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Abstract. In an earlier paper we constructed and analyzed a multigrid preconditioner for the system
of linear algebraic equations arising from the finite element discretization of boundary value problems

associated to the differential operator I − grad div. In this paper we analyze the procedure without

assuming that the underlying domain is convex and show that, also in this case, the preconditioner is
spectrally equivalent to the inverse of the discrete operator.
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1. Introduction. In the earlier paper [1], we analyzed domain decomposition and
multigrid precondtioners for the efficient solution of the equations which arise from the
finite element discretization of boundary values problems for the operator I − grad div.
These results were then applied to construct efficient iterative methods for the solution
of the equations which arise from the finite element discretization of scalar second order
elliptic boundary value problems by mixed and least squares methods. In the case of the
domain decomposition algorithm, the convergence results were obtained first for the case
of a convex polygon, in which the solution of the scalar second order elliptic problem has
H2–regularity, and then extended to the case of a nonconvex polygon, where the solution
has less regularity. In the case of the multigrid method, the analysis presented made
essential use of H2–regularity and hence did not apply to the case of a nonconvex polygon.
The purpose of this paper is to present a different analysis for the multigrid method which
applies also in the nonconvex case.

As in [1], we follow the outline of the modern theory of multigrid methods as, for
example, presented in Bramble [2] or Xu [8]. However, the operator I − grad div lacks
a number of properties possessed by standard elliptic operators. For example, when re-
stricted to gradient fields this operator acts like a second order elliptic operator, while
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when restricted to curl fields it coincides with the identity. The main tool for overcoming
these problems is an appropriate discrete Helmholtz decomposition.

Our interest in preconditioning discrete approximations of the operator I − grad div
is motivated by the fact that such operators can be used to build preconditioners for dis-
cretizations of many differential systems where the space H(div) appears naturally as a
part of the solution space. Typical examples include the mixed method for second order
elliptic problems, the least squares method of the form discussed by Lazarov, Manteuffel,
and McCormick [5] and Pehlivanov, Carey, and Lazarov [7] and the sequential regulariza-
tion method for the time dependent Navier–Stokes equation discussed in Lin [6]. For a
more detailed discussion of applications and for numerical experiments we refer to [1].

In §2 we introduce notations and briefly recall the Raviart–Thomas finite element
spaces and the associated Helmholtz decomposition. The V–cycle multigrid operator is
analyzed in §3. Under suitable assumptions on the smoothing operators, we establish that
the V–cycle operator leads to a uniform preconditioner for the discrete approximation of
I − grad div. In §4 we then verify these assumptions for appropriate smoothers.

2. Preliminaries. We suppose that the domain Ω ⊂ R2 is polygonal, but not neces-
sarily convex. The inner product and norm in L2 = L2(Ω) are denoted by ( · , · ) and ‖ · ‖,
respectively. The L2–based Sobolev space of order m is denoted by Hm. We use boldface
type for vectors in R2, vector-valued functions, spaces of such functions, and operators
with range in such spaces. Thus, for example, L2 denotes the space of 2-vector-valued
functions on Ω for which both components are square integrable. We also use the standard
differential operators

grad =
(
∂/∂x

∂/∂y

)
, curl =

(
−∂/∂y
∂/∂x

)
, div = ( ∂/∂x ∂/∂y ) .

The Hilbert space H(div) consists of square-integrable vectorfields on Ω with square
integrable divergence: H(div) = {v ∈ L2 : div v ∈ L2}. The associated inner product is
Λ(u,v) = (u,v) + (divu,div v). We note that this form is associated with the operator
I−grad div, in the sense that the problem of finding u ∈H(div) for which Λ(u,v) = (f ,v)
for all v ∈ H(div), is the natural weak formulation of the problem (I − grad div)u = f

in Ω, divu = 0 on ∂Ω.

