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Abstract. In this paper we explain the relation between certain piecewise polyno-
mial subcomplexes of the de Rham complex and the stability of mixed finite element
methods for elliptic problems.
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1. Introduction. Many standard finite element methods are based
on extremal variational formulations. Typically, the desired solution is
characterized as the minimum of some functional over an appropriate trial
space of functions, and the discrete solution is then taken to be the mini-
mum of the same functional restricted to a finite dimensional subspace of
the trial space consisting of piecewise polynomials with respect to a trian-
gulation of the domain of interest. For such methods, stability is often a
simple consideration. For mixed finite element methods, which are based on
saddle-point variational principles, the situation is very different: stability
is generally a subtle matter and the development of stable mixed finite ele-
ment methods very challenging. In recent years, a new approach has added
greatly to our understanding of stability of mixed methods and enabled the
development of stable methods for a number of previously intractable prob-
lems. This approach is homological, involving differential complexes related
to the problem to be solved, discretizations of these complexes obtained by
restricting the differential operators to finite dimensional subspaces, and
commutative diagrams relating the two. See, e.g., [1, 2, 14, 18]. In this pa-
per we will survey these ideas. While the presentation aims to be relatively
self-contained, it is directed primarily at readers familiar with the classical
theory of mixed finite element methods as exposed in, for instance, [12].

We will concentrate first on the problem of steady state heat conduc-
tion. In this problem we seek a scalar temperature field u and a vector flux
field σ defined on the domain of interest Ω ⊂ Rn. These satisfy Fourier’s
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law of heat conduction

Aσ + gradu = 0 on Ω (1.1)

and the equation of thermal equilibrium

div σ = f on Ω. (1.2)

Here A is the thermal resistivity tensor (the inverse of the thermal conduc-
tivity tensor), an n× n symmetric positive-definite matrix field (scalar for
an isotropic material), and f the given rate of heat generated per unit vol-
ume. To obtain a well-posed problem, these differential equations must be
supplemented by suitable boundary conditions, for example, the Dirichlet
condition u = 0 on ∂Ω.

Multiplying the constitutive equation by a test field τ and integrating
by parts over Ω (taking into account the homogeneous Dirichlet boundary
condition), we obtain∫

Ω

Aσ · τ dx−
∫

Ω

u div τ dx = 0 ∀τ ∈ H(div,Ω; Rn), (1.3)

while from the equilibrium equation we obtain∫
Ω

div σv dx =
∫

Ω

fv dx ∀v ∈ L2(Ω). (1.4)

The space H(div,Ω; Rn) consists of all vector fields τ : Ω → Rn which
are square integrable and for which the divergence div τ is also square
integrable. The pair of spaces H(div,Ω; Rn), L2(Ω) are the natural ones
for this problem. Indeed, it can be shown that for any f ∈ L2(Ω), there
is a unique pair (σ, u) ∈ H(div,Ω; Rn) × L2(Ω) satisfying (1.3) and (1.4),
and so providing a (weak) solution to (1.1) and (1.2) and the boundary
conditions.

Equivalent to the weak formulation is a saddle-point variational for-
mulation, namely

(σ, u) = argcrit
(τ,v)∈H(div)×L2

[∫
(
1
2
Aτ · τ − v div τ) dx +

∫
fv dx

]
. (1.5)

A more familiar variational characterization of the solution of the heat
conduction problem is Dirichlet’s principle, which involves the temperature
field alone:

u = argmin
v∈H̊1(Ω)

(
1
2

∫
A−1 grad v · grad v dx−

∫
fv dx

)
.

This is connected to the second order scalar elliptic equation

−div A−1 gradu = f on Ω



DIFFERENTIAL COMPLEXES AND STABILITY OF FEM I 3

and its natural weak formulation. A standard finite element methods uses
a finite element subspace Vh of H̊1(Ω) and defines the approximate solution

uh = argmin
v∈Vh

(
1
2

∫
A−1 grad v · grad v dx−

∫
fv dx

)
.

Such a method is automatically stable with respect to the H1 norm, and
consequently the quasioptimal estimate

‖u− uh‖H1 ≤ C inf
v∈Vh

‖u− v‖H1

holds (with C depending only on A and Ω).
Returning to the saddle-point formulation, a mixed finite element

method defines an approximation solution σh, uh belonging to finite el-
ement subspaces Σh ⊂ H(div,Ω; Rn), Vh ⊂ L2(Ω), by

(σh, uh) = argcrit
(τ,v)∈Σh×Vh

[∫
(
1
2
Aτ · τ − v div τ) dx +

∫
fv dx

]
. (1.6)

The corresponding quasioptimal estimate

‖σ − σh‖H(div) + ‖u− uh‖L2 ≤ C( inf
τ∈Σh

‖σ − τ‖H(div) + inf
v∈Vh

‖u− v‖L2)

will, however, not hold in general. This requires stability, which holds
only for very special choices of the finite element spaces. The method
(1.6) falls into a well-studied class of saddle-point discretizations for which
sufficient (and nearly necessary) conditions for stability can be given [8, 12].
Namely the discretization will be stable if there exist constants c1 and c2,
independent of the discretization parameter h, such that

(A1) ‖τ‖H(div) ≤ c1‖τ‖L2 whenever τ ∈ Σh satisfies
∫
Ω

v div τ dx = 0
for all v ∈ Vh.

