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Abstract. We present a �nite element method for the transient, linearized, incompressible Euler

equations in two space dimensions. The velocity equations are discretized via the discontinuous Galerkin

method over a space-time mesh of tetrahedrons. The mesh is assumed to have been constructed in such

a way that the tetrahedrons can be ordered explicitly with respect to velocity evolution. For n � 0,

the method yields a discontinuous piecewise polynomial approximation of degree n for velocity and a

continuous approximation of degree n + 1 for pressure. We derive error estimates of order h

n+1=2

for

velocity and h

n�1=2

for the pressure gradient.

1. Introduction.

We present a �nite element method, based on the discontinuous Galerkin method, for a linearized

model of the incompressible Euler equations in two space dimensions:

u

t

+w � ru+rp = f in Q;(1.1)

divu = 0 in Q;

u(x; 0) = u

0

(x) in 
;

u � n = 0 on @
:

Here Q = 
 � (0; T ] where 
 is a domain in R

2

with unit outer normal n. The desired velocity and

pressure are denoted by u and p, and divu

0

= 0. In addition, we assume

divw = 0 in Q; w � n = 0 on @
� (0; T ]:

The velocity �eld w may be thought of as corresponding to a Newton iterate u

(k)

about which the Euler

equations have been linearized. A term rw � u also arises in the linearization; we have omitted it for

the sake of simplicity. Our treatment of this linearized problem is intended to elucidate some aspects of

�nite element approximation of the (nonlinear) Euler equations.

Our �nite elementmethod for (1.1) uses a mesh of tetrahedrons in space-time. The mesh is constructed

by dividing the time interval [0; T ] into subintervals [t

m

; t

m+1

];m = 0; 1; � � �M�1, of (quasiuniform) width

k, and then subdividing each layer S

m

� 
 � [t

m

; t

m+1

] into a set �

m

h

of tetrahedrons. We assume this

is done in such a way that:

(i) all vertices in �

m

h

lie on t = t

m

or t = t

m+1

, and on these planes the mesh reduces to a triangulation

of (quasiuniform) side length h with minimum angle bounded away from zero.

Note that the characteristics of (1.1) have direction W = (w; 1) in x; t-space. Thus the direction of


ow across a given tetrahedron face with unit outer normal N = (n

x

; n

t

) is determined by the sign of
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W �N = w �n

x

+n

t

. A negative (positive) sign corresponds to an in
ow (out
ow) face of the tetrahedron.

We also assume:

(ii) jw �n

x

j � jn

t

j on all tetrahedron faces, and the domain of dependence of each tetrahedron in �

m

h

includes at most a bounded number (independent of h and k) of other tetrahedrons in �

m

h

.

Such a mesh can be constructed in various ways if the Courant number � �

k

h

kwk

1;Q

is su�ciently

small, i.e., k is chosen su�ciently small relative to h. Condition (ii) implies unidirectional 
ow, in the

direction of increasing t, across each face of each tetrahedron. If rp in (1.1) were known, u could be

developed \explicitly", from one tetrahedron to another. In fact, u can be viewed as evolving through

�

m

h

in a front-like fashion, in a bounded number of parallel steps.

Before de�ning our �nite element approximation, we need some more notation. Let P

n

(T ) denote

the set of polynomials in x and t of degree at most n on T . De�ne

V

m

h

= fv 2 [L

2

(S

m

)]

2

: vj

T

2 [P

n

(T )]

2

; for all T 2 �

m

h

g;

Q

m

h

= fq 2 H

1

(S

m

) : qj

T

2 P

n+1

(T ); for all T 2 �

m

h

g;

and V

h

, Q

h

to be the extensions of these spaces to all of Q, i.e,

V

h

= fv 2 [L

2

(Q)]

2

: vj

S

m

2 V

m

h

g; Q

h

= fq 2 L

2

(Q) : qj

S

m

2 Q

m

h

g:

Thus, the functions in Q

h

are continuous in x, but possibly discontinuous in t across time levels t

m

.

We shall use the notation:

(u;v)

T

=

Z

T

u � v dx; (u;v)

S

m

=

X

T2�

m

h

(u;v)

T

to denote the inner product over a single tetraheron T and the sum of the integrals over all tetrahedrons

comprising the mesh �

m

h

, respectively.