Let {Th} be a quasiuniform family of triangulations of Ω, where h > 0 is a parameter
representative of the diameter of the elements of Th, and let r be a non-negative integer.
The Raviart–Thomas space of index r is given by

Vh = {v ∈H(div) : v|T ∈ Pr(T ) + (x, y)Pr(T ) for all T ∈ Th},

where Pr(T ) denotes the set of polynomial functions of degree at most r on T . The discrete
system we wish to precondition is Λhuh = fh, where fh ∈ Vh and Λh : Vh → Vh is defined
by

(2.1) (Λhu,v) = Λ(u,v) for all u,v ∈ Vh.
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We shall rely heavily on the discrete Helmholtz decomposition of Vh. To recall it, we
set

Wh = {s ∈ H1 : s|T ∈ Pr+1(T )}, Sh = {q ∈ L2 : q|T ∈ Pr(T )},

the usual spaces of continuous piecewise polynomials of degree r+1 and arbitrary piecewise
polynomials of degree r, respectively. The discrete Helmholtz decomposition (cf. [3]) is
then Vh = gradh Sh ⊕ curlWh, where gradh : Sh → Vh is defined by the condition
(gradh q,v) = −(q,div v) for all v ∈ Vh. Note that the sum is orthogonal with respect to
both the L2 and the H(div) inner products and the two summand spaces gradh Sh and
curlWh are invariant under the action of Λh. We also recall that the restriction of the
divergence operator to Vh maps onto Sh and that its kernel is precisely curlWh.

3. Multigrid methods. In this section we analyze the V–cycle multigrid precondi-
tioner Θh for the operator Λh. Under proper assumptions on the smoothing operators,
we show that the operator I −ΘhΛh is a contraction uniformly with respect to h, and,
a fortiori, that Θh is spectrally equivalent to Λ−1

h . We usually suppress the subscript h.
For example, we shall write T ,V ,Λ, and Θ instead of Th,Vh,Λh, and Θh.

In order to define a nested sequence of subspaces of V , we assume that the triangulation
T is constructed by a successive refinement process. More precisely, we assume that we have
a nested sequence of quasi-uniform triangulations Tj , j = 1, 2 . . . , J , with characteristic
mesh size hj proportional to γ2j for some positive constant γ < 1, and that T = TJ . Then
V1 ⊂ V2 ⊂ · · · ⊂ VJ = V , where Vj is the Raviart-Thomas space of index r relative to
the triangulation Tj . At each level j we have the discrete operator Λj : Vj → Vj , defined
as in (2.1), i.e., (Λjv,w) = Λ(v,w) for all v,w ∈ Vj . Hence, ΛJ = Λ. The L2- and
H(div)-orthogonal projections onto Vj , will be denoted by Qj and Pj , respectively, so the
standard identity

(3.1) Qj−1Λj = Λj−1Pj−1

holds. In order to define a V–cycle operator from the nested sequence {Vj}, we require
appropriate smoothing operators. For each j > 1, we let Rj : Vj → Vj be a linear operator
which, as will be made more precise below, will be required to behave in some ways like
an approximation to Λ−1

j .

The standard V–cycle multigrid algorithm with one smoothing recursively defines op-
erators Θj : Vj → Vj beginning with Θ1 = Λ−1

1 . For j > 1 and f ∈ Vj , Θjf = x3

where

x1 = Rjf ,

x2 = x1 + Θj−1Qj−1(f −Λjx1),

x3 = x2 +Rj(f −Λjx2).
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The desired preconditioner Θ : V → V is the final operator, i.e. Θ = ΘJ . By using the
identity (3.1), we easily derive the relation

(3.2) I −ΘjΛj = (I −RjΛj)(I −Θj−1Λj−1Pj−1)(I −RjΛj) for j = 1, 2, . . . , J,

from the V–cycle algorithm above. Here and below we conventionally define Θ0 = Λ0 =
P0 = Q0 = 0 and R1 = Λ−1

1 .

Using the triangulation Tj , we also define finite element spaces Wj and Sj and the
discrete gradient operator gradj : Sj → Vj as in §2. For each j the discrete Helmholtz
decomposition, Vj = gradj Sj ⊕ curlWj , holds. We shall also use the L2 projection
QWj : L2 →Wj and QSj : L2 → Sj .

