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Applications
Douglas N. Arnold 1, Richard S. Falk 2 and Ragnar

Winther3 4

Abstract. Summarizing the work of [AFW97], we show how to construct
preconditioners using domain decomposition and multigrid techniques for the system
of linear algebraic equations which arises from the finite element discretization of
boundary value problems associated to the differential operator I − grad div. These
preconditioners are shown to be spectrally equivalent to the inverse of the operator and
thus may be used to precondition iterative methods so that any given error reduction
may be achieved in a finite number of iterations independent of the mesh discretization.
We describe applications of these results to the efficient solution of mixed and least
squares finite element approximations of elliptic boundary value problems.

1.1 Introduction

This paper summarizes the work of [AFW97], in which we consider the solution of the
system of linear algebraic equations which arises from the finite element discretization
of boundary value problems in two space dimensions for the differential operator
I − grad div. The natural setting for the weak formulation of such problems is the
space:

H(div) =
{
u ∈ L2(Ω) | divu ∈ L2(Ω)

}
.

Let ( · , · ) denote the L2(Ω) inner product of both scalar and vector-valued functions
and

J(u,v) := (u,v) + (divu,div v)
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denote the innerproduct on H(div). If f ∈ L2(Ω), the weak formulation is to find
u ∈H(div) such that for all v ∈H(div),

J(u,v) = (f ,v).

This corresponds to the boundary value problem

(I − grad div)u = f in Ω, divu = 0 on ∂Ω.

Note that if u is a gradient, then (I−grad div)u = −∆u+u, while if u is a curl, then
(I − grad div)u = u. A simple situation in which the operator I − grad div arises
occurs in the computation of u = grad p, where p is the solution of the Dirichlet
problem

−∆ p+ p = g in Ω, p = 0 on ∂Ω.

Then u ∈H(div) satisfies

J(u,v) = −(g,div v) for all v ∈H(div).

Given a finite element subspace V h of H(div), the natural finite element
approximation scheme is: Find uh ∈ V h such that

J(uh,vh) = (f ,vh) for all vh ∈ V h.

We shall consider the case when V h consists of the Raviart–Thomas space of index
k ≥ 0, i.e., functions which on each triangle are of the form

v(x, y) = p(x, y) + (x, y)q(x, y), p ∈ Pk × Pk, q ∈ Pk,

(where Pk denotes the polynomials of degree≤ k) and for which v·n is continuous from
triangle to triangle. The goal is to find an efficient procedure for solving the discrete
linear system corresponding to this discretization, which we write as Jhuh = fh.
Denoting the eigenvalues of Jh by σ(Jh), since the spectral condition number

κ(Jh) :=
max |σ(Jh)|
min |σ(Jh)|

of the operator Jh is O(h−2), we will clearly need to precondition any standard
iterative scheme if we want the number of iterations needed to achieve a given accuracy
to be independent of h.

1.2 Preconditioning in the abstract

Let Xh ⊂ L2 be a finite dimensional normed vectorspace. We identify Xh and X∗h as
sets, but put the dual norm on the latter (dual with respect to the L2 inner product).
Let Ah : Xh → Xh be an L2-symmetric linear isomorphism. We suppose that Xh is
endowed with an appropriate (energy) norm, i.e., we suppose that

‖Ah‖L(Xh,X∗h), ‖A−1
h ‖L(X∗h,Xh) = O(1).
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Given fh ∈ Xh, we wish to solve Ahxh = fh by applying a standard iterative method
such as CG or MINRES to the equation BhAhxh = Bhfh, where Bh : Xh → Xh is an
L2-symmetric, positive definite preconditioner. Our goal is to define Bh so that the
action of Bh is easily computable and κ(BhAh) is bounded uniformly with respect to
h. Since

max |σ(BhAh)| ≤ ‖BhAh‖L(Xh,Xh) ≤ ‖Ah‖L(Xh,X∗h)‖Bh‖L(X∗h,Xh)

and

1
min |σ(BhAh)|

≤ ‖(BhAh)−1‖L(Xh,Xh) ≤ ‖A−1
h ‖L(X∗h,Xh)‖B−1

h ‖L(Xh,X∗h)

Bh is an effective preconditioner if

‖Bh‖L(X∗h,Xh), ‖B−1
h ‖L(Xh,X∗h) = O(1).

