny consider the wave equation example. Here

Tt 0 —ni
M = 0 ng —no
—Nnyp —Nn2 Ty

)

whose eigenvalues ake= n;, n;++/n? + n2 = n; +|n,|. ThusM will be de£nite
if |n.| < |n¢|. Condition (8) is more restrictivén,.| < |n:|/v/2.
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3 Mesh construction

We now consider the problem of generating an explicitly conEgured mesh of polyhe-
dral space-time elements f& x [0, T']. As our starting point, we assume an appro-
priate face-conforming mesh of elemefijsis given for the spatial domaif?. Let

Xy, = {z;} denote the nodes &F, and N (x;) the set of neighboring vertices that
share a common element with). The space-time mesh will be created incremen-
tally, in the direction of increasing Its forward extent ak; € X at any stage in

its development will be denoted by, (x;). Each space-time element in our con-
struction will be centered about a particutey, will have x; and N (x;) asx co-
ordinates of its vertices, and will advantg.x(x;) to its next value while leaving
tmax (), # 4, unaltered. To elucidate the parallelism possibilities, we shall assign
each spatial vertex, € X a “color” C(x;) € {1,2,...} subject to the condition

z; € N(zi) = C(=;) # C(zi).

t t
T U T U T x T U T U T T x
21 2 1 2 1 2 21 2 1 2 1 2
Fig. 3.1a Fig. 3.1b
t t
T T T 11T T T 71 T T T

Fig. 3.1c Fig. 3.1d

We £rst consider the case = [0, 1] € R', with 2 divided into uniform subin-
tervals of widthh. As indicated in Fig. 3.1a, two colors sufEce for the spatial nodes
{z;}. In the £rst step, we may advantg,, at nodes of coloil to¢ = At. As-
suming At is chosen sufEciently small in comparison/tdo ensure explicitness,
the PDE solution can be developed concurrently in all such space-time elements cen-
tered about vertices of colar If in steps2, 3,4, 5,6, 7, ..., we advance,,,, at nodes
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ofcolor2,2,1,1,2,2,...tot = At,2At,2At, 3At, 3AL, 4At, ..., respectively, we
obtain the space-time mesh shown in Fig. 3.1a. A second alternative is to follow step
1 above by stepg’,3’,4’,5', ... in which ¢, at nodes of colo®, 1,2, 1, ... is ad-
vanced ta = 2At, 3At, 4At, 5 AL, ..., resulting in the mesh of Fig. 3.1b. This mesh
is comprised of a single generic element, a rhombus, and is twice as ef£cient at “con-
suming space” as the £rst scheme. One could, of course, bring the solution back to
a commornt at a subsequent time if desired.

Next suppose our spatial discretizationdf= [0, 1] is nonuniform. We consider
a simple case of a two-for-one mesh reEnement in Fig 3.1c. The space-time mesh de-
picted there results if, in stefs2, 3, 4, ..., nodes of coloi, 2, 1,2, ... are advanced
to their maximumt values consistent with explicitness, but coarse mesh nodes are
not updated in steps 4 (also7, 8, ...). In general, one would like the frequency of
update to vary inversely to the spatial grid size. This mesh illustrates the possibil-
ity of achieving two potentially desirable objectives: an explicit mesh, and a locally
varying time step tailored to the degree of spatial reEnement needed. (The more com-
mon, more rigid, alternative is to not have any spatial variation in time step). Another
possible mesh generation technique would be to start with a uniform coarse mesh,
consisting of congruent rhombuses and re£ne on a four-for-one basis where needed.
Fig. 3.1d illustrates this for a case of a moving mesh.

We now turn to the more interesting ca®eC R?. Suppose, initially, that our
spatial mesh consists of equilateral triangles of side lehglhis illustrated in Fig.
3.2, where a 3-coloring of the corresponding nodes is also indicated. In analogy with
thef? C R' case, we may, in steps 1,2,3,4,5,6,..., advance nodes of color 1,2,3,3,2,1,
. tot = At At At 2AE 2A¢, 2 At ... Now, however, the elements so generated
in each step are each union$idétrahedra and have eitheor 12 (in step, 5, 8, ...)
faces. For this scheme.|/|n:| < (2At)/(v/3h).