We now state the main assumptions on the smoothing operators Rj : Vj 7→ Vj needed
for the theory below. These assumptions will be verified for proper additive Schwarz and
multiplicative Schwarz smoothers in the next section. The smoothing operators Rj will be
assumed to be L2–symmetric and positive definite, whence the operators RjΛj : Vj 7→ Vj
are symmetric, positive definite with respect to the H(div) inner product. We make two
further assumptions:

Assumption A1. There is a constant ω, independent of h, such that the spectral radius

of RjΛj , ρ(RjΛj), satisfies

(3.3) ρ(RjΛj) ≤ ω < 2 for j = 2, 3, . . . , J.

Assumption A2. There is a constant C, independent of h, such that

(3.4) (R−1
j v,v) ≤ Ch−2

j ‖v‖
2 for all v ∈ Vj , j = 2, 3, . . . , J.

Furthermore, if v = curl[(QWj −QWj−1)φ] for φ ∈Wj then

(3.5) (R−1
j v,v) ≤ C‖v‖2 for j = 2, 3, . . . , J.

Note that both assumptions are met if Rj is replaced by Λ−1
j . With these assumptions

we have the main result of this section.

Theorem 3.1. The spectral condition number of ΘΛ = ΘJΛJ is bounded independently

of h and J .

Before proceeding to the proof, we need to establish some preliminary results. The
following approximation result is a straightforward extension of the inequality (A.1) proved
in Appendix A of [1] (the operator I −QSj−1 doesn’t appear in (A.1), but is present in the
proof of that equation).
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Lemma 3.2. Let v, v̂ ∈ gradj Sj ⊂ Vj be such that div v̂ = QSj−1 div v. Then there is a

constant C, independent of hj , such that

‖v − v̂‖ ≤ Chj‖(I −QSj−1) div v‖.

The second result we shall need is a form of the strengthened Cauchy–Schwarz inequal-
ity (cf. §6.1 of [8]).

Lemma 3.3. Assume that 1 ≤ i < j ≤ J . There is a constant C, independent of h and J ,

such that

(3.6) (curlµ,v) ≤ Cγj−ih−1
j ‖µ‖0‖v‖0 for all µ ∈Wj , v ∈ Vi,

and

(3.7) (divu,div v) ≤ Cγj−ih−1
j ‖u‖0‖div v‖ for all u ∈ Vj , v ∈ Vi.

Proof. Let T ∈ Ti. In order to show (3.6) it is enough to show that∫
T

(curlµ) · v dx ≤ Cγj−ih−1
j ‖µ‖0,T ‖v‖0,T ,

where the subscript T indicates that the L2-norms are defined with respect to the domain
T .

For µ ∈Wj we define µ0 ∈Wj by specifying its value at the usual nodal points of Wj ,
namely, µ0 interpolates µ at the nodal points interior to T , but is zero at all other nodal
points. In particular, µ0 vanishes on ∂T , so∫

T

(curlµ0) · v dx =
∫
T

µ0 rotv dx ≤ ‖µ0‖0,T ‖ rotv‖0,T

≤ Ch−1
i ‖µ‖0,T ‖v‖0,T ≤ Cγ

2(j−i)h−1
j ‖µ‖0,T ‖v‖0,T .

Next, let (∂T )j ⊂ T denote the union of all the triangles in Tj which are contained is T
and meet ∂T . Considering the ratio of the areas of (∂T )j and T , we see that ‖v‖20,(∂T )j

≤
Cγ2(j−i)‖v‖20,T , while

‖ curl(µ− µ0)‖20,(∂T )j
≤ C

∑
x

∣∣∣∣µ(x)
hj

∣∣∣∣2 h2
j ≤ Ch−2

j ‖µ‖
2
0,(∂T )j

,

where the sum ranges of nodal points x belonging to ∂T . Thus∫
T

curl(µ− µ0) · v dx ≤ ‖ curl(µ− µ0)‖0,(∂T )j‖v‖0,(∂T )j ≤ Cγ
j−ih−1

j ‖µ‖0,T ‖v‖0,T ,
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which, combined with the preceding estimate, completes the proof of (3.6). The proof of
(3.7) is completely similar.

