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PRECONDITIONING IN H (div) AND APPLICATIONS

DOUGLAS N. ARNOLD, RICHARD S. FALK, AND R. WINTHER

Dedicated to Professor Ivo Babuška on the occasion of his seventieth birthday.

Abstract. We consider the solution of the system of linear algebraic equa-
tions which arises from the finite element discretization of boundary value
problems associated to the differential operator I−graddiv. The natural
setting for such problems is in the Hilbert space H (div) and the variational
formulation is based on the inner product in H (div). We show how to con-
struct preconditioners for these equations using both domain decomposition
and multigrid techniques. These preconditioners are shown to be spectrally
equivalent to the inverse of the operator. As a consequence, they may be used
to precondition iterative methods so that any given error reduction may be
achieved in a finite number of iterations, with the number independent of the
mesh discretization. We describe applications of these results to the efficient
solution of mixed and least squares finite element approximations of elliptic
boundary value problems.

1. Introduction

The Hilbert space H(div) consists of square-integrable vectorfields on a domain
Ω with square-integrable divergence. This space arises naturally in the variational
formulation of a variety of systems of partial differential equations. The inner
product in H(div) is given by

Λ(u,v) = (u,v) + (divu, div v),

where ( · , · ) is used to denote the inner product in L2. Associated to the inner
product Λ is a linear operator Λ mapping H(div) isometrically onto its dual space,
given by the equations

(Λu,v) = Λ(u,v) for all v ∈H(div).

Just as the corresponding operator for the inner product in the Sobolev space H1

may be considered as a realization of the differential operator I−∆ together with a
homogeneous natural boundary condition, Λ may be thought of as a realization of
the operator I − grad div with an appropriate boundary condition. More precisely,
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if f ∈ L2, then the operator equation Λu = f is equivalent to the differential
equation

u− grad divu = f in Ω

together with the natural boundary condition

divu = 0 on ∂Ω.

Note that this is not an elliptic boundary value problem. When restricted to the
subspace of gradient fields in H(div), Λ coincides with the second order elliptic
operator I − ∆, while when restricted to the subspace of curl fields, Λ coincides
with the identity.

Given a finite element subspace V h of H(div), we determine a positive-definite
symmetric operator Λh : V h → V h by

(Λhu,v) = Λ(u,v) for all v ∈ V h.(1.1)

Then for any f ∈ V h, the equation

Λhu = f(1.2)

admits a unique solution u ∈ V h. Once a basis for V h has been selected, this
equation may be realized on a computer as a matrix equation. Our goal in this
paper is the specification and theoretical justification of fast algorithms for solving
this matrix equation. Specifically we shall show how either domain decomposition or
multigrid techniques can be used to efficiently construct an L2-symmetric operator
Θh : V h → V h which is spectrally equivalent to the inverse of Λh, i.e., such that the
spectrum of ΘhΛh is bounded above and below by positive constants independent
of the mesh discretization parameter h. It follows that the operator equation (1.2)
can be solved efficiently by the conjugate gradient or other iterative methods using
Θh as a preconditioner. More precisely, the number of iterations needed to achieve
a given order of accuracy will depend only on the spectral bounds, and so will not
increase as the mesh is refined.

Our interest in the efficient solution of (1.2) is motivated by its applications
to numerous problems of practical import. As a very simple example, consider
the computation of u = grad p where p is determined by the Dirichlet problem
−∆ p+p = g in Ω, p = 0 on ∂Ω. Then u ∈H(div) satisfies Λ(u,v) = −(g, div v) for
all v ∈H(div). Approximating u by uh ∈ V h and restricting v to the same space
gives (1.2) where (f ,v) = −(g, div v). (We also remark that p can be computed
from u as g + divu.)

In § 7 we will consider some more significant applications of (1.2). One such
application is the solution of the linear algebraic system arising from a mixed finite
element discretization of a scalar second order elliptic problem. Mixed finite element
methods for such problems have been widely studied and applied, but the solution
of the linear algebraic systems they engender is not straightforward. As we shall
show in § 7, this indefinite algebraic system has the same mapping properties as
the block diagonal system whose blocks are Λh and the identity. (More precisely,
the spectrum of the product of the inverse of this block diagonal operator and
the indefinite operator arising from the mixed system is bounded above and below
and bounded away from zero uniformly in h.) It then follows easily that if the
system is preconditioned with a block diagonal preconditioner with blocks Θh and
the identity, then appropriate preconditioned iterative methods converge, with the
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number of iterations needed to achieve a given error reduction independent of the
mesh size.

Another direct application of our results which will be discussed in § 7 is the
preconditioning of first order least-squares formulations of second order elliptic
problems. The simplest such formulation, as discussed for example, in [25] and
[13], leads to a system which has the same mapping properties as the block diagonal
operator where the blocks may now be taken to be Λh and a discrete Laplacian.
Hence a simple combination of our preconditioner with a standard preconditioner
for the Laplacian will result in an efficient numerical method.

We mention several other applications of our results which will not be discussed
below. One is to the implementation of the sequential regularization method for
the nonstationary incompressible Navier–Stokes system, introduced in [23]. As dis-
cussed in § 1 of [23], the SRM iterative method requires the solution of an equation
of the form (1.2) at each timestep. There are also connections between our results
and iterative solvers for the Reissner–Mindlin plate [1] and with the construction
of fictitious domain preconditioners for the mixed finite element method [30]. Our
construction and analysis of the preconditioner Θh is guided by the modern the-
ory of multilevel and domain decomposition methods, as presented, for example,
in [3] and [34]. However the operator Λ lacks a number of properties possessed by
standard elliptic operators, and this necessitates a number of modifications to the
theory. For example, in multigrid analysis it is often required that the eigenfunc-
tions corresponding to the lowest eigenvalues of the operator can be well represented
on a coarse mesh. This property is not true for Λ (since the curl of a highly os-
cillatory function is an eigenfunction associated to the minimum eigenvalue). One
consequence is that many of the simplest smoothers (e.g., the scalar smoother)
do not work for multigrid solutions to (1.2). In fact, other investigators have no-
ticed this failure, either through analysis or computation, and have concluded that
multigrid is not suitable for the problem (1.2). See, for example, [12]. However
our analysis, which takes account of the special properties of the problem, shows
that this conclusion is unjustified: with an appropriate smoother, multigrid is as
efficient for the operator Λ as it is for a standard elliptic operator.

As indicated above, the operator Λ behaves very differently when applied to
gradient fields than it does when applied to curl fields. This observation suggests
that the Helmholtz decomposition of an arbitrary vectorfield into a gradient and a
curl will provide insight. Particularly important in our analysis will be a discrete
version of the Helmholtz decomposition that applies to functions in V h. However
it is important to note that we use the discrete Helmholtz decomposition only as
a theoretical tool: it is not necessary to compute it when applying our algorithms.
In this respect our approach differs significantly from that of Vassilevski and Wang
[33]. They also study multilevel preconditioners for the equation (1.2). However,
their methods require the use of projections into spaces of curl fields at all levels,
and this leads to algorithms with more complex structures.

After some preliminaries in § 2, in § 3 we introduce the finite element spaces
we shall consider, namely the Raviart–Thomas spaces, and establish some new
approximation properties for them. These results, which are intimately related to
the discrete Helmholtz decomposition, will be crucial to the later analysis. § 4
and § 5 are devoted to the construction of domain decomposition and multigrid
preconditioners for the discrete approximations of the operator Λ, respectively. In
§ 6, we consider the extension of these results to related problems, namely when
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the space H(div) is replaced by the subspace

H̊(div) = {v ∈H(div) : v · n = 0 on ∂Ω } ,

and also when the inner product in H(div) is replaced by a parameter dependent
inner product given by

Λ(u,v) = (u,v) + k2(divu, div v),

where k ∈ (0, 1]. The applications of these results to mixed and least squares
systems is given in § 7 and the results of some numerical computations are presented
in § 8. In an appendix, we sketch the additional arguments that are needed to
extend some of the results to the case of non-convex Ω, and in a second appendix
we give the proofs of some basic lemmas from the theory of multigrid and domain
decomposition.

2. Preliminaries

We suppose that the domain Ω is a convex polygon. For S ⊂ R2, we shall use
the usual Sobolev spaces Hm(S) with norm ‖ · ‖m,S. The notation H̊1(S) is used
for the subspace of functions in H1(S) which vanish on the boundary of S. When
the set S coincides with Ω, we shall usually suppress it from the notation, and
when the index m is zero, we shall usually suppress it. We use boldface type for
vectors in R2, vector-valued functions, spaces of such functions, and operators with
range in such spaces. Thus, for example, L2 denotes the space of 2-vector-valued
functions on Ω for which both components are square integrable.

We shall use the standard differential operators

grad =

(
∂/∂x
∂/∂y

)
, curl =

(
−∂/∂y
∂/∂x

)
, div =

(
∂/∂x ∂/∂y

)
.