Given a domainD � Q, we denote the boundary of D by �(D). The in
ow portion of �(D), �

in

(D),

is characterized by W �N < 0; analogously for �

out

(D). For v 2 [H

k

(D)]

2

; q 2 H

k

(D), we shall denote

the corresponding norms by kvk

k;D

and kqk

k;D

, with k omitted when it has value zero. For a subset of

�(D), e.g., �

in

(D), we de�ne

< u;v >

�

in

(D)

=

Z

�

in

(D)

u � vjW �Nj ds

and jvj

�

in

(D)

=

p

< v;v >

�

in

(D)

. We shall also use the notation

B

T

(w;u;v) � (u

t

+w � ru;v)

T

+ < u

+

� u

�

;v >

�

in

(T )

;

where T is an individual tetrahedron, and for a point P = (x; t) 2 �(T ), u

�

h

(P ) � lim

�!0+

u

h

(P � �W).

We now de�ne the approximate problem as follows. Find u

h

2 V

h

, p

h

2 Q

h

satisfying for m =

0; 1; � � � ;M � 1:

B

T

(w;u

h

;v

h

) + (rp

h

;v

h

)

T

= (f ;v

h

)

T

for all T 2 �

m

h

; v

h

2 [P

n

(T )]

2

;(1.2)

(u

h

+ k

2

(u

h

)

t

;rq

h

)

S

m

= 0 for all q

h

2 Q

m

h

:(1.3)



A potential advantage of this formulation is that for known p

h

, (1.2) can be solved explicitly, element

by element, for u

h

. This could be useful in designing an iterative method for computing the solution. In

addition, the method can be readily extended to deal with an O(h) di�usion term (cf. [2]).

In this paper we will derive error estimates of order h

n+1=2

for u

h

and h

n�1=2

for rp

h

assuming

u 2 [H

n+1

(Q)]

2

and p 2 H

n+3=2

(Q). In a related work, Johnson and Saranen [1] analyzed a discontinuous

Galerkin method for the nonlinear incompressible Euler equations, and obtained a velocity estimate of

the same order. Their method uses a divergence-free velocity space, leading to an implicit velocity

approximation.

2. Stability.

Our objective here will be to derive a global stability result for the �nite element method (1.2) - (1.3).

We �rst note that

(2.1) B

T

(w;v;v) =

1

2

�

jv

�

j

2

�

out

(T )

� jv

�

j

2

�

in

(T )

+ jv

+

� v

�

j

2

�

in

(T )

�

:

Thus

B

m

(w;v;v) �

X

T2S

m

B

T

(w;v;v) =

1

2

 

jv

�

j

2

�

out

(S

m

)

� jv

�

j

2

�

in

(S

m

)

+

X

T2S

m

jv

+

� v

�

j

2

�

in

(T )

!

:

Moreover, since W �N = 1 on �

out

(S

m

) and �1 on �

in

(S

m

), the above norms over �

out

(S

m

) and �

in

(S

m

)

are in fact unweighted.

Lemma 2.1. The following hold in individual tetrahedrons T :

1

2

�

ju

�

h

j

2

�

out

(T )

� ju

�

h

j

2

�

in

(T )

+ ju

+

h

� u

�

h

j

2

�

in

(T )

�

+ (rp

h

;u

h

)

T

� �ku

h

k

2

T

+ C�

�1

kfk

2

T

;(2.2)

k(u

h

)

t

k

2

T

+ krp

h

k

2

T

+ 2(rp

h

; (u

h

)

t

)

T

� C

�

�

2

k

�2

ku

h

k

2

T

+ k

�1

ju

+

h

� u

�

h

j

2

�

in

(T )

+ kfk

2

T

�

;(2.3)

where � > 0 is arbitrary.

Proof.

(i) To prove (2.2), we take v

h

= u

h

in (1.2), then use (2.1), and apply the Schwarz and arithmetic-

geometric mean (AGM) inequalities to (f ;u

h

)

T

.

(ii) Before proving (2.3), we �rst note that

�

�

(w � ru

h

;v

h

)

T

+ < u

+

h

� u

�

h

;v

h

>

�

in

(T )

�

�

� C

�

h

�1

kwk

1;T

ku

h

k

T

kv

h

k

T

+ ju

+

h

� u

�

h

j

�

in

(T )

jv

h

j

�

in

(T )

	

� C

n

�k

�1

ku

h

k

T

+ k

�1=2

ju

+

h

� u

�

h

j

�

in

(T )

o

kv

h

k

T

:(2.4)

In obtaining this bound, inverse inequalities were applied to kru

h

k

T

and jv

h

j

�

in

(T )

.

We now take v

h

= (u

h

)

t

+rp

h

in (1.2) and apply (2.4) to obtain

k(u

h

)

t

+rp

h

k

2

T

�

n

C

�

�k

�1

ku

h

k

T

+ k

�1=2

ju

+

h

� u

�

h

j

�

in

(T )

�

+ kfk

T

o

k(u

h

)

t

+rp

h

k

T

:

By an appropriate application of the AGM inequality, we then get

k(u

h

)

t

+rp

h

k

2

T

� C

�

�

2

k

�2

ku

h

k

2

T

+ k

�1

ju

+

h

� u

�

h

j

2

�

in

(T )

+ kfk

2

T

�

;

which is equivalent to (2.3).