In other words, Bh is an effective preconditioner if it has the same mapping properties
as A−1

h . Note that the energy norm, and not the detailed structure of Ah, determine
these properties. Thus to solve the problem Jhuh = fh, we need to construct an
efficiently computable operator Kh : V h → V h for which

‖Kh‖L(V ∗h ,Vh), ‖K−1
h ‖L(Vh,V ∗h ) = O(1).

We will show how this can be done using domain decomposition and multigrid
techniques.

1.3 Applications

We are interested in the operator I − grad div not for its own sake, but for
its appearance in several important problems. Besides the example mentioned in
the introduction, we will restrict our attention to two problems: the least squares
formulation and the mixed formulation of second order scalar elliptic problems. Other
examples are discussed in [AFW97]. We first discuss the least squares variational
principle.

Consider the elliptic boundary value problem

div(A grad p) = g in Ω, p = 0 on ∂Ω,

where the coefficient matrix A is assumed measurable, bounded, symmetric, and
uniformly positive definite on Ω. Introducing u = A grad p leads to the first order
system

u−A grad p = 0 in Ω, divu = g in Ω, p = 0 on ∂Ω.

The least squares variational principle characterizes the solution (u, p) as the
minimizer of the functional

‖v −A grad q‖2 + ‖div v − g‖2
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over the space H(div)× H̊1, where ‖ · ‖ denotes the L2(Ω) norm and H̊1 denotes the
subspace of functions in H1(Ω) which vanish on the boundary of Ω. Equivalently, we
have the weak formulation

B(u, p;v, q) = (g,div v) for all (v, q) ∈H(div)× H̊1,

where
B(u, p;v, q) = (u−A grad p,v −A grad q) + (divu,div v).

To discretize the least squares formulation, we let Xh = V h × Wh be a finite-
dimensional subspace of H(div) × H̊1. Then xh := (uh, ph) is the minimizer over
Xh of

‖v −A grad q‖2 + ‖div v − g‖2,

or in weak form,

B(uh, ph;v, q) = (g,div v) for all (v, q) ∈ Xh.

Defining Ah : Xh → Xh by (Ahx, y) = B(x, y) and fh ∈ Xh by (fh, (v, q)) = (g,div v),
we may rewrite our problem as Ahxh = fh.

The key to the convergence theory for the least squares method is the following
theorem (cf. Pehlivanov, Carey, Lazarov [PCL94] and Cai, Lazarov, Manteuffel, and
McCormick [CLMM94]).

Theorem 1.1 The bilinear form B is an inner product on H(div) × H̊1 equivalent
to the usual one.

A direct consequence of the theorem is that Ah : Xh → Xh is symmetric, positive
definite and satisfies

‖Ah‖L(Xh,X∗h), ‖A−1
h ‖L(X∗h,Xh) = O(1).

Thus we need a preconditioner with the opposite mapping properties. Since Xh =
V h ×Wh, we can choose a block diagonal preconditioner

Bh =
(
Kh 0
0 Mh

)
,

where Kh is a good preconditioner in H(div), i.e., it maps like J−1
h : V h → V h,

and Mh is a good preconditioner in H̊1, i.e., it maps like ∆−1
h : Wh → Wh. Hence

we conclude that a good preconditioner for the discrete least squares system is
obtained using an H(div) preconditioner for the vector variable and a standard H̊1

preconditioner for the scalar variable.
We next consider a mixed variational formulation of this boundary value problem.

The mixed variational principle characterizes (u, p) as a saddle point of

1
2

(A−1v,v) + (q,div v)− (g, q),

over H(div)× L2, or, in weak form,

(A−1u,v) + (p,div v) = 0 for all v ∈H(div),
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(divu, q) = (g, q) for all q ∈ L2.

Choosing Xh = V h × Sh ⊂ H(div) × L2, we can define a discrete solution
xh = (uh, ph) ∈ V h × Sh by restricting either the variational or weak formulation.
This may be written Ahxh = fh, with Ah : Xh → Xh L

2-symmetric but indefinite,
since Ah has the form

Ah =
(

a b
bt 0

)
.

The convergence of this method depends on the choice of V h and Sh. The key
hypotheses for the convergence analysis are the Brezzi conditions:

(A−1v,v) ≥ γ1‖v‖H(div) for all v ∈ V h with div v ⊥ Sh,

inf
q∈Sh

sup
v∈V h

(q,div v)
‖q‖ ‖v‖H(div)

≥ γ2.