We shall study an additive Schwarz preconditioner in § 4 and an additive Schwarz
smoother in § 5. Here we briefly recall the definition of the additive Schwarz
operator in a general setting and some properties of it which we will need. For
this purpose let V be a Hilbert space which can be decomposed into a finite (but
not necessarily direct) sum of closed subspaces: V =

∑
j Vj . Let B : V → V be

a symmetric positive definite operator and let Pj : V → Vj denote the orthogonal

projection with respect to the norm v 7→ (Bv, v)1/2. The additive Schwarz operator
may be written as Θ =

∑
j PjB

−1. It is easy to see that Θ is L2-symmetric and
positive definite. Moreover, for all v ∈ V ,

(Θ−1v, v) = inf
vj∈Vj∑
j vj=v

∑
j

(Bvj , vj).(2.1)

For the convenience of the reader, we include a proof of this result in Appendix B.

3. Finite element discretizations

In this section we introduce the Raviart–Thomas finite element spaces. Let
Th be a quasiuniform family of triangulations of Ω, where h > 0 is a parameter
representative of the diameter of the elements. For each non-negative integer r the
Raviart–Thomas space of index r is given by

V h = {v ∈H(div) : v|T ∈ P r(T ) + (x, y)Pr(T ) for all T ∈ Th}.
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Figure 1. Degrees of freedom for the Raviart–Thomas spaces of
indices 0, 1, and 2 approximatingH(div). The arrows indicate the
value of the normal component and the double dots the value of
both components.

Here Pr(T ) denotes the set of polynomial functions of degree at most r on T . A
vectorfield in V h is uniquely specified by giving its value at a triangular array of
r(r + 1)/2 points in each triangle and the value of its normal component at r + 1
points on each edge of the triangulation. Figure 1 shows the element diagram for
V h in the three lowest order cases.

We shall also introduce two other finite element spaces:

Wh = {s ∈ H1 : s|T ∈ Pr+1(T )}

is the usual space of continuous piecewise polynomials of degree r + 1 and

Sh = {q ∈ L2 : q|T ∈ Pr(T )}

the space of arbitrary piecewise polynomials of degree r. It is easy to see that
divV h ⊂ Sh and that curlWh is precisely the subspace of divergence free vector-
fields in V h (cf. [10]):

{ v ∈ V h : div v = 0 } = { curl s : s ∈Wh } .

Defining the discrete gradient operator gradh : Sh → V h by the equation

(gradh q,v) = −(q, div v), for all v ∈ V h,(3.1)

we immediately deduce the discrete Helmholtz decomposition (cf. [11])

V h = gradh Sh ⊕ curlWh,(3.2)

where the decomposition is orthogonal with respect to both the L2 and the H(div)
inner products. Note that the two summand spaces gradh Sh and curlWh are
invariant under the action of Λh.

It is also well known (cf. [10] or [26]) that the pair of spaces (V h, Sh) satisfies
the inf-sup condition

inf
q∈Sh

sup
v∈V h

(div v, q)

‖v‖H(div)‖q‖
≥ γ > 0,(3.3)

with the constant γ independent of h. The inf-sup condition follows from the
existence of the interpolation operator Πh : H1 → V h having the commutativity
property

div Πh = Qh div,
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and the approximation property

‖u−Πhu‖ ≤ ch‖u‖1, for all u ∈H1.

Here Qh : L2(Ω) → Sh is the L2-projection onto Sh. In fact, the standard con-
struction of Πh determines it triangle by triangle from moments of u · n on the
triangle edges and moments of u on the triangles. Therefore Πhu is defined for all
u ∈H(div) for which u|T ∈H1(T ) for all T ∈ T , and for such u,

‖u−Πhu‖0,T ≤ ch‖u‖1,T .

Observe that (3.3) implies that gradh is injective on Sh.
The Raviart–Thomas mixed method to approximate the solution of the Dirichlet

problem

∆ p = f on Ω, p = 0 on ∂Ω,(3.4)

determines (uh, ph) ∈ V h × Sh by the equations

(uh,v) + (div v, ph) = 0 for all v ∈ V h,

(divuh, q) = (f, q) for all q ∈ Sh.
An equivalent formulation is

uh = gradh ph, divuh = Qhf.

The inf-sup condition implies that this is a stable numerical method in the sense
that

‖uh‖H(div) + ‖ph‖ ≤ C‖f‖
for some constant C independent of h and f . Moreover the following estimates are
known for this method (see, e.g., [20]):

‖u− uh‖ ≤ ‖u−Πhu‖ ≤ chk‖u‖k, k = 1, 2, . . . , r + 1,(3.5)

‖p− ph‖ ≤ chk‖p‖k, k = 2, 3, . . . , r + 1,(3.6)

‖p− ph‖ ≤ c(h‖p‖1 + h2‖p‖2).(3.7)

To close this section we consider the following situation. Suppose that a second
quasiuniform mesh TH of Ω with mesh size H > h is given and define corresponding
spaces V H , SH , and WH . Let QH : L2 → SH and PH : H(div) → V H denote
the L2- and H(div)-projections, respectively. The following results, which will be
crucial to the analysis in §§ 4 and 5, concerns the approximation of functions in Sh
and V h by those in SH and V H .

Lemma 3.1. Let ph ∈ Sh, vh = gradh ph ∈ V h. Define pH ∈ SH and vH ∈ V H

by

vH = gradH pH , div vH = QH div vh.

Then

‖ph −QHph‖ ≤ cH‖ gradh ph‖,(3.8)

‖vh − vH‖ ≤ cH‖ div vh‖,(3.9)

‖vh − vH‖H(div) ≤ cH‖Λhvh‖,(3.10)

where the constant c is independent of h and H.



PRECONDITIONING IN H (div) AND APPLICATIONS 963

Proof. Define p ∈ H̊1(Ω) by ∆ p = div gradh ph and v = grad p. Then

‖p‖1 ≤ c‖ gradh ph‖, ‖p‖2 ≤ c‖ div gradh ph‖ ≤ ch−1‖ gradh ph‖.
Moreover (ph,vh) is the mixed method approximation to (p,v) in the space Sh×V h

and (pH ,vH) is the mixed method approximation to (p,v) is SH × V H .
To establish the first inequality, we apply the triangle inequality, (3.7), the stan-

dard approximation property of QH , and the a priori estimates for p to write

‖ph −QHph‖ ≤ ‖ph − p‖+ ‖QH(p− ph)‖ + ‖p−QHp‖
≤ c(h‖p‖1 + h2‖p‖2 +H‖p‖1) ≤ cH‖ gradh ph‖.

Applying (3.5) and noting that ‖v‖1 ≤ ‖p‖2 ≤ c‖ div vh‖ gives

‖v − vh‖ ≤ ch‖ div vh‖, ‖v − vH‖ ≤ cH‖ div vh‖,
and another application of the triangle inequality gives the second estimate.

Substituting div vh for ph in the first estimate then gives

‖ div vh − div vH‖ ≤ cH‖ gradh div vh‖.
Combining this with the previous estimate gives

‖vh − vH‖H(div) ≤ cH(‖ div vh‖+ ‖ gradh div vh‖).
Since

‖Λhvh‖2 = ‖vh‖2 + 2‖ divvh‖2 + ‖ gradh div vh‖2,

this establishes the third estimate.

The key point in the next lemma is the gain of a power of H without bringing
in the full H1 norm of u− PHu.

Lemma 3.1. Suppose u ∈ V h and that u−PHu ∈ V h has the discrete Helmholtz
decomposition

u− PHu = gradh p+ curl s,

for some p ∈ Sh and s ∈ Wh. Then

‖ gradh p‖+ ‖s‖ ≤ cH‖u− PHu‖H(div),

where c is independent of H.

Proof. Clearly

‖ gradh p‖2 = Λ(gradh p,vh),(3.11)

where vh = Λ−1
h gradh p. Since Λh maps gradh Sh onto itself, we have vh ∈

gradh Sh, so

Λ(gradh p,vh) = Λ(u− PHu,vh).(3.12)

Defining vH ∈ V H as in the previous lemma then gives

‖vh − vH‖H(div) ≤ cH‖Λhvh‖ = cH‖ gradh p‖,
so

Λ(u− PHu,vh) = Λ(u− PHu,vh − vH) ≤ ‖u− PHu‖H(div)‖vh − vH‖H(div)

≤ cH‖u− PHu‖H(div)‖ gradh p‖.

(3.13)
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The desired bound for ‖ gradh p‖ follows directly from (3.11), (3.12), and (3.13).
Observe also that

(curl s, curlψ) = Λ(u− PHu, curlψ) = 0 for all ψ ∈WH .

Therefore, by a standard duality argument,

‖s‖ ≤ cH‖ curl s‖ ≤ cH‖u− PHu‖H(div).