Fig. 3.2 Fig. 3.3
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A second alternativeis:insteps 1,2,3,4,5,6,..., advance nodes of color 1,2,3,1,2,3,
.10t = At 2At, 3AL, 4At, 5AL, 6 AL, .... For this schemén,|/|n:| < 2At/h;
thus the maximum time steg¢ for this scheme must be smaller than the previous
one. Overall, however, the second scheme uses fewer elements to £Il a given volume
in the space-time domain. Moreover, the second schenseausaingle generic ele-
ment (apart from boundary effects) which is, in fact, a hexahedron with two opposite
vertices lying along a line of constamt parallel to the-axis, as pictured in Fig. 3.3.
Thus it may be viewed as a higher dimensional analog of the mesh depicted in Fig.
3.1b. Perhaps the simplest way to generate an explicit mesh for thé2caser?
would be use a coarse mesh of such hexahedra and then re£ne locally on an eight-
for-one basis as appropriate. This scheme, as well as the £rst one, generalize readily
to higher dimension.

4 Analysis

We shall restrict our attention here to interior eleméiitéor which I'*(K) = () in
(5). The more general case is dealt with in [2]. We also assume the mesh is quasiu-
niform and nondegenerate (allowing the use of inverse inequalities).

We begin by giving a pair of identities for the bilinear fourtu, v) deEnedin (5).
By integratinga(u, v) by parts, then performing some manipulations onfthék)
integrals, we get:

a(u,v)g = —a(v,u)kg + ((B+ B*)u,v)x + ﬁ(K)(u_)TMU_

[ el 10)
Iin(K)
Takingv = w in (10), then using (3), we obtain:

—1 w ) Mu~ 1 u)T(— u
=g f @M g [l

(B4 Bk a1)

> L 7{ (w)TMu~™ + 1|[u}|z}_ (K) T 1((B + B u,u)k.
2 Jrue) 27 Ty

We now assume the continuous problem and its discrete counterpart have solu-
tionsw andwuy,, respectively, and estimate the difference between the two. From the
derived estimate, it will follow that if the continuous problem has a solution, then
up, is well-deEned fokh sufEciently small. It will be convenient to use an interpolant
uy; € Sy(K) for u that, we assume, will give optimal order accuracy ifs suf-
ciently smooth, i.e.,

lur — w|k + Vhlwr = ul gy < Ch™Hufng k- (12)
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Subtractingz(u, vi,) k = (f, vy )r from (4) and introducing:;, we obtain:
alen,vp)x = a(u —uy,vp)g, en =up — uj. (13)

In what follows, we shall denote bi( K) the “inaow” elements td¢, lying imme-

diately upstream frond .
The basic ingredients of the error estimatedgrare expressed in the following:

Lemma 1. (i) The choicev;, = e;, in (13)yields, for arbitrarye > 0:

%7{”}() ((un — u)—)TM(uh —u)” + %Heh]\%n([{) (14)

< e (ltenl iy + PlCoenl%) +C (llenllk + € B2 ull2 1y xon ) -
(ii) The choicev;, = Lyey, in (13)yields:
|£oenl < € (llenll +h llenl By + A2 ull2 0 seori) ) - (25)
(i) ey satistes:
lenllze < € (len [y + Allenl ) + 17 oenlli) . (16)
Proof. (i) By takingv;, = e, in (13), applying (10) and (11), then the Schwarz in-

equality, arithmetic-geometric mean inequality, and inverse inequalities, we get the
following bounds:

1 _ _
alen,en)i > f (ei)" Mejy + Lllenl 2, ) — Cllenl%
2 r(K) 2

a(u —ur, eh)K = — ((Lo@h + Beh,u — uI)K — / [eh]TM(u — ’ll,[)+>
Iin(K)

+((B+ B*) (u —uj),ep), + 75(1{) ((u— u;)*)TMe,:

- / [ — i Mlen)
Iin(K)
\T _
< . (@) be (el + el +hicoenl)
+Ce ! (h*1||u —ur||% + [[un — uz]l%n(K) + |(u — u1)+|%m(K)) )