These conditions are satisfied if V h is the Raviart–Thomas space of index k and Sh
the space of (discontinuous) piecewise polynomials of degree k. Brezzi’s theorem states
that if both hypotheses are satisfied, then Ah is an isomorphism and ‖A−1

h ‖L(X∗h,Xh)

may be bounded in terms of the γi.
We thus base our choice of Bh on the discrete version of the isomorphism(

A −grad
div 0

)
: H(div)× L2 →H(div)∗ × L2.

We again use a simple block-diagonal preconditioner, which this time takes the form

Bh =
(
Kh 0
0 I

)
,

where I is the identity on Sh and again Kh is a good preconditioner in H(div), i.e.,
it maps like J−1

h : V h → V h.
We remark that most other work on preconditioning such mixed methods uses the

alternate isomorphism(
A −grad

div 0

)
: L2 × H̊1 → L2 ×H−1,

which leads to a different (and less natural) choice of preconditioner.

1.4 An additive Schwarz preconditioner for Jh

We let TH = {Ωn}Nn=0, denote the coarse mesh and Th a refinement (the fine mesh).
We let {Ω′n}Nn=1 be an overlapping covering aligned with the fine mesh such that
Ωn ⊂ Ω′n. We make the standard assumption of sufficient but bounded overlap. Let
V n denote the Raviart–Thomas space approximating H(div,Ω′n) with the boundary
condition v · n = 0 on ∂Ω′j \ ∂Ω. Let V 0 denote the Raviart–Thomas approximation
to H(div,Ω) using the coarse mesh.
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Given f ∈ V h, define un ∈ V n by J(un,v) = (f ,v) for all v ∈ V n. The additive
Schwarz preconditioner is then defined by Khf :=

∑N
n=0 un. Our main result for this

domain decomposition preconditioner is the following theorem (cf. [AFW97] for the
proof).

Theorem 1.2 There exists a constant c independent of both h and H for which
κ(KhJh) ≤ c.

Following the theoretical framework of Dryja–Widlund [DW90] or Xu [Xu92], a
critical step of the proof is the following decomposition lemma.

Lemma 1.1 For all v ∈ V h, there exist vn ∈ V n with v =
∑N
n=0 vn and

N∑
n=0

‖vn‖2H(div) ≤ c‖v‖H(div).

The standard proof uses a partition of unity {θn}Nn=1 and takes v0 ∈ V 0 a suitable
approximation of v and vn = Πh[θn(v− v0)] with Πh a suitable local projection into
V h. The analysis leads to the following estimates.

‖div vn‖ ≤ c‖div[θn(v − v0)]‖
≤ c‖grad θn‖L∞‖v − v0‖+ ‖θn‖L∞‖div(v − v0)‖
≤ cH−1‖v − v0‖+ ‖div(v − v0)‖.

In the standard elliptic case we bound the first term using ‖v − v0‖ ≤ CH‖v‖1.
However it is not true that ‖v − v0‖ ≤ CH‖v‖H(div), so this approach fails. We are
able to get around this problem by using a discrete Helmholtz decomposition, which
we now describe.

Let V h denote the Raviart–Thomas space of index k, Sh the space of piecewise
polynomials of degree k, and Wh the space of C0 piecewise polynomials of degree
k + 1. Then we have the following discrete Helmholtz decomposition.

V h = curlWh ⊕ gradh Sh,

where gradh : Sh → V h is defined by (gradh s,v) = −(s,div v).
Returning to the decomposition lemma, we write v = curlw+gradh s and observe

that
‖v‖2H(div) = ‖ curlw‖2 + ‖gradh s‖2H(div).

We then decompose each term separately. Since ‖ curlw‖H(div) ≈ ‖w‖1, we can use
the standard decomposition lemma on w to write

w =
n∑
j=0

wj ,
n∑
j=0

‖wj‖21 ≤ c‖w‖21.

Taking curls gives us the desired result on the curlw term.
For v = gradh s and v0 = gradH s0, where (s0,v0) is the mixed method

approximation to (s,v) in the space S0 × V 0, we can prove using standard results
from the theory of mixed finite element approximations that

‖v − v0‖ ≤ CH‖v‖H(div),
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and conclude the proof. The key is that although the above estimate does not hold
for all v ∈ V h, it does hold when v = gradh s.

