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Error Estimates for the Numerical Identification

of a Variable Coefficient*

By Richard S. Falk

Abstract. Error estimates are derived for the approximate identification of an unknown

transmissivity coefficient in a partial differential equation describing a model problem in

groundwater now. The approximation scheme considered determines the coefficient by least

squares fitting of the observed pressure data.

1. Introduction. In this paper we wish to present an error analysis of a common

numerical scheme used in the identification of parameters in distributed systems.

Specifically, we shall concern ourselves here with a model problem in groundwater

flow. The problem is to identify a spatially varying transmissivity coefficient a(x)

from observations of the piezometric head u(x) in a two-dimensional static aquifer

ß, where a and u are related by the equations

(1) -div(avw) =/   inS2,

(2) adn~ = g>   on8S2'

and / and g are given functions satisfying the compatibility condition Ja fdx +

ha gds = 0.
If a cannot be measured directly, but it is possible to obtain an approximate

measurement z of u, then a common approach to the approximate determination of

a (see for example [6]) is to solve the problem

(Ph) Find ah G Kh such that

J(a„) =  inf J(b),
b&K„

where J(b)= II uh(b) - z || |2(f2),

(3) Kh={bETh:0<c0<b^cx}

(with c0, cx given a priori bounds on the transmissivity), and uh(b) E Sh is defined

by

(4) (bvuh(b)vvh dx= [ gvh ds + f fvh dx,

for alluA e Sh, and

(5) uh(b) dx = I zdx.
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In the above Th and Sh are finite-dimensional subspaces of L2(ü) and //'(Í2),

respectively.

Our main concern in this paper will be to derive error estimates for such a

procedure under conditions that guarantee the inverse problem of identifying a(x) is

well-posed. To see that in general the inverse problem is not well-posed, observe

from (1) that if Vu vanishes on some subdomain of ß, one can have nonuniqueness

of the transmissivity coefficient.

For this model problem it is also possible to construct approximation schemes

which solve directly for a using Eq. (1) viewed as a hyperbolic equation for a. An

approximation scheme using Galerkin's method is proposed in Frind and Pinder [4],

although no error analysis is given, and a finite difference scheme is proposed and

analyzed in Richter [7], Further references for various approaches to this problem

can be found in the paper of Yoon and Yeh [9],

We also note that although the approximate problem (Ph ) is based on viewing the

underlying equation (1) as an elliptic equation for the pressure u(x), some of the

analysis will be based on viewing (1) as a hyperbolic equation for the transmissivity

a. In this regard, the work of Lesaint [5] has been useful.

An outline of the paper is as follows. In Section 2 we define the notation to be

used and state the conditions under which our main results will be obtained. Section

3 contains the derivation of the error estimates for the approximation scheme

defined in Section 1. Finally in Section 4 we give a brief description of a method for

solving the approximate problem.

2. Notation and Preliminaries. For ß a bounded domain in R2 and k a nonnegative

integer we shall denote by Wk-p(Q) the usual Sobolev spaces of functions defined on

ß with norms

H"ll*.„.fl=    i 11^« II £,(4    '      !</»<<».
11/1=0 J

and

k

ll«H*...o=   2  \\^u\\LxW.
1/1=0

We further denote by Hk($l) the space Wk,2(ü) and will use the notation \\u\\k a to

denote the norms in Hk. In most cases the intended domain will be clear from the

context and so the subscript ß in the norm will be dropped.

We shall also use the notation ( •, • ) to denote the L2 inner product in ß, and

( ■, ■ ) to denote L2 inner product on T = 3ß. For future reference we note that

using (1), (2) the true piezometric head u is related to the transmissivity a by the

variational equation

(6) (avu,w) = (f,v)+ (g,v)    VoG//'(0).

We shall normalize u to also satisfy

(7) f(u-z)dx = 0.
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To define the finite-dimensional subspaces used in the approximation scheme, we

let A h, 0 < h < 1, be a triangulation of ß with triangles T of diameter less than or

equal to A. If the boundary is curved, we shall use triangles at the boundary with one

edge replaced by a segment of the boundary. We assume the family {àh) is regular

and quasi-uniform. For r > 1 a fixed integer we then define

S¿ = {v£C0(U):v\TEPrVTEbh},

where Pr is the space of polynomials of degree r or less in the variables xx and x2.