Lemma 2.2. If k is su�ciently small, then for any v

h

2 V

m

h

,

(2.5) kv

h

k

2

S

m

� C

00

 

kjv

�

h

j

2

�

in

(S

m

)

+ k

X

T2S

m

jv

+

h

� v

�

h

j

2

�

in

(T )

+ k

2

k(v

h

)

t

k

2

S

m

!

:

Proof. This result follows from assumption (ii) by a scaling argument.

Lemma 2.3. For h, k, and � su�ciently small,

(2.6) ju

�

h

j

2

�

out

(S

m

)

+�

1

X

T2S

m

ju

+

h

�u

�

h

j

2

�

in

(T )

+�

2

ku

h

k

2

S

m

+�

3

k

2

krp

h

k

2

S

m

� (1+Ck)ju

�

h

j

2

�

in

(S

m

)

+Ckfk

2

S

m

;

where �

i

; i = 1; � � � ; 4 are positive.

Proof. We add twice (2.2) to k

2

times (2.3). Summing over T 2 S

m

, then applying (1.3) yields

ju

�

h

j

2

�

out

(S

m

)

� ju

�

h

j

2

�

in

(S

m

)

+

X

T2S

m

ju

+

h

� u

�

h

j

2

�

in

(T )

+ k

2

k(u

h

)

t

k

2

S

m

+ k

2

krp

h

k

2

S

m

� (2�+ C�

2

)ku

h

k

2

S

m

+ C

(

k

X

T2S

m

ju

+

h

� u

�

h

j

2

�

in

(T )

+ (�

�1

+ k

2

)kfk

2

S

m

)

:

To the above we then add

1

C

00

times (2.5) with v

h

= u

h

to get

ju

�

h

j

2

�

out

(S

m

)

� ju

�

h

j

2

�

in

(S

m

)

X

T2S

m

+ju

+

h

� u

�

h

j

2

�

in

(T )

+

1

C

00

ku

h

k

2

S

m

+ k

2

krp

h

k

2

S

m

� (2�+C�

2

)ku

h

k

2

S

m

+C

(

kju

�

h

j

2

�

in

(S

m

)

+ k

X

T2S

m

ju

+

h

� u

�

h

j

2

�

in

(T )

+ (�

�1

+ k

2

)kfk

2

S

m

)

:

This then leads to the following global stability result.

Theorem 2.4. For h, k, and � su�ciently small,

(2.7) ju

�

h

j

2

�

out

(Q)

+

X

T2Q

ju

+

h

� u

�

h

j

2

�

in

(T )

+ ku

h

k

2

Q

+ krp

h

k

2

Q

� C

�

ju

�

h

j

2

�

in

(Q)

+ kfk

2

Q

�

:



3. Error estimates.

Our goal in this section is to prove the following error estimate:

Theorem 3.1. Let e = u� u

h

and � = p� p

h

. Then if u 2 [H

n+1

(Q)]

2

, p 2 H

n+3=2

(Q) and h, k, and

� are su�ciently small,

je

�

j

2

�

out

(Q)

+ kek

2

Q

+

M�1

X

m=0

X

T2�

m

h

je

+

� e

�

j

2

�

in

(T )

+ k

2

M�1

X

m=0

kr�k

2

S

m

� Ch

2n+1

�

kuk

2

n+1;Q

+ kpk

2

n+3=2;Q

�

:

Proof. From the de�nitions of u; p and u

h

; p

h

it easily follows that

B

T

(w; e;v) + (r�;v)

T

= 0 for all v 2 V

m

h

;(3.1)

(e+ k

2

e

t

;rq

h

)

S

m

= 0 for all q

h

2 Q

m

h

:(3.2)

Now let u

I

be the [L

2

]

2

projection of u into V

h

and p

I

the L

2

projection of p into Q

h

, and de�ne

e

h

= u

I

� u

h

, �

h

= p

I

� p

h

. Using (3.1) and the de�nition of u

I

, we obtain

B

T

(w; e; e) + (r�

h

; e)

T

= B

T

(w; e;u� u

I

) +B

T

(w; e; e

h

)

+ (r�

h

;u� u

I

)

T

+ (r�; e

h

)

T

+ (r[p

I

� p]; e

h

)

T

= B

T

(w; e;u� u

I

) + (r[p

I

� p]; e

h

)

T

:(3.3)

We estimate the terms on the right side of (3.3) as follows: First, we write for any v 2 V

m

h

B

T

(w; e;u� u

I

) = (u

t

� [u

t

]