For j = 1, 2, . . . , J define operators Tj : VJ 7→ Vj by Tj = RjQjΛ = RjΛjPj . Then
Tj is symmetric and positive definite with respect to the bilinear form Λ and it follows
from (3.3) that

(3.8) ρ(Tj) = ρ(RjΛj) ≤ ω < 2 for j = 1, 2, . . . , J.

The operators Tj are useful in order to obtain a well-known algebraic characterization of
the preconditioner Θ. The recurrence relation

I −ΘjΛjPj = (I − Tj)(I −Θj−1Λj−1Pj−1)(I − Tj) for j = 1, 2, . . . , J,

may be verified by considering separately its application to the elements of Vj and of
its H(div)–orthogonal complement, and invoking (3.2). In particular, this implies that
I −ΘΛ = EJE

∗
J , where the operators Ej are defined by

E0 = I, Ej = (I − Tj)(I − Tj−1) . . . (I − T1) for j = 1, 2, . . . , J,

and E∗J denotes the adjoint of EJ with respect to the H(div) inner product. Hence, to
prove Theorem 3.1, it is suffices to show that

(3.9) |||I −ΘΛ||| = |||EJ |||2 < δ2 < 1,

where δ is independent of h and J . Here ||| · ||| denotes the H(div) operator norm. It
also follows from the spectral bound (3.8) and from the abstract multilevel theory (cf., for
example, Lemma 4.3 of [8]) that

(3.10) Λ(EJu,EJu) ≤ Λ(u,u)− (2− ω)
J∑
j=1

Λ(TjEj−1u,Ej−1u).

If we can show that

(3.11) Λ(u,u) ≤ c
J∑
j=1

Λ(TjEj−1u,Ej−1u) for all u ∈ VJ ,

with c independent of h and J , then we can combine with (3.10) to obtain

Λ(EJu,EJu) ≤ Λ(u,u)[1− (2− ω)/c],

from which (3.9) (and Theorem 3.1) follows.
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To establish (3.11), we begin by using the discrete Helmholtz decomposition with
respect to the space V to write

u = gradJ p+ curlµ, where p ∈ S, µ ∈W.

Let v = vJ = gradJ p and decompose v as

v =
J∑
j=1

(vj − vj−1) =
J∑
j=1

(vj − v̂j) +
J∑
j=1

(v̂j − vj−1),

where vj and v̂j are defined by

vj ∈ gradj Sj , div vj = QSj div v,

v̂j ∈ gradj Sj , div v̂j = QSj−1 div v,

for j = 1, 2, . . . , J , and v0 = 0. It follows from Lemma 3.2 that

(3.12) ‖vj − v̂j‖ ≤ Chj‖(QSj −QSj−1) div v‖.

Furthermore, since div(v̂j − vj−1) = 0 , we may write
∑J
j=1(v̂j − vj−1) = curl ρ, for a

suitable ρ ∈W . Setting w =
∑J
j=1(vj − v̂j), we then have the decomposition

u = w + curl(µ+ ρ) = w + curlφ,

where φ = µ+ ρ ∈W . Hence, we have

(3.13) Λ(u,u) = Λ(w,u) + Λ(curlφ,u).

From the definition of the operators Ej we obtain the identity

(3.14) I = Ej +
j∑

k=1

TkEk−1

and this implies

Λ(w,u) =
J∑
j=1

Λ(vj − v̂j ,u)

=
J∑
j=1

Λ(vj − v̂j ,Ej−1u) +
J∑
j=2

j−1∑
k=1

Λ(vj − v̂j ,TkEk−1u).
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Now, from the definitions of the operators Λ and Tj we have

J∑
j=1

Λ(vj − v̂j ,Ej−1u) =
J∑
j=1

(vj − v̂j ,QjΛEj−1u)

=
J∑
j=1

(R−1/2
j [vj − v̂j ],R1/2

j QjΛEj−1u)

≤
{ J∑
j=1

(R−1
j [vj − v̂j ], [vj − v̂j ])

}1/2{ J∑
j=1

Λ(TjEj−1u,Ej−1u)
}1/2

.