For information about the properties of such spaces we refer the reader to [2] and to

[8] for the case of a curved boundary.

The error estimates for the approximation scheme (Ph) will be derived under the

following two assumptions about the true piezometric head u.

i A, \ There exists a constant unit vector v and a constant a > 0

^     ' suchthat Vuv> a > 0 Vx G ß,

and

(A2)    MeW"+3-°°(ß)    and   r, = fx G T: |^ > u) G Cr+1       (r>\).

We now make some remarks about and examine the implications of these

assumptions. (Al) is a physical hypothesis stating that there is always some flow in

the ? direction. Along with a regularity assumption on u, it is sufficient to guarantee

uniqueness of the inverse problem for the determination of a(x).

Lemma 1. Assume condition (Al) holds and that u G W/2,oc(ß). Then there is at most

one coefficient a(x) G //'(ß) and satisfying (6).

Proof. Assume b is another such coefficient. Then subtracting equations we get

((a-b)vu, Vv)=0   for all v G Hl(Q),

which further impies that (a — b)du/dn = 0 on T. Choosing v = e'2kx'"(b — a),

where k > \\ Au\\0oo/(2a), and integrating by parts, one can show (see the proof of

Theorem 1 with p = 1) that

((a - b)vu, Vv) = -\ [e-2kx^n,\a - b]2)

+ l[a - b]2e-2kx', kvu ■ Ï + jAu\.

Applying condition (Al) and the fact that (a — b) du/dn = 0 on T, it easily follows

that ((a — b)Vu, Vu) > tIIa - 6II2, for some t > 0. Hence lia — 6||0 = 0 and so

a = b.

Hypothesis (A2) is a technical one giving sufficient conditions for the validity of

the following result, which we use later in the derivation of the error estimates.

Lemma 2. Assume hypotheses (Al) and (A2) hold. Then given t > 0, there exists a

function p G Wr+2o0(ß) satisfying p = 0 on Tx, and p[kvu-v + \Lu] — {-Vp- Vu

3*t>0, where k = || Aw||0oo/(2a).

Proof. Let p be the solution of the Cauchy problem

(CP) Vp-Vu = -2t   in ß,

p = 0      on r,.
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Since 3m/3« > 0 on T,, T, is not characteristic and, by (Al), | vu\¥=0. Hence, for

T, and u sufficiently smooth, we get a unique smooth solution of this initial value

problem. In fact by (Al) we can take as local coordinates u and u, where v is a

coordinate along the lines u = constant. Writing Tx in the form u = G(v), an easy

computation shows

/"              -2tT~T,—Tw-\ds-
J(v)[ul + Uj)(s, V)

Using this formula we see that p s* 0 in ß. Differentiating the formula then shows

that condition (A2) is sufficient to guarantee the desired smoothness of p.

3. Error Estimates. In order to derive our main result we will need an estimate of

how well one can expect to approximate the true piezometric head u by functions of

the form uh(b) (defined by (4), (5)), for b G Kh. That estimate is derived in the

following:

Lemma 3. Suppose that a G Hr+X(Q) and u G Hr+2(ti) (r s* 1) satisfy (6)-(7) and

that

(8) 0 < c0< mina(x) < maxa(x) < cx.
xeQ xefl

Then if Kh is defined by (3) and uh(b) is defined by (4), (5) with Th = S¡, and
—   OH

h ~ °h

r+2

Sh = SAr+ ', we have for all h sufficiently small that

inf \\uh(b)-u\\0<Ch
bEK„

where C depends on c0, c,, ||a||r+1, and ||M||r+2, but is independent of h.

Proof. Let b denote the L2 projection of a into S¿. Then, by a result of [3], and

standard approximation results, we have, for all 1 < p < oo,

(9) ||fl-6||0.<C_inf \\a-b\\0„<Chr+x\\a0 „ -* ^    u"   II"        u"0,p ^ ^'l >>u"r+\,p-

Hence, for all x G ß,

and so

a-CAr+1||a||r+1>00<6<a + CA'+,Ha||r+1(00

mina(x) - C/zr+1||a||r+1 x < b < maxa(x) + CAr+,||flllr+,>00.
iefl xgQ

Thus by the definition of c0 and c,, b G Kh for A sufficiently small.