4. Domain decomposition methods

In this section we shall construct domain decomposition preconditioners for the
operator Λh given by (1.1). We first define the additive Schwarz operator and show
that it is an effective preconditioner by bounding its spectrum above and below.
At the end of the section we define a multiplicative Schwarz operator and derive
bounds on its spectrum from those for the additive operator. To the extent possible,
we follow the standard analysis for second order elliptic operators (cf., for example,
Dryja and Widlund [18], [19] or Xu [34]), but some modifications are required in
order to handle the degeneracy of the operator.

Let TH = {Ωj}Jj=1 be a coarse quasiuniform triangulation of Ω with characteristic
grid size H , and let Th be a quasiuniform refinement of TH with characteristic grid
size h < H . Furthermore, let {Ω′

j}Jj=1 be a covering of Ω such that for each j, Ω̄′
j

is a union of triangles in Th and Ωj ⊂ Ω′
j . It is also useful to set Ω0 = Ω′

0 = Ω and
Γ′j = ∂Ω′

j \ ∂Ω. We shall make the standard assumptions of bounded but sufficient
overlap:

(A1) There is a constant β1 such that each point of Ω is contained in at most β1

of the sets Ω′
j .

(A2) There is a constant β2 > 0 such that dist(Γ′j ,Ωj) ≥ β2H.

Let V h, Wh, and Sh be the finite element spaces introduced in § 3, so that V h

is the Raviart–Thomas space of index r with respect to the triangulation Th and
the discrete Helmholtz decomposition (3.2) is satisfied. The same spaces formed
with respect to the coarse mesh TH will be denoted V 0, W0, and S0. (It is also
possible to use instead the Raviart-Thomas spaces of index 0 on the coarse level
mesh without affecting any of the results we are about to establish.)

For j = 1, 2, . . . , J set

V j =
{
v ∈ V : v ≡ 0 on Ω \ Ω′

j

}
,

Wj =
{
w ∈ W : w ≡ 0 on Ω \ Ω′

j

}
,

Sj =
{
q ∈ S : w ≡ 0 on Ω \ Ω′

j

}
.

Consider the domain Ω′
j with the triangulation induced by Th, and the Raviart–

Thomas space of index r approximating H(div,Ω′
j). Imposing the essential bound-

ary condition v ·n = 0 on Γ′j determines a subspace in which the degrees of freedom

corresponding to nodes on Γ′j are set equal to zero. We may imbed this subspace in

V h ⊂ H(div) via extension by zero from Ω′
j to Ω and this is the space V j . Simi-

larly, identifying functions on Ω′
j with their extension by zero to Ω, Wj is the usual

Lagrangian finite element space of degree r+1 approximating the H1(Ω′
j) functions

which vanish on Γ′j and Sj is the usual space of discontinuous piecewise polyno-

mials of degree r approximating L2(Ω′
j). We may then define a discrete gradient
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operator gradj : Sj → V j as in (3.1) and the discrete Helmholtz decomposition
V j = gradj Sj + curlWj holds.

We use the decomposition V h =
∑J

j=0 V j to define an additive Schwarz pre-

conditioner, Θh : V h → V h, as described in § 2. That is, Θh =
∑J

j=0 P jΛ
−1
h ,

where P j : V h → V j is the H(div)-orthogonal projection, or, in other words,

Θhf =
∑J

j=0 uj where uj ∈ V j solves the subdomain (j > 0) or coarse mesh

(j = 0) problem

Λ(uj ,v) = (f ,v) for all v ∈ V j .

To establish the effectiveness of this preconditioner, we need to provide bounds
from above and below on the spectrum of

P := ΘhΛh =

J∑
j=0

P j .

Such bounds are a direct consequence of the following theorem.

Theorem 4.1 . There is a positive constant c (depending on the domain Ω, the
overlap constants β1 and β2, and the shape and quasiuniformity constants for the
meshes Th and TH , but otherwise independent of h and H), such that

c−1Λ(u,u) ≤ Λ(Pu,u) ≤ cΛ(u,u) for all u ∈ V h.

Proof. First we shall establish the second inequality with c = β1. By the Cauchy-
Schwarz inequality, it is enough to show that

Λ(Pu,Pu) ≤ β1Λ(Pu,u).(4.1)

Let χj be the characteristic function of Ω′
j so ‖

∑J
j=0 χ

2
j‖L∞ = ‖

∑J
j=0 χj‖L∞ ≤ β1.

Since Pu =
∑J

j=0P ju =
∑J

j=0 χjP ju and divPu =
∑J

j=0 χj divP ju,

Λ(Pu,Pu) =

J∑
i,j=0

∫
Ω

χiχj [(P iu)(P ju) + div(P iu) div(P ju)] dx

=

J∑
i,j=0

∫
Ω

(χiP ju)(χjP iu) + [χi div(P ju)][χj div(P iu)] dx

≤
J∑

i,j=0

{∫
Ω

χ2
i [|P ju|2 + | div(P ju)|2] dx

}1/2{∫
Ω

χ2
j [|P iu|2 + | div(P iu)|2] dx

}1/2

≤
J∑

i,j=0

∫
Ω

χ2
i [|P ju|2 + | div(P ju)|2] dx

≤ β1

J∑
j=0

Λ(P ju,P ju) = β1

J∑
j=0

Λ(P ju,u) = β1Λ(Pu,u),

as desired.
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The key to establishing the first inequality is showing that we can decompose

any u ∈ V h as
∑J

j=0 uj with uj ∈ V j and so that

J∑
j=0

Λ(uj ,uj) ≤ cΛ(u,u).(4.2)

Assuming this result momentarily, the completion of the argument is standard:

Λ(u,u) =
J∑
j=0

Λ(uj ,u) =
J∑
j=0

Λ(uj ,P ju)

≤

 J∑
j=0

Λ(uj ,uj)

1/2  J∑
j=0

Λ(P ju,P ju)

1/2

≤ [cΛ(u,u)]1/2Λ(Pu,u)1/2.

To define the decomposition of u, we first use the Helmholtz decomposition
to write u = gradh p + curlw, with p ∈ Sh and w ∈ Wh normalized so that∫
w = 0. We shall decompose each of the summands independently. The decom-

position of curlw follows from the usual procedure to decompose w ∈ H1 which
arises in the theory of domain decomposition for standard elliptic operators (cf. [34,

Lemma 7.1]). Using this procedure we may write w as
∑J

j=0 wj with wj ∈Wj and∑J
j=0 ‖wj‖2

1 ≤ c‖w‖2
1. Then curlwj ∈ V j , curlw =

∑J
j=0 curlwj , and

J∑
j=0

Λ(curlwj , curlwj) ≤
J∑
j=0

‖wj‖2
1 ≤ c‖w‖2

1 ≤ c(curlw, curlw)

= cΛ(curlw, curlw) ≤ cΛ(u,u).

It thus remains to decompose v := gradh p as
∑J

j=0 vj with vj ∈ V j such that

J∑
j=0

Λ(vj ,vj) ≤ cΛ(v,v).(4.3)

First define (v0, p0) ∈ V 0 × S0 by v0 = grad0 p0, div v0 = Q0 div v, where Q0

is the L2-projection into S0. Next let {θj}Jj=1 be a partition of unity subordinate

to the covering Ω′
j of Ω so that

J∑
j=1

θj ≡ 1, 0 ≤ θj ≤ 1, supp(θj) ⊂ Ω′
j .

In view of the sufficient overlap condition (A2), we can choose {θj} such that

‖ grad θj‖L∞ ≤ cH−1.(4.4)

We then set vj = Πh[θj(v − v0)]. By construction v =
∑J

j=0 vj . Defining uj =
curlwj + vj , we have

J∑
j=0

Λ(uj ,uj) ≤ 2

J∑
j=0

[Λ(curlwj , curlwj) + Λ(vj ,vj)] .
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Since Λ(v,v) ≤ Λ(u,u), the proof of the theorem will be complete if we can show
(4.3). Now for j > 0,

‖vj‖ ≤ ‖Πh[θj(v − v0)]− θj(v − v0)‖+ ‖θj(v − v0)‖
≤ ch‖ gradTh [θj(v − v0)]‖+ ‖θj(v − v0)‖
≤ ch[‖ grad θj‖L∞‖v − v0‖L2(Ω′j) + ‖θj‖L∞‖ gradTh(v − v0)‖L2(Ω′j)]

+ ‖θj‖L∞‖v − v0‖L2(Ω′j) ≤ c‖v − v0‖L2(Ω′j).

Here gradTh denotes the gradient applied elementwise with respect to the elements
in Th, and we have used an inverse inequality, the boundedness of θj , and (4.4) in
the last step.

Now

‖ divΠh[θj(v − v0)]‖ ≤ ‖ div[θj(v − v0)]‖ = ‖ div[θj(v − v0)]‖0,Ω′j

≤ ‖ grad θj‖L∞‖v − v0‖0,Ω′j + ‖θj‖L∞‖ div(v − v0)‖0,Ω′j

≤ c(H−1‖v − v0‖0,Ω′j + ‖ div(v − v0)‖0,Ω′j ).