Using (3.4) and (3.12) we obtain

J∑
j=1

(R−1
j [vj − v̂j ], [vj − v̂j ]) ≤ C

J∑
j=1

h−2
j ‖v

j − v̂j‖2

≤ C
J∑
j=1

‖(QSj −QSj−1) div v‖2 = C‖div v‖2.

Hence,
J∑
j=1

Λ(vj − v̂j ,Ej−1u) ≤ C‖div v‖
{ J∑
j=1

Λ(TjEj−1u,Ej−1u)
}1/2

.

Now from (3.7) and (3.12), and the fact that ρ(Tk) ≤ ω, we obtain

J∑
j=2

j−1∑
k=1

Λ(vj − v̂j ,TkEk−1u)

=
J∑
j=2

j−1∑
k=1

[
(vj − v̂j ,TkEk−1u) + (div[vj − v̂j ],divTkEk−1u)

]
≤

J∑
j=2

j−1∑
k=1

‖(QSj −QSj−1) div v‖
[
hj‖TkEk−1u‖+ cγj−k‖divTkEk−1u‖

]
≤

J∑
j=2

j−1∑
k=1

Cγj−k‖(QSj −QSj−1) div v‖‖TkEk−1u‖H(div).

Using the elementary inequality

∞∑
j=1

j∑
k=1

γj−kajbk ≤ Cγ
( ∞∑
j=1

a2
j

)1/2( ∞∑
k=1

b2k

)1/2

,
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we can bound the right hand side by

C

{ J∑
j=1

‖(QSj −QSj−1) div v‖2
}1/2{ J∑

k=1

Λ(TkEk−1u,TkEk−1u)
}1/2

≤ Cω1/2‖div v‖
{ J∑
k=1

Λ(TkEk−1u,Ek−1u)
}1/2

.

Since ‖div v‖2 = ‖divu‖2 ≤ Λ(u,u), we can combine these results, to get

(3.15) Λ(w,u) ≤ C
{

Λ(u,u)
}1/2{ J∑

k=1

Λ(TkEk−1u,Ek−1u)
}1/2

.

Next, we consider the second term Λ(curlφ,u) on the right hand side of (3.13). Let
φj = (QWj −QWj−1)φ. From the approximation property of the space Wj it follows that

(3.16) ‖φj‖ ≤ Chj‖ curlφj‖.

We also recall the following result (cf., for example, Lemma 6.7 in [8]):

(3.17)
J∑
j=1

‖ curlφj‖2 ≤ C‖ curlφ‖2.

From the identity (3.14), we have

Λ(curlφ,u) =
J∑
j=1

Λ(curlφj ,u) =
J∑
j=1

Λ(curlφj ,Ej−1u) +
J∑
j=2

j−1∑
k=1

Λ(curlφj ,TkEk−1u).

Proceeding as before, we obtain

J∑
j=1

Λ(curlφj ,Ej−1u) =
J∑
j=1

(R−1/2
j curlφj ,R

1/2
j QjΛEj−1u)

≤
{ J∑
j=1

(R−1
j curlφj , curlφj)

}1/2{ J∑
j=1

Λ(TjEj−1u,Ej−1u)
}1/2

.