Now, since b G Kh, we have

(10) inf ||«a(6)-«||0<||iia(A)-«||0.
b<=Kh

Using Eqs. (4) and (6), we have for all vh G S¿+ ' that

(11) (bv[uh(b)-u],Wh)

= (bvuh(b), Wh) - ([b - a]vu, Vvh) - (aVu, Vvh)

= -([b - a]vu,Vvh).

Letting u, denote the interpolate of u in Srh + ', we also get for all vh G Srh+' that

(bv[uh(b) -u,],vvh) = -([b-a]vu,vvh) - (bv[ur - u],Wh).
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Choosing vh = uh(b) — u,, we obtain

Hv[«A(6) - «,]llo<[cillV(«, - u)ll0 + II* - flll0IIV«llo.jAo-

Hence applying standard approximation results,

(12) ||V[uh(b) -u]\\0< C[\W{u, - u)\\0 + \\b - a\\0]

^Chr+x[\\u\\r+2+\\a\\r+x].

To estimate II uh(b) — m II 0 we define </> to be the solution of

-div(aV<t>) - uh(b) - u   in ß,

dé
TT = 0 on T,
an

(<t>dx = 0,
JQ

and use duality. Then for all <¡>h G Srh+'

K(*>) - «Ho = (av[uh(b) - u],V4>)

= ([a - b]v[uh(b) - ii], v*) + (bv[uh(b) - u], v[<t> - *J)

+ (bv[uh(b)-u],v<t>h).

Now, using (11) and the fact that (b - a, y) = 0 for all y G Srh, we get for all

<¡>h G S¿+ x and y G S¡, that

(bv[uh(b) - u],V4>h) = -([b- a]vu, v<t>h)

= -([b- a]vu, v[<t>h - 4>]) ~{[b - a], Vu-V<t>~ y).

Hence, for all <f>h G S¿+ ' and y G S¡,, we get

(13) ||M„(i>) - u\\2 < ||a - éllo.oollvt«^*) - k]II0IIv*IIo

+ llftllo.«ollv[«*(6)-ii]llollv(*-+*)llo

+ l|ft-a||0IIVii|lo.aollv(**-*)llo

+ ||è - allnllvtí • V<#> - y II o-

Since \\<f>\\2 < C\\uh(b) - u\\0, we get using (9), (12), and standard approximation

results that

(14) \\uh(b)-u\\0^Chr+2,

where C depends on c0, c„ \\u II r+2 and || a II r+1, but is independent of A. The lemma

follows by combining (10) and (14).

We now derive the main result of this paper.

Theorem 1. Suppose that assumptions (Al) and (A2) are satisfied, the hypotheses of

Lemma 3 hold, and that

(15) ||z-«||0<e.

Then, for all A sufficiently small, we have

\\a-ah\\0<C[hr + h-2e],

where ah is any solution of problem (PA) and C is a constant independent of A and e.
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Proof. Letting b denote the L2 projection of a into Sh and wh = uh(ah), we easily

obtain from Eqs. (4) and (6) that for all vh G S¿+ '

([b - ah]Vu, vvh) = ([b - a]Vu, Vvh) + (avu, Vvh)

- {ahv[u - wh], vvh) - (ahVwh, Wh)

= ([b - a]vu, Wh) - (ahv[u - wh], wh).

Hence, for all v G Hx(ü) and all vh G Srh + ',

(16) -{[b-ah]vu,w) = {[b-ah]vu,v[vh-v])

- ([b - a)vu, Wh) + (ahv[u - wh], Vvh).

Now let vbe a constant unit vector satisfying (Al) and p a function satisfying the

conclusions of Lemma 2.

Choosing v = pe~2kx'"[b - ah] in (16), we have

Vu = e-2kx-7[b - ah]vp + e~2kx^p{v{b - ah) - 2kv(b - ah)),

and so

- ([b - ah]vu, W) = - (e-2kx-'[b - ah]2, Vu ■ Vp)

+ (e'2kT'r[b- ah]2,2kpvu-v)

-\(e-2kx-pvu,v[b-ah]2).