I

+w � r(u� u

I

);u� u

I

)

T

+ ([w � P

0

w] � r(u

I

� u

h

);u� u

I

)

T

+ ([u

t

]

I

� [u

h

]

t

+ P

0

w � r(u

I

� u

h

);u� u

I

)

T

+ < e

+

� e

�

;u

+

� u

+

I

>

�

in

(T )

;

and observe that the next to last term in the above identity is zero, since [u

t

]

I

� [u

h

]

t

+P

0

w �r(u

I

�u

h

) 2

[P

n

(T )]

2

, and hence is orthogonal to u� u

I

. Applying standard estimates, we further obtain

(u

t

� [u

t

]

I

+w � r[u� u

I

];u� u

I

)

T

� (ku

t

� [u

t

]

I

k

T

+ kwk

1;T

kr(u� u

I

)k

T

) ku� u

I

k

T

� C

�

hku

t

� [u

t

]

I

k

2

T

+ hkr(u� u

I

)k

2

T

+ h

�1

ku� u

I

k

2

T

�

;

([w � P

0

w] � r(u

I

� u

h

);u� u

I

)

T

� kw � P

0

wk

1;T

kr(u

I

� u

h

)k

T

ku� u

I

k

T

� Ckwk

1;1;T

ku

I

� u

h

k

T

ku� u

I

k

T

�

h

2

ke

h

k

2

T

+Ch

�1

ku� u

I

k

2

T

;

and

�

�

< e

+

� e

�

;u

+

� u

+

I

>

�

in

(T )

�

�

�

1

4

je

+

� e

�

j

2

�

in

(T )

+ j(u� u

I

)

+

j

2

�

in

(T )

:

Furthermore, for arbitrary � > 0,

(r[p

I

� p]; e

h

)

T

� kr[p

I

� p]k

T

ke

h

k

T

�

1

2�

kr[p

I

� p]k

2

T

+

�

2

ke

h

k

2

T

:



Combining these results, we obtain

(3.4) B

T

(w; e; e) + (r�

h

; e)

T

� C(hku

t

� [u

t

]

I

k

2

T

+ hkr(u� u

I

)k

2

T

+ h

�1

ku� u

I

k

2

T

+

1

2�

kr[p

I

� p]k

2

T

) +

h+ �

2

ke

h

k

2

T

+

1

4

je

+

� e

�

j

2

�

in

(T )

+ j(u� u

I

)

+

j

2

�

in

(T )

:

Now, we also have using (3.1) that:

([e

h

]

t

; [e

h

]

t

)

T

+ 2(r�

h

; e

t

)

T

+ (r�

h

;r�

h

)

T

= ([e

h

]

t

+r�

h

; [e

h

]

t

+r�

h

)

T

+ 2(r�

h

; [u� u

I

]

t

)

T

= (e

t

+r�; [e

h

]

t

+r�

h

)

T

+ ([u

I

� u]

t

+r[p

I

� p]; [e

h

]

t

+r�

h

)

T

+ 2(r�

h

; [u� u

I

]

t

)

T

= ([u

I

� u]

t

+r[p

I

� p]; [e

h

]

t

+r�

h

)

T

+ 2(r�

h

; [u� u

I

]

t

)

T

� (w � r[u� u

I

] +w � re

h

; [e

h

]

t

+r�

h

)

T

� < e

+

� e

�

; ([e

h

]

t

+r�

h

)

+

>

�

in

(T )

:

Applying the Schwarz and arithmetric-geometric mean inequalities and an inverse inequality, it is not

di�cult to show that there exists a constant C (depending on w) such that

(3.5)

1

2
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To (3.4), we add k
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=2 times (3.5). Observing that jW �Nj = 1 on �
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summing over all T 2 �
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Now from Lemma 2, we have
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Adding 1=(8C

00

) times (3.7) to (3.6), and combining terms, we get
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Using standard approximation theory estimates, we further obtain for �, �, h, and k su�ciently small

that for some constant � > 0,
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Iterating this inequality, we obtain

je

�

j

2

�

out

(Q)

+ �

M�1

X

m=0

X

T2�

m

h

je

+

� e

�

j

2

�

in

(T )

+ �k

2

M�1

X

m=0

k(e

h

)

t

k

2

S

m

+ �k

2

M�1

X

m=0

kr�

h

k

2

S

m

+ �ke

h

k

2

Q

� Cje

�

j

2

�

in

(Q)

+ Ch

2n+1

�

kuk

2

n+1;Q

+ kpk

2

n+3=2;Q

�

:

The result follows immediately from standard estimates for e on �

in

(Q) and the triangle inequality.
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