1.5 V-cycle preconditioner

We consider a nested sequence of meshes, T1, T2, . . . , TN , and let V n be the Raviart-
Thomas space of some fixed order subordinate to the mesh Tn. This gives a nested
sequence of spaces V 1 ⊂ V 2 ⊂ · · · ⊂ V N = V h and corresponding operators
Jn : V n → V n.

We also require smoothers Rn : V n → V n which we discuss below and the H(div)-
projection operators P n : H(div) → V n. Multigrid then defines Kn : V n → V n

recursively starting with K1 = J−1
1 . We shall make use of the following multigrid

convergence result.

Theorem 1.3 Suppose that for each n = 1, 2, . . . , N the smoother Rn is L2-
symmetric and positive semi-definite and satisfies the conditions

J([I −RnJn]v,v) ≥ 0

(R−1
n [I − P n−1]v, [I − P n−1]v) ≤ αJ([I − P n−1]v, [I − P n−1]v).

Then there exists a constant C independent of h and N such that the eigenvalues of
KhJh lie in the interval [1− δ, 1] where δ = C/(C + 2m), m denoting the number of
smoothings.

For standard elliptic operators many smoothers can be shown to satisfy the
hypotheses, the simplest of which is the scalar smoother. However, the proof for the
scalar smoother and some others fails in H(div) and the multigrid preconditioner
constructed with these smoothers is not effective. We shall consider an additive
Schwarz smoother, defined in the following way. For each vertex of the mesh, consider
the patch of elements containing that vertex. These patches form an overlapping
covering of Ω and so determine an additive Schwarz operator. We use this operator as
our smoother. The verification of the first hypothesis is routine. The standard proof
of the second fails, but the difficulty can be surmounted by again using the discrete
Helmholtz decomposition in a manner similar to that used for the proof of domain
decomposition. The complete proof is given in [AFW97].

1.6 Numerical Results

First we made a numerical study of the condition number of Jh and the effect of
preconditioning. In Table 1.1, the level m mesh is a uniform triangulation of the unit
square into 22m−1 triangles and has mesh size h = 1/2m−1. The space V h is taken
as the Raviart–Thomas space of index 0 on this mesh. The preconditioner Kh is
the V-cycle multigrid preconditioner using one application of the standard additive
Schwarz smoother with the scaling factor taken to be 1/2. The fifth column of the
table clearly displays the expected growth of the condition number of Jh as O(h−2),
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Table 1.1 Condition numbers for the operator Jh and for the preconditioned

operator KhJh, and iterations counts to achieve an error reduction factor of 106.

level h elements dimV h κ(Jh) κ(KhJh) iterations

1 1 2 5 38 1.00 1
2 1/2 8 16 153 1.32 4
3 1/4 32 56 646 1.68 6
4 1/8 128 208 2,650 2.17 6
5 1/16 512 800 10,670 2.34 8
6 1/32 2,048 3,136 42,810 2.40 8
7 1/64 8,192 12,416 – – 8

and the sixth column the boundedness of the condition number of the preconditioned
operator KhJh.

As a second numerical study, we used the Raviart–Thomas mixed method to solve
the factored Poisson equation

u = grad p, divu = g in Ω, p = 0 on ∂Ω,

again on the unit square using the same sequence of meshes as in the first example. We
chose g = 2(x2 +y2−x−y) so that p = (x2−x)(y2−y). The discrete solution (uh, ph)
belongs to the space V h × Sh, with V h the Raviart–Thomas space described above
and Sh the space of piecewise constant functions on the same mesh. We solved the
discrete equations both with a direct solver and by using the minimum residual method
preconditioned with the block diagonal preconditioner having as diagonal blocks Kh

and the identity (as discussed previously). Full multigrid was used to initialize the
minimum residual algorithm. That is, the computed solution at each level was used
as an initial guess at the next finer level, beginning with the exact solution on the
coarsest (two element) mesh. In Table 1.2, we show the condition number of the
discrete operator Ah and of the preconditioned operator BhAh. While the former
quantity grows linearly with h−1 (since this is a first order system), the latter remains
small.

Table 1.2 Condition numbers for the indefinite operator Ah corresponding to the

mixed system and for the preconditioned operator BhAh.

level h dimV h dimSh κ(Ah) κ(BhAh)

1 1 5 2 8.25 1.04
2 1/2 16 8 15.0 1.32
3 1/4 56 32 29.7 1.68
4 1/8 208 128 59.6 2.18
5 1/16 800 512 119 2.34
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