Squaring and adding over j, and using (A1) gives

J∑
j=1

Λ(vj ,vj) ≤ c[(1 +H−2)‖v − v0‖2 + ‖ div(v − v0)‖2].(4.5)

Since div v0 = Q0 div v, it follows easily using Lemma 3.1 that the right-hand side
may be bounded by cΛ(v,v). This completes the proof.

We remark that in using Lemma 3.1, we require that the domain Ω be convex.
In fact, this restriction may be eliminated by using a more complicated argument,
which we present in Appendix A.

We shall now discuss the corresponding symmetric multiplicative Schwarz pre-

conditioner Θ̃h : V h → V h. The results for this preconditioner follow by a standard
argument from those derived above for the additive preconditioner (cf. for example
Bramble, Pasciak, Wang, and Xu [7] or Xu [34]). We recall the definition of the

multiplicative Schwarz operator Θ̃h. For a given f ∈ V h we let Θ̃hf = vJ ∈ V h,
where the vj are defined by the iteration

v−J−1 = 0,

vj = vj−1 − P |j|(v
j−1 −Λ−1

h f ), j = −J,−J + 1, . . . , J.
(4.6)

If we let v = Λ−1
h f , then it follows from the iteration above that

v − vj = (I − P |j|)(v − vj−1).

Hence, if we let E : V h → V h denote the operator

E = (I − P 0)(I − P 1) . . . (I − P J ),

then

I − Θ̃hΛh = E∗E,

where E∗ is the adjoint of E with respect to the inner product Λ(·, ·). This imme-
diately implies that

Λ([I − Θ̃hΛh]u,u) = Λ(Eu,Eu) ≥ 0 for all u ∈ V h,(4.7)

and hence the spectrum of Θ̃hΛh is bounded above by one.
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A lower bound on the spectrum of Θ̃hΛh can be derived from an upper bound
of Λ(Eu,Eu). Define operators

Ej = (I − P j)(I − P j+1) . . . (I − P J) for j = 0, 1, . . . J.

Hence E0 = E. Furthermore let EJ+1 = I. Observe that

Λ(Eju,Eju) = Λ([I − P j ]Ej+1u,Ej+1u)

= Λ(Ej+1u,Ej+1u)− Λ(P jEj+1u,Ej+1u).

Therefore we obtain

Λ(Eu,Eu) = Λ(u,u)−
J∑
j=0

Λ(P jEj+1u,Ej+1u).

Combining this with (4.7) we have

Λ(Θ̃hΛhu,u) =

J∑
j=0

Λ(P jEj+1u,Ej+1u).(4.8)

The desired lower bound for the spectrum of Θ̃hΛh will essentially follow from the
identity (4.8) and the corresponding bound for the additive operator derived above.
In order to see this, observe first that from the relation Ej = (I − P j)Ej+1 we
obtain

I = Ej +

J∑
i=j

P iEi+1.

Therefore, since P jEj = 0 we have

Λ(Pu,u) =

J∑
j=0

Λ(P ju,u) =

J∑
j=0

J∑
i=j

Λ(P ju,P iEi+1u).(4.9)

By arguing as in the derivation of (4.1), it now follows from the Cauchy–Schwarz
inequality and the overlap condition (A1) that

J∑
j=0

J∑
i=j

Λ(P ju,P iEi+1u) ≤ β1Λ(Pu,u)1/2
[ J∑
j=0

Λ(P jEj+1u,Ej+1u)
]1/2

.

Together with (4.9) this implies that

Λ(Pu,u) ≤ β2
1

J∑
j=0

Λ(P jEj+1u,Ej+1u).(4.10)

Hence, by combining (4.8), (4.10), and the left inequality in Theorem 4.1, we obtain

Λ(Θ̃hΛhu,u) ≥ β−2
1 Λ(Pu,u) ≥ (cβ2

1)−1Λ(u,u) for all u ∈ V h.(4.11)

We summarize this discussion of the multiplicative Schwarz operator in the following
theorem.

Theorem 4.2 . The spectrum of the operator Θ̃hΛh is contained in an interval
[1− δ, 1], where the positive constant δ is independent of h and H, but depends on
the overlap constants β1 and β2.
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As a corollary of the discussion which led to Theorem 4.2, we also obtain the

following relation between the multiplicative operator Θ̃h and the corresponding
additive operator Θh which will be used in the next section.

Corollary 4.3. Let β1 > 0 be given by the overlap condition (A1). Then

(Θ̃hv,v) ≥ β−2
1 (Θhv,v) for all v ∈ V h.

Proof. From (4.11) we have

(Θ̃hΛhu,Λhu) ≥ β−2
1 (ΘhΛhu,Λhu) for all u ∈ V h.

The result follows by setting v = Λ−1
h u.

5. Multigrid methods

In this section we define a V–cycle multigrid preconditioner Θh for the operator
Λh using an additive Schwarz smoother formed by summing solutions to local
problems in a neighborhood of each mesh vertex, and we show that the operator
I −ΘhΛh is a contraction uniformly with respect to h, and, a fortiori, that Θh is
spectrally equivalent to Λ−1

h . At the end of this section, we show that an analogous
result holds for the multiplicative Schwarz smoother.

We begin by recalling the multigrid V-cycle construction in an abstract setting.
For this discussion the notation is independent of the rest of the paper. Let V1 ⊂
V2 ⊂ . . . ⊂ VJ be a nested sequence of finite dimensional subspaces of a Hilbert
space H , and let Λ : VJ × VJ → R be a positive-definite symmetric bilinear form.
For j = 1, 2, . . . , J define Λj : Vj → Vj by

(Λjv, w) = Λ(v, w) for all v, w ∈ Vj ,
where the pairing on the left-hand side is the inner product in H . Also let Qj :
VJ → Vj denote the H-orthogonal projection and Pj : VJ → Vj the orthogonal
projection with respect to the bilinear form Λ. Finally, suppose that we are given
for each j > 1 a linear operator Rj : Vj → Vj . As will be clarified below, Rj , the

smoother, is intended to behave in some ways like an approximation to Λ−1
j .

For a fixed positive integer m, the standard V–cycle multigrid algorithm with m
smoothings recursively defines operators Θj : Vj → Vj beginning with Θ1 = Λ−1

1 .
For j > 1 and f ∈ Vj we define Θjf = x2m+1 where

x0 = 0 ∈ Vj ,
xi = xi−1 +Rj(f − Λjxi−1), i = 1, 2, . . . ,m,

xm+1 = xm + Θj−1Qj−1(f − Λjxm),

xi = xi−1 +Rj(f − Λjxi−1), i = m+ 2,m+ 3, . . . , 2m+ 1.

Note that if Rj is H-symmetric, as we shall assume, then so is Θj .
The following result is useful for establishing the convergence of the V–cycle

algorithm. It was proved in a special case by Braess and Hackbusch [2] and can
easily be adapted from the proof of Theorem 3.6 in [3]. For the convenience of the
reader, we provide a proof in Appendix B.

Theorem 5.1. Suppose that for each j = 1, 2, . . . , J the smoother Rj is H-sym-
metric and positive semidefinite and satisfies the conditions

Λ([I −RjΛj ]v, v) ≥ 0 for all v ∈ Vj(5.1)
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and

(R−1
j [I − Pj−1]v, [I − Pj−1]v) ≤ αΛ([I − Pj−1]v, [I − Pj−1]v) for all v ∈ Vj ,

(5.2)

where α is some constant. Then

0 ≤ Λ([I −ΘjΛj]v, v) ≤ δΛ(v, v) for all v ∈ Vj ,
where δ = α/(α+ 2m).

Corollary 5.2 . Under the hypotheses of the theorem, the error operator I−ΘJΛJ

is a positive definite contraction on VJ whose operator norm relative to the Λ inner
product is bounded by δ. Moreover the eigenvalues of ΘJΛJ belong to the interval
[1− δ, 1].

Thus we have, in particular, that ΘJ is spectrally equivalent to Λ−1
J .

We wish to apply this abstract theorem to the case where H = L2, VJ = V h is
the Raviart–Thomas space of index r ≥ 0 relative to the triangulation Th, and Λ
is the H(div) inner product. In order to define the nested sequence of subspaces
Vj , we assume that the triangulation Th is constructed by a successive refinement
process. More precisely, we assume that we have a nested sequence of quasiuniform
triangulations Tj , 1 ≤ j ≤ J , with characteristic mesh size hj proportional to γ2j

for some positive constant γ < 1, and that Th = TJ . It is easy to check that

V 1 ⊂ V 2 ⊂ · · · ⊂ V J = V h

where V j is the Raviart-Thomas space of index r relative to the triangulation Tj .
(Note, that V j in this section has a different meaning than it had in the preceding
one.) At each level j we have the discrete operator Λj : V j → V j defined as in

(1.1) and the L2- and H(div)-orthogonal projections onto V j , which we denote by
Qj and P j , respectively. Also, using the triangulation Tj we may define the spaces
Wj and Sj and the discrete gradient operator gradj : Sj → V j so that the discrete
Helmholtz decomposition

V j = gradj Sj ⊕ curlWj ,

holds. Thus there exist maps Fj : V j →Wj and Gj : V j → Sj , so that

u = gradj(Gju) + curl(Fju) for all u ∈ V j .