Combining these bounds, then completing the square off A& integral, we get
(14)
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(i) Using similar techniques, fov, = Lyey, in (13), we get:

a(eh,ﬁoeh)K = (L:Oeh -+ Beh, Eoeh)K - / [eh]TM(Loeh)+

In(K)
> 2 ILoen] x
> [[Loenll — | Bllllenllx [[Loenllx — C\[eh]\nn<K)T
1 _
> §||ﬁoeh\|12x — C(llenllF% + ™ enl )

a(u — uI,Eoeh)K = (L’(u — ’U,[),ﬁoeh)[{ — / ( )[U — UI]TM(ﬁoeh)+
In (K

[Loenllx

Vh
|£oenlE +C (Il = wrl? g + bl = wil ) -

< Cllu — w1k [[Loenllx + Cllu — ur]| 1, k)

<

] =

The result of these bounds is (15)

(iii) We may provide for a jump discontinuity in;, across i (K) in (9) by writ-
ing [v;f | o) < v |rax) + o]l o) - Applying the resulting bound tay,, we
get (16)

Multiplying (14)-(16) by1, uh, v, respectively, then adding, then applying the
bOUnd‘e;“‘in(K) < |(Uh — U)_ |Fin(K) + Ch"+1/2||u||n+1’1(K), giveS:

1 \T _
3 b (= w ) M w7+ (] == Cu= Comlenlfhyng
I'(K)
(b = eh — Cv)|[Loenle + (v — € — Cph) el

<C (h|(uh —u) " [f )+ (L + 6_1)h2"+1||u||i+1,Ku1(K)) :
We nexttakg:, < ~/4C to allow coercivity of|[e,] QFm(K), thentaker > Cuh+C+

1 to coerce|lep||%, then choose small enough to coerdées]|7, i, and||Loex |3
for h sufEciently small. We can write the result as follows:

Lemma 2. There exist positive constantsand~, such that forh suf£ciently small,
-\ - 2 2 2
ﬁ(K) ((wn —u)7)" M(up —u)” + |lenlli +nllenlT, k) + 2l Loenll%
<C (h|(uh - u)f\%nu{) + hszrl”“”fH—l,Kul(K)) . 17)

Assuming suffcient smoothnessurand applying this bound over al C 21
then yields (3)(cf. [2]).
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5 Continuous explicit £nite element methods

We briery consider the possibility of explicitly generating a continuous £nite ele-
ment method over an appropriate mesh. The generic form of such a method is

up € Sh(K)
(Lup,vn)k = (f,vn)k, all vy, € Ty (K)

HereT), (K) must have dimension less than that%f( K') becausey;, will already
be known onli,(K) at the time when it is to be computed K. A potential ad-
vantage of a continuous method is the smaller number of degrees of freedom in
hence fewer unknowns to be solved for.

We £rst mention a method [9] which can be applied over a mesh of triangles like
that depicted in Fig. 3.1a.

up € Pn(K)
(ﬁuh,vh)K = (f,’l)h)[(, all vy € Pnfp(K) (K) (18)

Here P,, consists of polynomials of total degreen andp(K) denotes the number
of inmow sides thaf has (either one or two). This method typically give&" 1)
convergence, like the discontinuous Galerkin method; an analysis appears in [3].
The method (18) extends directly to higher dimension over simphcesor the
casef? C R?, the elements are tetrahedra which may have either 1, 2, or 3 incow
faces (i.e.p(K) = 1, 2 or 3). Thus there are three possible test spaces for (18), and,
not surprisingly, no analysis. In addition,must be at least (otherwise two of the
three possible test spaces in (18) will be void), and an explicit tetrahedral mesh seems
impractical to construct and manage. Thus (18) does not look promising for2.
We also mention a continuous method forc R! due to Winther [10], which
can be applied over a mesh of parallelograms like that depicted in Fig. 3.1b. Itis:

up € U,L(K)
(Duh,vh)K = (f,’uh)K, all vy € Hn,l(K). (19)

Herell, (K) is a tensor product space of polynomials of degfee in coordinates
&, n aligned with the parallelogram sides. Optimal order error estimates are derived
in [10]. This method, too, extends immediately to higher dimension. However, a sim-
ple calculation reveals that for the simplest case of¢l)= 0, in two space dimen-
sions and time, witm = 1 (linear approximation), (19) has an algebraic instability
arising from a nondecaying spurious root of multiplicyThis casts doubt on the
usefullness of (19) foV > 2.

By contrast, the discontinuous Galerkin method is stable regardle¥sanfd
very aexible in terms of applicability.
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