Now using (3.5) and (3.17), we get
∑J
j=1(R−1

j curlφj , curlφj) ≤ C‖ curlφ‖2. Further-
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more, using the strengthened Cauchy–Schwarz inequality (3.6) and (3.16), we obtain

J∑
j=2

j−1∑
k=1

Λ(curlφj ,TkEk−1u) =
J∑
j=2

j−1∑
k=1

(curlφj ,TkEk−1u)

≤ C
J∑
j=2

j−1∑
k=1

γj−kh−1
j ‖φj‖‖TkEk−1u‖

≤ C
J∑
j=2

j−1∑
k=1

γj−k‖ curlφj‖‖TkEk−1u‖

≤ C
{ J∑
j=1

‖ curlφj‖2
}1/2{ J∑

k=1

Λ(TkEk−1u,TkEk−1u)
}1/2

≤ C‖ curlφ‖ω1/2

{ J∑
k=1

Λ(TkEk−1u,Ek−1u)
}1/2

.

Combining these results, we obtain

(3.18) Λ(curlφ,u) ≤ C‖ curlφ‖
{ J∑
k=1

Λ(TkEk−1u,Ek−1u)
}1/2

.

If we can show that ‖ curlφ‖ ≤ C
{

Λ(u,u)
}1/2

, then (3.13), (3.15), and (3.18) will imply

the desired estimate (3.11). Observe that

‖ curlφ‖2 = ‖u−w‖2 ≤ 2(‖u‖2 + ‖w‖2).

Therefore, to complete the proof it remains to show that ‖w‖2 ≤ CΛ(u,u). However, by
(3.12) and the fact that

∑
h2
j ≤

∑
γ4j ≤ Cγ , we obtain

‖w‖2 ≤
( J∑
j=1

‖vj − v̂j‖
)2

≤ C
[ J∑
j=1

hj‖(QSj −QSj−1) div v‖
]2

≤ C
( J∑
j=1

h2
j

)[ J∑
j=1

‖(QSj −QSj−1) div v‖2
]
≤ C‖div v‖2 ≤ C‖divu‖2.

Hence the theorem is established.
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4. Smoothing operators. To complete the description of the multigrid algorithm,
we must construct proper L2–symmetric, positive definite smoothing operators Rj : Vj →
Vj satisfying the Assumptions A1 and A2. Let us first observe that a simple Richardson
smoother of the formRj = αjI, where αj is a positive constant, will not have this property.
This is because (3.3) will imply a bound of the form αj ≤ ch2

j , where c is independent of
h and j. On the other hand, (3.5) will only be satisfied if αj is uniformly bounded away
from zero. In fact, this observation is consistent with numerical observations done by Cai,
Goldstein, and Pasciak [4]. They observed that, in general, standard multigrid methods
may not lead to a uniform preconditioner for the operator Λ.

We now show how to define additive Schwarz and multiplicative Schwarz smoothers
that do satisfy A1 and A2. These are the same smoothers as were used in [1] and analyzed
in the convex case, and the construction is described in more detail there.

To define the additive Schwarz smoother, let Nj be the set of vertices in the triangu-
lation Tj , and for each ν ∈ Nj let Tj,ν be the set of triangles in Tj meeting at the vertex
ν. These form a triangulation of a small subdomain, Ωj,ν , and the family of domains
{Ωj,ν}ν∈Nj form an overlapping covering of Ω. Let Vj,ν , Wj,ν , and Sj,ν be the subsets
of functions in Vj , Wj , and Sj , respectively, which are supported in Ω̄j,ν . The discrete
operator Λj,ν : Vj,ν → Vj,ν and the L2 and H(div) projections, Qj,ν and Pj,ν , onto
Vj,ν are defined in the obvious way. The additive Schwarz operator with respect to the
decomposition {Vj,ν} of Vj is the operator Bj : Vj → Vj given by

Bj =
∑
ν∈Nj

Pj,νΛ−1
j ≡

∑
ν∈Nj

Λ−1
j,νQj,ν ,

and the additive smoother we shall use is Rj = ηBj , where η > 0 is a scaling factor. As
discussed in [1], Rj can be easily and efficiently evaluated.

Theorem 4.1. If the scaling factor η ∈ (0, 2/3), then the additive Schwarz smoother Rj

is L2-symmetric, positive definite and satisfies Assumptions A1 and A2.