To complete the description of the multigrid algorithm, we must define the
smoothers. We shall discuss both additive smoothersRj and multiplicative smooth-

ers R̃j . The additive smoother Rj : V j → V j will be defined as a multiple of the
additive Schwarz operator formed with respect to a decomposition of V j which we
now describe. Let Nj be the set of vertices in the triangulation Tj , and for each
ν ∈ Nj let Tj,ν be the set of triangles in Tj meeting at the vertex ν. These form
a triangulation of a small subdomain which we denote Ωj,ν . The family of subdo-
mains {Ωj,ν}ν∈Nj forms an overlapping covering of Ω as did the family {Ω′

j}Jj=1

of the preceding section, and we define a decomposition of V j , Wj , and Sj as we
did there: V j,ν , Wj,ν , and Sj,ν are the subsets of functions in V j , Wj , and Sj ,
respectively, which are supported in Ω̄j,ν . Note that the finite overlap condition
certainly holds: no point belongs to more than three of the Ωj,ν . Then we define

Rj = η
∑
ν∈Nj

P j,νΛ
−1
j(5.3)
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as the additive Schwarz operator multiplied by a scaling factor of η > 0. The
implementation of Rj is easy: on each of the small domains (each consisting of
only a small number of elements, whose number does not grow with decreasing h or
increasing j) one must solve the restricted discrete variational problem with Dirich-
let boundary conditions on the subdomain boundary (except where the subdomain
boundary coincides with the domain boundary), and the scaled sum of these solu-
tions gives the value of Rj . As discussed at the end of § 2, Rj is L2-symmetric and
positive definite and

η(R−1
j v,v) = inf

vν∈V j,ν∑
ν vν=v

∑
ν∈Nj

Λ(vν ,vν).(5.4)

In the remainder of this section we show that if 0 < η ≤ 1/3, then the scaled
additive Schwarz smoother (5.3) satisfies the conditions of Theorem 5.1 and so the
conclusions of that theorem and of Corollary 5.2 are satisfied.

For v ∈ V j ,

Λ([I −RjΛj ]v,v) = Λ(v,v)− η
∑
ν∈Nj

Λ(P j,νv,v).

But

Λ(P j,νv,v) = ‖P j,νv‖2
H(div,Ωj,ν) ≤ ‖v‖H(div,Ωj,ν)‖P j,νv‖H(div,Ωj,ν),

so ∑
ν∈Nj

Λ(P j,νv,v) ≤
∑
ν∈Nj

‖v‖2
H(div,Ωj,ν) ≤ 3Λ(v,v).

Thus the hypothesis (5.1) holds.
Thus, it only remains to establish (5.2), which, in view of (5.4) reduces to showing

that for v = (I − P j−1)u, u ∈ V j , we can decompose v as
∑

ν vν with vν ∈ V j,ν

such that ∑
ν∈Nj

Λ(vν ,vν) ≤ cΛ(v,v).(5.5)

We use the discrete Helmholtz decomposition to write

v = v̄ + ṽ := gradhGjv + curlFjv,

and decompose the two pieces separately.
First we consider v̄ := gradhGjv. Letting {θν}ν∈Nj denote a partition of unity

subordinate to the covering {Ωj,ν}ν∈Nj , we set v̄ν = Πj(θν v̄). Then v̄ =
∑

ν v̄ν ,
and, arguing as at the end of the proof of Theorem 4.1 (with H = hj and v0 = 0),
we get ∑

ν∈Nj

Λ(v̄ν , v̄ν) ≤ C(‖v̄‖2
H(div) + h−2

j ‖v̄‖2).(5.6)

Clearly ‖v̄‖H(div) ≤ ‖v‖H(div) and by Lemma 3.2, ‖v̄‖ ≤ chj‖v‖H(div), so∑
ν∈Nj

Λ(v̄ν , v̄ν) ≤ C‖v‖2
H(div).
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Next consider ṽ = curlFjv. Using a standard decomposition argument (as in
[34, Lemma 7.1]) we may write Fjv =

∑
ν sν , where sν ∈Wj,ν and∑

ν∈Nj

(curl sν , curl sν) ≤ C[(curlFjv, curlFjv) + h−2
j ‖Fjv‖2].

Recalling that v = u− P j−1u = gradhGjv + curlFjv, we have from Lemma 3.2
that

‖Fjv‖ ≤ ChjΛ(v,v)1/2.

Setting ṽν = curl sν so ṽ =
∑

ν ṽν , and combining these results, we obtain∑
ν∈Nj

Λ(ṽν , ṽν) =
∑
ν∈Nj

(curl sν , curl sν) ≤ CΛ(v,v).

Finally, setting vν = v̄ν + ṽν , we get that v =
∑
vν and that (5.5) holds. This

completes the verification of the required properties of the smoother.

Next we consider the corresponding multiplicative preconditioner R̃j : V j → V j .
This operator is defined by an algorithm of the form (4.6) with respect to the spaces
V j,ν . By construction (cf. (4.7)), these operators satisfy (5.1). Furthermore, by

Corollary 4.3, the operators R̃j and Rj satisfy

(Rjv,v) ≤ 9η(R̃jv,v) for all v ∈ V h.(5.7)

In order to verify (5.2) for the multiplicative operator, again let v = (I −P j−1)u,
u ∈ V j , and decompose v as

∑
ν vν , with vν ∈ V j,ν satisfying (5.5). Then, by

the Cauchy–Schwarz inequality and the definition of the additive smoother Rj , we
have

(R̃
−1

j v,v) =
∑
ν∈Nj

Λ(P j,νΛ
−1
j R̃

−1

j v,vν)

≤
[∑
ν∈Nj

Λ(P j,νΛ
−1
j R̃

−1

j v,Λ−1
j R̃

−1

j v)
]1/2[∑

ν∈Nj

Λ(vν ,vν)
]1/2

= η−1/2(RjR̃
−1

j v, R̃
−1

j v)1/2
[∑
ν∈Nj

Λ(vν ,vν)
]1/2

.

Hence, from (5.5) and (5.7) we obtain

(R̃
−1

j v,v) ≤ c(R̃
−1

j v,v)1/2Λ(v,v)1/2

which implies (5.2).

6. Extensions

We now consider two extensions of the results obtained in the previous sections.
First we remark that the entire analysis of §§ 3–5 adapts easily to the case where
the space H(div) is replaced by the subspace

H̊(div) = {v ∈H(div) : v · n = 0 on ∂Ω } .

In this case, the finite element spaces V h, Wh, and Sh are replaced by V h∩H̊(div),

Wh ∩ H̊1, and Sh ∩ L̂2, respectively, and the Dirichlet problem (3.4) is replaced by
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the Neumann problem

∆ p = f on Ω, ∂p/∂n = 0 on ∂Ω,

∫
Ω

p dx = 0.

(Here L̂2 denotes the subspace of functions in L2 with mean value zero.)
Second, we consider the case where the bilinear form Λ is redefined as

Λ(u,v) = (u,v) + k2(divu, div v),(6.1)

where k ∈ (0, 1] is a parameter. (An application of this case will be discussed in
the next section.) The results of §§ 4 and 5 continue to hold in this case, moreover,
with the spectral bounds now independent of k as well as h. In order to prove such
results, some small modifications to the preceding analysis are required. We now
discuss these modifications. First we define the norm

‖v‖Λ = [Λ(v,v)]1/2.

In the case when k = 1, this is the norm ‖v‖H(div). The first change we need occurs
in Lemma 3.1, where we need to replace the estimate

‖vh − vH‖H(div) ≤ cH‖Λhvh‖
by the estimate

‖vh − vH‖Λ ≤ cHk−1‖Λhvh‖.(6.2)

The proof of this result is completely analogous to the previous one.
Similarly, in Lemma 3.2, we need to replace the estimate

‖ gradh p‖+ ‖s‖ ≤ cH‖u− PHu‖H(div)

by the estimate

‖ gradh p‖+ ‖s‖ ≤ cHk−1‖u− PHu‖Λ.(6.3)

Using (6.2), the proof of this result is completely analogous to the previous one.
Turning now to § 4 on domain decomposition, the proof of the second inequality

in Theorem 4.1 carries over directly once k is introduced. The proof of the first
inequality carries over directly until (4.5), for which the obvious replacement is

J∑
j=1

Λ(vj ,vj) ≤ c[(1 + k2H−2)‖v − v0‖2 + k2‖ div(v − v0)‖2].