Now

-\(e-2kx-7pvu,v[b-ah]2)

-Î^E-I»-^)

+ \{\b - ah]2, e-2kx^{PAu + Vu-Vp- 2kpv-Vu}),

and thus

- ([b - ah]vu, W) = -\ (e-2kx-p^,[b - ah}2)

-±(e-2kx-[b-ah]2,vu-vp)

+ i[b-ah]2e-2kx'rp,kvu-v+^àu).

Applying Lemma 2, it easily follows that

(17) - ([b - ah]vu, vv) Ss f \\b - ají2,,    where f = t mine"2/cx'v.
.x-eß

To bound the right side of (16) we set vh equal to the interpolate of v in S¡, + x and

estimate Hv(uA - ü)||0.

Letting T denote an arbitrary triangle of the triangulation AA of ß, we have by

standard approximation theory that

(18) ||v(t;-t;J||2=    2   Hv(t;-t;J||2ir<    2   [<^+'lMU2,r]2.
7-eA, reAA
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Now, since v = pe~2kx'7\b - ah], p G Wr+2'°°, and [b - ah] \T G Pr(T),

(19) \\v\\r+2,T<C(p)\\b-ah\\nT.

Combining (18), (19), and the inverse property

Wb- ah||rT < CA"r||b - ah\\0T,

we obtain

(20) llv(o-oÄ)||0<CA||A-aJ|0.

Again using the inverse property, we get

(21) IIVo|lo<lle-"?i,Vpllo,collo-û*Ho

+ \\e-2kx-72pkv\\0,J\b - aj|0 + \\e-2kx-p\\0,JW{b - ah)\\0

<Ch-x\\b-ah\\0.

Combining (20) and (21), we also have

(22) llvujlo « IIVK - v)h + llvullo < Cft-'ll* - ajl0.

Using (20), we get

(23) ([b - ah]vu, v[vh - v]) < lie - aj|0|| Vallo,«, IIv(v„ - v)\\0

<Ch\\b-ah\\2o-

From (22) and standard approximation properties we have

(24) -([b-a]vu,Wh)< ||6-fl|lollVM|lo,oollVt3Allo

*s Ch~x\\b - aJ|0A'+1||a||r+1 < CA'IIA - aA||0.

Applying (22) and the fact that \\ah IIOoo *s cx, we also obtain

(25) (ahv[u - wh], vvh) ^ ||aA||0iJ|v{u - wh)\\Q\\ Wh\\0

<Ch-x\\b-a„\\0\\v(u-wh)\\0.

Letting u, denote the interpolate of u in 5Ar+1, we get using the inverse properties of

SX+1 that

(26) || v(« - w„)\\Q < II v(« - "Jilo + llv(«, - wA)ll0

<||v(m-«,)IIo + CA-1Hu/-wä||0

*£ Hv(w-«/)llo+ CA-'lli/z-wllo

+ CA-|||w-z|| -r-CA-'lk- wj|0.

Recalling that wh = uh(ah), we then have by the definition of ah, Lemma 3, and

hypothesis (15) that

(27) IU-wA||0=IU-«A(aA)Ho=   inf ||z-«A(A)||0
b<EKh

=s   inf ||ii-«a(6)||0+ ||w-z||0<E + CAr+2.
bGKh

Combining (25), (26), and (27), and applying standard approximation results, we get

(28) (ahv[u-wh],Wh)

<Ch~x\\b- ah\\Q{Chr+x + Ch~xe) =£ C[hr + h-2e]\\b - aj|0.
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Combining (23), (24), and (28), the right side of (16) is bounded by

(29) CAIIA - a„||2 + C[hr + h~2e]\\b - aj|0.

It now easily follows from (16), (17), and (29) that, for A sufficiently small,

||è-aJ|0<C[A' + A-2e],

and so finally

lia - ajilo < \\a - b\\Q + \\b - aA||0 « C[hr + h~2e].

Corollary. If z = u¡, the interpolate of u in 5A + 1, then for A sufficiently small

IIa ~ ah H o ^ Chr for some constant C independent of h.

The reader should note that the error estimate obtained in Theorem 1 (with e = 0)

is one power of A less than is possible by the best approximation of a by elements of

the subspace SL Although we believe the result to be optimal for the two-dimen-

sional problem considered, we now show how the result can be improved for the

one-dimensional analogue of this problem.