Proof. It is clear that Rj is L2-symmetric and positive definite. Furthermore, by a stan-
dard argument from domain decomposition theory, the spectral radius ρ(BjΛj) is bounded
by the maximum number of overlaps in the covering {Ωj,ν}ν∈NJ , namely 3 (cf. the proof
of Theorem 4.1 in [1]). Hence, ρ(RjΛj) ≤ 3η for j = 2, 3, . . . , J , and Assumption A1 is
satisfied.

In order to establish Assumption A2 for the additive smoother, we will use the fact
that

(4.1) (B−1
j v,v) = inf

vν∈Vj,ν∑
ν vν=v

∑
ν∈Nj

Λ(vν ,vν).

This property is frequently used in the analysis of domain decomposition methods, and a
proof can be found in Appendix B of [1].
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Given v ∈ Vj , we can construct by local interpolation, elements vν ∈ Vj,ν such that
v =

∑
ν vν and ∑

ν∈Nj

‖vν‖2 ≤ C‖v‖2.

Using an inverse inequality we have

∑
ν∈Nj

Λ(vν ,vν) ≤ C
∑
ν∈Nj

h−2
j ‖vν‖

2 ≤ Ch−2
j ‖v‖

2.

In view of (4.1) this establishes (3.4).

Next, let v = curlφj , with φj = (QWj −QWj−1)φ for some φ ∈ Wj . Then (3.16) holds
and, again by local interpolation, we can find φj,ν ∈Wj,ν such that

φj =
∑
ν

φj,ν ,
∑
ν∈Nj

‖φj,ν‖2 ≤ C‖φj‖2.

Let vj,ν = curlφj,ν . Then

∑
ν∈Nj

Λ(vj,ν ,vj,ν) =
∑
ν∈Nj

‖ curlφj,ν‖2

≤ Ch−2
j

∑
ν∈Nj

‖φj,ν‖2 ≤ Ch−2
j ‖φj‖

2 ≤ C‖ curlφj‖2 = C‖v‖2.

Finally we mention that the assumptions are satisfied as well by the symmetric multi-
plicative Schwarz smoother R̃j : Vj → Vj with respect to the decomposition {Vj,ν}. For
the precise definition of this operator see [1], where we also show (in Corollary 4.3 and the
last equation of §5) that

Λ(R̃jΛjv,v) ≤ Λ(v,v), (R̃−1
j v,v) ≤ CΛ(v,v).

Assumption A1 follow easily from the first of these equations, and Assumption A2 from
the second.
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and J. Xu for many useful discussions.

12



REFERENCES

[1] D. N. Arnold, R. S. Falk, and R. Winther, Preconditioning in H(div) and applications, Math.

Comp., 66 (1997 (to appear)).

[2] J. H. Bramble, Multigrid methods, Pitman Research Notes in Mathematics Series, 294 (1993).

[3] F. Brezzi, M. Fortin, and R. Stenberg, Error analysis of mixed-interpolated elements for Reiss-

ner-Mindlin plates, Math. Models and Methods in Applied Sciences, 1 (1991), pp. 125-151.

[4] Z. Cai, C. I. Goldstein and J. E. Pasciak, Multilevel iteration for mixed finite element systems
with penalty, SIAM J. Sci. Comput., 14 (1993), pp. 1072–1088.

[5] Z. Cai, R. Lazarov, T. Manteuffel, and S. McCormick, First-order system least squares for

second-order partial differential equations: Part I, SIAM J. Numer. Anal., 31 (1994), pp. 1785-1799.

[6] P. Lin, A sequential regularization method for time-dependent incompressible Navier–Stokes equa-

tions, to appear in SIAM J. Numer. Anal. (1997).

[7] A. I. Pehlivanov, G. F. Carey, and R. D. Lazarov, Least-squares mixed finite elements for

second-order elliptic problems, SIAM J. Numer. Anal., 31 (1994), pp. 1368-1377.

[8] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992),
pp. 581-613.

13