When H ≤ k, we can complete the proof essentially as before using Lemma 3.1 to
obtain from the above

J∑
j=1

Λ(vj ,vj) ≤ c[H2 + k2]‖ div v‖2 ≤ cΛ(v,v).

When k < H , we replace the v0 defined previously by v0 = 0. Then

J∑
j=1

Λ(vj ,vj) ≤ c[‖v − v0‖2 + k2‖ div(v − v0)‖2] ≤ cΛ(v,v).

Turning to the section on multigrid, we need only check that the smoother still
satisfies the conditions of Theorem 5.1. The proof of (5.1) is the same, requiring
only the replacement of the ‖ · ‖H(div) norm by the more general ‖ · ‖Λ norm. To
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establish (5.2), we proceed as previously, obtaining instead of (5.6), the obvious
replacement ∑

ν∈Nj

Λ(v̄ν , v̄ν) ≤ C(k2h−2
j ‖v̄‖2 + ‖v̄‖2 + k2‖ div v̄‖2).

Applying (6.3), we get ‖v̄‖ ≤ chjk
−1‖v‖Λ. Since ‖v̄‖ ≤ ‖v‖ and ‖ div v̄‖ = ‖ div v‖,

it follows immediately that ∑
ν∈Nj

Λ(v̄ν , v̄ν) ≤ C‖v‖2
Λ.

The remainder of the proof is unchanged.

7. Applications

In this section we give examples of how the preconditioners Θh constructed in
the previous sections can be used to develop efficient solution operators for the
linear systems that arise from some finite element procedures.

To explain our approach, we first consider the abstract problem of finding xh
belonging to a normed finite dimensional vectorspace Xh and satisfying

Ahxh = fh,(7.1)

where Ah is a self-adjoint linear operator from Xh to its dual X∗
h and fh ∈ X∗

h

is given. We think of Ah as coming from some discretization of a boundary value
problem using finite elements of mesh size h and assume that the operator norms

‖Ah‖L(Xh,X∗
h) and ‖A−1

h ‖L(X∗
h,Xh) are bounded uniformly in h.(7.2)

In order to solve (7.1), we will use an iterative solution algorithm preconditioned
by a positive-definite self-adjoint operator Bh : X∗

h → Xh. For example, we may
use a preconditioned minimum residual iteration, or, if Ah is positive-definite, a
preconditioned conjugate gradient iteration. Such an iterative scheme is efficient if
the action of the Bh can be computed efficiently and if the magnitude of the eigen-
values of BhAh can be bounded above and below by positive constants independent
of h (this last property insures that the number of iterations needed to achieve a
given factor of reduction of the error is bounded). Now, in light of (7.2), the desired
eigenvalue bounds will follow if

‖Bh‖L(X∗
h,Xh) and ‖B−1

h ‖L(Xh,X∗
h) are bounded uniformly in h.(7.3)

Thus to efficiently solve (7.1), we simply require a computable positive-definite
operator Bh for which (7.3) holds. We remark that the preconditioner Bh can be
constructed without reference to the detailed structure of the operator Ah, but
depends only on the norm in Xh.

As a first example, consider an elliptic boundary value problem of the form

div(agrad p) = g in Ω, p = 0 on ∂Ω.(7.4)

The data g is assumed to be L2(Ω), while the coefficient matrix a = {aij(x)}2
i,j=1

is assumed measurable, bounded, symmetric, and uniformly positive-definite on Ω̄.
Introducing the variable u = agrad p, we obtain the first order system

u− agrad p = 0 in Ω, divu = g in Ω, p = 0 on ∂Ω.(7.5)
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A simple least squares approach characterizes (u, p) as the minimizer of the func-
tional

J(v, q) = ‖v − agrad q‖2
0 + ‖ div v − g‖2

0

over H(div)× H̊1. Defining B : [H(div)× H̊1]× [H(div)× H̊1] → R by

B(u, p;v, q) = (u− agrad p,v − agrad q) + (divu, div v),

it is easy to see that (u, p) ∈H(div)× H̊1 is determined by the weak equations

B(u, p;v, q) = (g, div v) for all (v, q) ∈H(div)× H̊1.

In [25] (and, in greater generality, in [13]), it is shown that this bilinear form is

symmetric and positive-definite, and so defines an inner product on H(div) × H̊1

equivalent to the usual one.
By restricting the minimization to a finite dimensional subspace Xh ⊂H(div)×

H̊1, we obtain an approximate solution, (uh, ph) ∈ Xh. The convergence of this
procedure was established for a wide variety of finite element spaces in [25]. Defining
Ah : Xh → X∗

h by

〈Ahx, y〉 = B(x, y) for all x, y ∈ Xh,

and fh ∈ X∗
h by

〈fh, (v, q)〉 = (g, div v),

the linear system determining the discrete solution can be written in the form (7.1).

Since Xh is normed with the restriction of the norm in H(div)× H̊1 and the norm
in X∗

h is defined by duality, the bounds (7.2) follow directly from the equivalence

of the B inner product with the inner product in H(div)× H̊1. Hence we need to
construct a preconditioner Bh : X∗

h → Xh for which (7.3) holds.
Now suppose that Xh = V h ×Wh where V h ⊂ H(div) is a Raviart–Thomas

space and Wh is some standard finite element subspace of H̊1. As is usual we
identify V ∗

h with V h so that

‖v‖V ∗
h

= sup
w∈V h

(v,w)

‖w‖H(div)
,

and similarly for W ∗
h . The operators Θh constructed in the previous sections map

V ∗
h → V h and satisfy

‖Θh‖L(V ∗
h,V h) and ‖Θ−1

h ‖L(V h,V ∗
h) are bounded uniformly in h.

Moreover, domain decomposition or multigrid can be used to construct Φh : W ∗
h →

Wh such that

‖Φh‖L(W∗
h ,Wh) and ‖Φ−1

h ‖L(Wh,W∗
h ) are bounded uniformly in h.

These are the natural requirements for a preconditioner for the Laplacian discretized
in the usual way using the space Wh. Then, letting

Bh =

(
Θh 0
0 Φh

)
,

(7.2) follows directly.
To summarize this example: we may precondition the discrete least squares

system using an H(div) preconditioner for the vector variable and a standard H1

preconditioner for the scalar variable.
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A second example is furnished by a mixed method solution to (7.4). This again
proceeds from the first order system (7.5), but now the weak formulation is to find
(u, p) ∈H(div)× L2 such that

(a−1u,v) + (p, div v) = 0 for all v ∈H(div),

(divu, q) = (g, q) for all q ∈ L2.(7.6)

We shall discretize this using the Raviart–Thomas space V h of index r for u and
the space Sh of discontinuous piecewise polynomials of degree r for p, so that the
discrete weak formulation is to find (uh, ph) ∈ V h × Sh such that

(a−1uh,v) + (ph, div v) = 0 for all v ∈ V h,

(divuh, q) = (g, q) for all q ∈ Sh.(7.7)

This is again a system of the form (7.1), where now Xh = V h×Sh and Ah : Xh →
X∗
h is self-adjoint but indefinite. The bounds (7.2) are a consequence of the stability

of the Raviart–Thomas elements (cf., [10, Proposition II.1.3]).
Note that, since the norm on Sh is the L2 norm, its dual norm coincides with

itself. Thus the choice of preconditioner is obvious: we take

Bh =

(
Θh 0
0 I

)
,(7.8)

where I is the identity on Sh, and then (7.3) holds. Vassilevski and Lazarov arrived
at the same type of block diagonal preconditioner for the mixed system in [31], al-
though they did not have available the simple multigrid and domain decomposition
preconditioners for Λh which we constructed in §§ 4 and 5, and so suggested the
more complicated operator from [33]. Let us comment on how this choice of pre-
conditioner differs from other block diagonal preconditioners for the mixed method
which have been considered. The coefficient operator of the continuous system
(7.6),

A =

(
a−1 − grad
div 0

)
,

is an isomorphism from H(div)×L2 onto its dual H(div)∗ ×L2, and the stability
of the Raviart–Thomas discretization implied that similar mapping properties hold
for the discrete operator Ah. These mapping properties led naturally to our choice
of preconditioner. However, it is also true that the continuous operator A defines an
isomorphism from L2 × H̊1 onto its dual L2×H−1. In fact, this is just a recasting
of the standard H̊1 → H−1 isomorphism for the Dirichlet problem for a second
order elliptic equation. From a corresponding discrete result for the operator Ah,
and by arguing in an analogous manner as above, we are led to a preconditioner
for the discrete operator Ah of the form

B̃h =

(
I 0
0 Φh

)
.(7.9)

where Φh : Sh → Sh is a preconditioner for the discrete negative Laplace operator
−∆h : Sh → Sh given by− div gradh. However, notice that Sh is not a subset of H̊1

in the present case (indeed in the simplest case, Sh consists of piecewise constants),
and the discrete Laplacian is not a standard, or even a local, operator, and so the
definition of Φh is not obvious. From this point of view, this second approach seems
less natural than the first. Despite this fact, most of the preconditioners for the
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system (7.7) which are analyzed in the literature are of the form (7.9) or closely
related to it. Such preconditioners are, for example, discussed in [27], [28], and
[29]. In this context, we also mention that many authors have sought to avoid
the solution of (7.7) when implementing mixed methods by using a reformulation
of the mixed method as a positive-definite system. This can be accomplished by
using the Schur complement as in algorithms of Uzawa type, via the introduction
of additional Lagrange multipliers and elimination of the vector variable, or via the
use of divergence free bases and elimination of the scalar variable. Examples of
such approaches can be found in [4], [6], [8], [9], [14], [15],[16], [17], [20], [22], [24],
[32].