We thus consider the problem where ß = [0,1]. Besides obtaining a better error

estimate, the result in one dimension will be more general since we can now allow a

wider choice of subspaces Th and Sh.

For 0 < A < 1 we now let AA be a quasi-uniform partition of [0,1] into subinter-

vals / of length less than or equal to A. For r 5* 0 and k > -1 integers we then define

7';'*={0EC*(Ö):*|/ePrVJeAjk},

where Pr is the space of polynomials of degree r or less and C"'(ß) denotes no

interelement continuity requirement.

We now derive the following improved estimate.

Theorem 2. Suppose that a G Hr+ '(ß), w G Hr+2(ti) (r > 0) satisfy (6)-(7),

(30) Du > y > 0   for some constant y

(the analogue of (Al) where D = d/dx), and that hypothesis (8) of Lemma 3 is

satisfied. Then if ah is a solution of problem (¥h) with Th = T^k and Sh = T^1 where

r 3= 0, k s* -1, s 3= r + 1 and 0 < / < k + I, and II u — z || 0 =e e, we have for A

sufficiently small that

||a-aJ|0^C[Ar+l +A-'e],

where C is a constant independent of A and e.

Proof. Letting b denote the L2 projection of a into Thr'k and wh = uh(ah), we easily

obtain from Eqs. (4) and (6) that for all vh G T¡¡''

([b - ah]Du, Dvh) = ([b - a]Du, Dvh) - (ahD[u - wh), Dvh).

Observing that the choice vh = fx(b — ah)(s) ds G T^1, we get

(Du, [b - ah}2) = ([b - a]Du, b - ah) - (ahD[u - wh], b - ah),

and so applying (30) it follows that

IIA-aJ|0<{||A-a||0||Z)«||0,oo + ||aJ|0i0O||2)[«->vJ||0}/Y.

Since ah G Kh, we get for some constant C independent of A that

(31) ||a - aj|0 < lia - A||0 + ||A - a„\\0 < C[||a - A||0 + \\D[u - wh]\\0.
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Now letting u, denote the interpolate of u in 7A', we get using the inverse properties

of T¡J that

(32) \\D[u - wjllo < ||Z>[u - k,]||0 + \\D[u, - wA]||0

<||Z)[u-M/]||0 + CA-|||w/-)vA||0

< \\D[u - a,]!!,, + Ch~x\\u, - «||0 + CA-'ll« - 2||0 + CA-'IU - wh\\Q.

We next observe that the one-dimensional analogue of Lemma 3 is valid for r > 0

and Th and Sh chosen as in the hypotheses of Theorem 2. Hence, recalling that

wh = uh(ah), we have by the definition of ah and Lemma 3 that

(33) ||z-wA||0=||2-«A(aA)||0=   inf ||z-uA(A)||0
b<=K„

<   inf \\u - uh(b)\\0+ \\u - z\\0^ Chr+2 + e.
BeKh

Combining (31), (32), and (33), and applying standard approximation properties, we

get

||a-aA||0*£C[Ar+l + A-'e].

4. Solution of the Approximate Problem. In order to determine the approximate

transmissivity coefficient ah, we must solve problem (PA). Writing ah = 2|!L,<*;$,■,

where {<&i}1Lx are a basis for SA, problem (PA) reduces to a nonlinear programming

problem to obtain the coefficients {a,-}£l,. In the case r — 1, Srh consists of piecewise

linear functions, so that the constraint set Kh reduces to the set of linear inequality

constraints c0 < a, < cx, i = 1,... ,m.

One possibility for the resolution of this nonlinear programming problem is to use

some type of gradient projection method. The steepest descent algorithm, for

example, has been successfully used in work of Chavent [ 1 ], where the gradient of J

is computed by introducing an adjoint variable.

For each b E Khwe defineph(b) G 5A + ' as the solution of

(34) (bvPh(b), wh) = 2(uh(b) -z,vh)

for all vh G Srh+X and ( pn(b)dx = 0.

It is then easy to check that if b = 2JL, /?,$, and b = ~2JLx y,4), G 5Ar, then

- m   3/

J'{b)-b= 2  zß1l=-(bvuh(b),vph(b)).

Hence the evaluation of J'(b)-b simply requires the solution of the two linear

systems of equations corresponding to Eqs. (4) and (34). References to other

approaches can be found in [9].
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