Finally, in this section we shall consider an application of the preconditioning of
the k-dependent operator associated to the bilinear form (6.1). Consider the system
obtained by applying the mixed finite element method to the singular perturbation
problem

k2 ∆ p− p = g in Ω, p = 0 on ∂Ω,

with k ∈ (0, 1]. A mixed formulation seeks (u, p) ∈H(div)× L2 such that

(u,v) + k(p, div v) = 0 for all v ∈H(div),

k(divu, q)− (p, q) = (g, q) for all q ∈ L2.

The differential operator

A =

(
I −k grad

k div −I

)
defines an isomorphism from H(div)×L2 onto its dual. In fact, equipping H(div)
with the norm

u 7→ (‖u‖2 + k2‖ divu‖2)1/2

and choosing test functions v = u and q = k divu − p, we easily see that the
norms of A and A−1 are bounded uniformly with respect to k. Therefore we can
precondition the mixed system with the block diagonal preconditioner (7.8), where
Θh is the domain decomposition or multigrid preconditioner for the k-dependent
operator onH(div). In view of the uniformity of the bounds on Θh discussed in the
previous section, the resulting block diagonal preconditioner for the mixed method
is effective uniformly with respect to k and h.

8. Numerical results

In this section we present numerical results which illustrate the multigrid con-
vergence results of § 5 and their application to mixed methods, as discussed in
§ 7.

First we made a numerical study of the condition number of Λh : V h → V h and
the effect of preconditioning. We took the domain to be the unit square. Bisecting
the square into two triangles by its negatively sloped diagonal yields the mesh of
level 1, to which we associate the mesh size h = 1. The level m mesh has half the
mesh size as the level m−1 mesh and is formed from it by subdividing each triangle
into four similar triangles. Thus the level m mesh is a uniform triangulation of the
square into 22m−1 triangles and has mesh size h = 1/2m−1. The space V h is taken
as Raviart–Thomas space of index 0 on this mesh.
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Table 1. Condition numbers for the operator Λh and for the pre-
conditioned operator ΘhΛh, and iteration counts to achieve an
error reduction factor of 106.

level h elements dimV h κ(Λh) κ(ΘhΛh) iterations
1 1 2 5 38 1.00 1
2 1/2 8 16 153 1.32 4
3 1/4 32 56 646 1.68 6
4 1/8 128 208 2,650 2.17 6
5 1/16 512 800 10,670 2.34 8
6 1/32 2,048 3,136 42,810 2.40 8
7 1/64 8,192 12,416 – – 8

Table 1 reports the spectral condition number of the discrete operator Λh and the
preconditioned operator ΘhΛh where Θh is the V-cycle multigrid preconditioner
of § 5 using one application of the additive Schwarz preconditioner (5.3) with the
scaling factor η taken to be 1/2. (For the convergence theory of § 5 we assumed
that η ≤ 1/3, but other approaches to the convergence theory can be used to raise
this bound to 2/3, and we found the results slightly better with η = 1/2 than
η = 1/3.) In order to determine the condition numbers, we computed the matrices
corresponding to both the unpreconditioned and the preconditioned operator, and
then calculated their largest and smallest eigenvalues. Of course, this is an expen-
sive procedure which is never performed in a practical computation, but which we
carried out to illustrate the theory. The fifth column of Table 1 clearly displays the
expected growth of the condition number of Λh as O(h−2), and the sixth column
the boundedness of the condition number of the preconditioned operator ΘhΛh.

In addition to computing the condition numbers, we solved the equation (1.2)
using the conjugate gradient method with Θh as preconditioner. We arbitrarily
took f to be the constant unit vectorfield in the vertical direction and started with
an initial iterate of 0. The final column of Table 1 shows the number of iterations
required to reduce the initial error by a factor of 106. As expected, the number of
iterations appears to remain bounded as the mesh is refined.

As a second numerical study, we used the Raviart–Thomas mixed method to
solve the factored Poisson equation

u = grad p, divu = g in Ω, p = 0 on ∂Ω.

We chose g = 2(x2 + y2− x− y) so that p = (x2− x)(y2− y). The discrete solution
(uh, ph) belongs to the space V h×Sh, with V h the Raviart–Thomas space described
above and Sh the space of piecewise constant functions on the same mesh. We solved
the discrete equations both with a direct solver and by using the minimum residual
method preconditioned with the block diagonal preconditioner having as diagonal
blocks Θh and the identity (as discussed in § 7). Full multigrid was used to initialize
the minimum residual algorithm. That is, the computed solution at each level was
used as an initial guess at the next finer level, beginning with the exact solution
on the coarsest (two element) mesh. In Table 2 we show the condition number
of the discrete operator Ah and of the preconditioned operator BhAh. While the
former quantity grows linearly with h−1 (since this is a first order system), the
latter remains small.
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Table 2. Condition numbers for the indefinite operator Ah corre-
sponding to the mixed system and for the preconditioned operator
BhAh.

level h dimV h dimSh κ(Ah) κ(BhAh)
1 1 5 2 8.25 1.04
2 1/2 16 8 15.0 1.32
3 1/4 56 32 29.7 1.68
4 1/8 208 128 59.6 2.18
5 1/16 800 512 119 2.34

Table 3. Percent relative L2 errors for the mixed method with
three different solvers for the linear system: direct, 4 iterations of
the minimum residual method, and 8 iterations of minimum resid-
ual.

direct solve minres 4 iter. minres 8 iter.
level h dimV h dimSh u p u p u p

1 1 5 2 33.33 33.33 33.33 33.33 33.33 33.33
2 1/2 16 8 38.90 7.49 38.90 7.46 38.90 7.49
3 1/4 56 32 23.44 2.89 23.50 9.02 23.44 2.89
4 1/8 208 128 12.30 0.84 12.38 4.48 12.30 0.90
5 1/16 800 512 6.22 0.22 6.26 1.92 6.22 0.24
6 1/32 3,136 2,048 3.12 0.05 3.14 0.75 3.12 0.06
7 1/64 12,416 8,192 1.56 0.01 1.57 0.32 1.56 0.02

Finally, we studied the contribution of the preconditioned minimum residual
method to the solution error. To measure the error in the vector variable u, we used
the relative L2 error ‖u− uc‖0/‖u‖0, where uc represents the computed solution.
The L2 norms were computed using the three point quadrature rule (with edge
midpoints as quadrature points) on each element and this is reported in Table 3
as a percent. Note that the reported error involves both the discretization error
of the mixed method and further errors introduced by the linear solution process.
To measure the error in the scalar variable p, we compared the piecewise constant
computed solution to the piecewise constant function p∗ whose value is obtained on
each element by averaging the values of the exact solution at the three quadrature
points of the element; that is, we report ‖p∗− ph‖0/‖p∗‖0 as a percent. We do this
because p∗ is a superconvergent quantity: ‖p∗−ph‖0 = O(h2). We see from Table 3
that for the vector variable u, the full accuracy of the approximation is achieved
with only four iterations of the minimum residual method, even when the system
has over 20,000 unknowns. To maintain the full accuracy of the superconvergent
approximation to p∗, more iterations are needed, but for all practical purposes 8
iterations are sufficient, even for the finest mesh.

Appendix A

In the foregoing analysis we have assumed that the polygonal domain Ω is convex.
In this appendix we show that the results of § 4 on domain decomposition can be
proven without assuming convexity. A careful examination of that section reveals
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that the only time convexity used was in the application of (3.9) to bound the first
summand on the right-hand side of (4.5). However, the proof of (3.9) depended on
2-regularity of the Laplacian, and so fails for a non-convex polygonal domain.

In the proof of the second inequality in Theorem 4.1 one did not use convexity,
so only the proof of the first inequality needs to be adapted to the non-convex case.
Recall that the key to establishing the first inequality was to show that we can

decompose any u ∈ V h as
∑J

j=0 uj with uj ∈ V j and satisfying (4.2). To do so,
we split u as gradh p + curlw via the discrete Helmholtz decomposition, and set
v = gradh p. In proving (4.2) in the convex case, we defined an approximation
(v0, p0) ∈ V 0 × S0 by v0 = grad0 p0, div v0 = Q0 div v, where Q0 is the L2

projection into S0, and then we bounded the difference ‖v − v0‖ by cH‖ div v‖
using (3.9). Since this fails in the non-convex case, we now introduce an alternate
approximation, namely we define (ṽh, p̃h) ∈ V h × Sh by ṽh = gradh p̃h, div ṽh =
Q0 div v. We shall show below that

‖v − ṽh‖ ≤ cH‖ div v‖.(A.1)

Assuming (A.1) for the moment, we now complete the proof of Theorem 4.1
without the assumption of convexity. From the definitions it follows that
div(ṽh − v0) = 0 and hence that ṽh − v0 = curl ρ for some ρ ∈ Wh of mean
value zero. Thus,

u = (v − ṽh) + (ṽh − v0) + v0 + curlw = (v − ṽh + v0) + curl(w + ρ).

Note that ‖w‖1 ≤ c‖u‖H(div) and ‖ρ‖1 ≤ c(‖ṽh‖+‖v0‖) ≤ c‖ div v‖ ≤ c‖u‖H(div).

We are now ready to choose the uj . First, we decompose w + ρ as
∑J

j=0 wj with

wj ∈ Wj and
∑J

j=0 ‖wj‖2
1 ≤ c‖w + ρ‖2

1. Then curl(w + ρ) =
∑J

j=0 curlwj ,
curlwj ∈ V j , and

J∑
j=0

Λ(curlwj , curlwj) ≤ c‖w + ρ‖2
1 ≤ cΛ(u,u).

It thus remains to decompose v − ṽh + v0 as
∑J

j=0 vj with vj ∈ V j such that∑J
j=0 Λ(vj ,vj) ≤ cΛ(v,v). To do so, we proceed in an analogous manner to the

earlier proof, setting vj = Πh[θj(v − ṽh)] for j ≥ 1. This leads to the inequality

J∑
j=1

Λ(vj ,vj) ≤ c[(1 +H−2)‖v − ṽh‖2 + ‖ div(v − ṽh)‖2],

which is analogous to (4.5), and the proof is completed by invoking (A.1) and
arguing as before.

It thus remains to prove (A.1). From the definitions of v and ṽh, we get that

(v − ṽh,w) + (p− p̃h, divw) = 0, for all w ∈ V h,

(div[v − ṽh], q) = ([I −Q0] div v, q), for all q ∈ Sh.

Choosing w = v − ṽh and q = p− p̃h and subtracting the equations, we get

‖v − ṽh‖2 = −([I −Q0] div v, p− p̃h) = −(div v, [I −Q0][p− p̃h])

≤ ‖ div v‖‖(I −Q0)(p− p̃h)‖.
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Hence (A.1) will follow if we can show that

‖(I −Q0)(p− p̃h)‖ ≤ CH‖ gradh(p− p̃h)‖ = CH‖v − ṽh‖.

This is an immediate consequence of the following lemma.

Lemma A.1. There exists a constant c independent of h and H such that

‖p−QHp‖ ≤ cH‖ gradh p‖, for all p ∈ Sh.

Proof. We first note that this result was established in the case of a convex domain
in Lemma 3.1. To extend the proof to the nonconvex case, we first consider a single
triangle T = TH in the coarse mesh composed of triangles t = th in the fine mesh.
We define the spaces

V T
h = { v ∈ V h : v = 0 on Ω \ T }, STh = {p ∈ Sh : p = 0 on Ω \ T },

and an operator gradTh : STh → V T
h defined for p ∈ STh by

(gradTh p,v) = −(p, div v) for all v ∈ V T
h .

Now, define pT ∈ STh by pT = p on T and pT = 0 on Ω \ T . Then

‖ gradTh pT ‖2
0,T = (gradTh pT ,gradTh pT ) = −(pT , div gradTh pT )

= −(p, div gradTh pT ) = (gradh p,gradTh pT )

= (gradh p,gradTh pT )T ≤ ‖ gradh p‖0,T ‖ gradTh pT ‖0,T ,

so ‖ gradTh pT ‖0,T ≤ ‖ gradh p‖0,T . Now since the triangle T is convex, we may

apply (3.8) to pT , obtaining ‖pT −QHpT ‖0,T ≤ cH‖ gradTh pT ‖0,T . Therefore

‖p−QHp‖2 =
∑
T

‖pT −QHpT ‖2
0,T ≤ c2H2

∑
T

‖ gradTh pT ‖2
0,T

≤ c2H2
∑
T

‖ gradh p‖2
0,T ≤ c2H2‖ gradh p‖2.

Appendix B

We now give a proof of the abstract convergence result, Theorem 5.1, for the
V-cycle, and the identity (2.1) for the additive Schwarz operator.

Proof of Theorem 5.1. We shall prove by induction on i that

0 ≤ Λ([I −ΘiΛi]u, u) ≤ δΛ(u, u) for all u ∈ Vj .(B.1)

The result for i = 1 is obvious since Θ1 = Λ−1
1 . Now assume that (B.1) holds for

i = j − 1. Setting Kj = I − RjΛj , it is straightforward to derive the recurrence
relation (cf. [5])

I −ΘjΛj = Km
j [(I − Pj−1) + (I −Θj−1Λj−1)Pj−1]K

m
j .

The lower bound easily follows from this identity and the inductive hypothesis. For
the upper bound, we use the induction hypothesis to obtain

Λ([I −ΘjΛj]u, u) ≤ Λ([I − Pj−1]K
m
j u,K

m
j u) + δΛ(Pj−1K

m
j u,K

m
j u)

= (1 − δ)Λ([I − Pj−1]K
m
j u,K

m
j u) + δΛ(Km

j u,K
m
j u).
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Now

Λ([I − Pj−1]K
m
j u, [I − Pj−1]K

m
j u) = Λ([I − Pj−1]K

m
j u,K

m
j u)

= ([I − Pj−1]K
m
j u,ΛjK

m
j u)

= (R−1
j [I − Pj−1]K

m
j u,RjΛjK

m
j u)

≤ (R−1
j [I − Pj−1]K

m
j u, [I − Pj−1]K

m
j u)

1/2(RjΛjK
m
j u,ΛjK

m
j u)

1/2

≤
√
αΛ([I − Pj−1]K

m
j u, [I − Pj−1]K

m
j u)

1/2(RjΛjK
m
j u,ΛjK

m
j u)

1/2.

Hence,

Λ([I − Pj−1]K
m
j u,K

m
j u) ≤ α(RjΛjK

m
j u,ΛjK

m
j u) = αΛ([I −Kj]K

2m
j u, u).

It follows from the positive semidefiniteness of Rj and from (5.1) that the spec-
trum of Kj is contained in the interval [0, 1]. Therefore Λ([I − Kj]K

2m
j u, u) ≤

Λ([I −Kj ]K
i
ju, u) for i ≤ 2m, whence

Λ([I −Kj]K
2m
j u, u) ≤ 1

2m

2m−1∑
i=0

Λ([I −Kj ]K
i
ju, u) =

1

2m
Λ([I −K2m

j ]u, u).

Combining these results, we obtain

Λ([I −ΘjΛj ]u, u) ≤ (1− δ)
α

2m
Λ([I −K2m

j ]u, u) + δΛ(Km
j u,K

m
j u)

= (1− δ)
α

2m
Λ(u, u) +

[
δ − (1 − δ)

α

2m

]
Λ(Km

j u,K
m
j u).

The result now follows by choosing

δ = (1− δ)
α

2m
, i.e., δ =

α

α+ 2m
.

Proof of (2.1) . Recalling that Θ =
∑

j PjB
−1, and writing v =

∑
j vj , we have

(Θ−1v, v) =
∑

(Θ−1v, vj) =
∑

(BB−1Θ−1v, vj) =
∑

(BPjB
−1Θ−1v, vj)

≤
∑

(BPjB
−1Θ−1v, PjB

−1Θ−1v)1/2(Bvj , vj)
1/2

≤
[∑

(BPjB
−1Θ−1v,B−1Θ−1v)

]1/2 [∑
(Bvj , vj)

]1/2
=
[
(Bv,B−1Θ−1v)

]1/2 [∑
(Bvj , vj)

]1/2
≤
[
(v,Θ−1v)

]1/2 [∑
(Bvj , vj)

]1/2
.

Hence, (Θ−1v, v) ≤
∑

(Bvj , vj), and since the splitting was arbitrary,

(Θ−1v, v) ≤ inf
∑

(Bvj , vj),

where the infimum is over all decompositions v =
∑

j vj . For the choice vj =

PjB
−1Θ−1v, we have that (Θ−1v, v) =

∑
j(Bvj , vj), and so (2.1) holds.
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