(A2) For all nonzero v ∈ Vh, there exists nonzero τ ∈ Σh with∫
Ω

v div τ dx ≥ c2‖τ‖H(div)‖v‖L2 .
The development of finite element methods satisfying these stability

conditions is quite subtle. In the next section, we illustrate this in the
simplest case of 1 dimension. In Section 3, we review the two main fam-
ilies of stable finite element spaces for this mixed problem in arbitrary
dimensions. Section 4 is a concise review of the main relevant concepts of
exterior algebra and exterior calculus, particularly the de Rham complex,
the Hodge Laplacian, and the Koszul complex. With these preliminaries,
we develop families of finite element discretizations of differential forms of
all orders in all dimensions, and show how to combine them into piece-
wise polynomial subcomplexes of the de Rham complex, obtaining 2n−1

such subcomplexes in dimension n for each polynomial degree. The finite
element spaces involved in these subcomplexes provide most of the stable
finite elements that have been derived for mixed problems closely related
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to a Hodge Laplacian. In the final section, we show how to use these sub-
complexes and the commutative diagrams relating them to the de Rham
complex to obtain stability of mixed finite element methods. For reasons
of space, many results are stated in this paper without proof. Proofs for
most of the assertions can be found in the cited references, while for the
material new here (the 2n−1 subcomplexes and the degrees of freedom in
(5.1)), a more complete presentation will appear elsewhere.

2. Some 1-dimensional examples. The subtle nature of stability
of finite elements for this problem arises already in the simplest case of
one-dimension, with A ≡ 1. Thus we are approximating the problem

σ + u′ = 0, σ′ = f on (−1, 1), u(±1) = 0.

We shall present some examples to illustrate both stable and unstable
choices of elements for this problem. Although in this simple 1-dimensional
context, these results can be fully analyzed theoretically, we will limit our-
selves to displaying numerical results.

A stable choice of elements in this case consists of continuous piece-
wise linear functions for the flux and piecewise constant functions for the
temperature, which we shall refer to as the Pcont

1 –P0 method. The exact
and numerical solution are shown in Figure 1 for uniform meshes of 10,
20, and 40 subintervals, first in the case where u(x) = 1− |x|7/2, and then
for the rougher solution u(x) = 1 − |x|5/4. In the first case, u ∈ H3 and
σ ∈ H2, but in the second case, u ∈ Hs and σ ∈ Hs−1 for s < 7/4 but
not larger, which limits the order of convergence of the best approximation
by piecewise linears to σ. In the first part of Table 1, we see clearly that
‖σ − σh‖L2 = O(h2) and ‖u− uh‖L2 = O(h), both of which orders are op-
timal. In the second part of the table, the order of convergence is lowered
due to the lowered smoothness of the solution, but the convergence order is
as high as that of the best approximation, illustrating the stability of this
method.

By contrast, if we use continuous piecewise linear elements for both
σ and u (e.g., in the hope of improving the order of convergence to u),
the method is not stable. For the smoother problem, u(x) = 1− |x|7/2, we
again have second order convergence for σ and first order (not second order)
convergence for u. But for u(x) = 1−|x|5/4, the convergence is clearly well-
below that of the best approximation, a manifestation of instability, which
is plainly visible in Figure 2 and Table 2. This example has been analyzed
in detail by Babuška and Narasimhan [5].

In Figure 3, we show the result of using continuous piecewise quadratic
elements for σ and piecewise constant elements for u (e.g., in hope of im-
proving the order of convergence to σ). The method, which was analyzed
in [9], is clearly unstable as well.

Although this Pcont
2 –P0 method is not stable, the Pcont

2 –P1 method
is. In fact, in one dimension the Pcont

r –Pr−1 method (continuous piecewise
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Fig. 1. The Pcont
1 –P0 mixed method (which is stable) for meshes of 10, 20, and 40

elements. Lines 1 and 2: σh versus σ and uh versus u for the Pcont
1 –P0 mixed method

when u(x) = 1− |x|7/2. Lines 3 and 4: same with u(x) = 1− |x|5/4.

polynomials of degree r for the flux and arbitrary piecewise polynomials of
degree r − 1 for the temperature) is stable for any r ≥ 1.

3. Basic mixed finite elements in higher dimensions. Consider
now the saddle point problem (1.5) in n dimensions and its discretization
(1.6) using finite element spaces Σh and Vh consisting of piecewise polyno-
mials with respect to a simplicial decomposition Th of Ω. A simple choice
of elements, which we saw to be stable in one dimension, is Pcont

1 –P0:

Σh = { τ ∈ H1(Ω; Rn) | τ |T ∈ P1(T ) ∀T ∈ Th },
Vh = { v ∈ L2(Ω) | v|T ∈ P0(T ) ∀T ∈ Th }.

(3.1)

However, for n > 1, this choice is highly unstable. In fact, on generic trian-
gular meshes the discrete problem is singular and uh is undetermined. And
even if σh could be determined, it would belong to the space of divergence-
free continuous piecewise linear functions, which reduces to the space of
global constants on many triangular meshes, so does not offer any approx-
imation.

However, there are several stable choice of elements in higher dimen-
sions that may be regarded as natural extensions of the simple Pcont

1 –P0
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Table 1
Errors and orders of convergence for the Pcont

1 –P0 mixed method.

u = 1− |x|7/2

‖σ − σh‖L2 ‖u− uh‖L2

n err. % order err. % order

10 4.78e−02 3.348 1.18e−01 10.141
20 1.20e−02 0.838 2.00 5.87e−02 5.027 1.01
40 2.99e−03 0.210 2.00 2.93e−02 2.508 1.00
80 7.49e−04 0.052 2.00 1.46e−02 1.253 1.00

160 1.87e−04 0.013 2.00 7.31e−03 0.627 1.00

u = 1− |x|5/4

‖σ − σh‖L2 ‖u− uh‖L2

n err. % order err. % order

10 1.75e−01 17.102 8.47e−02 9.503
20 1.04e−01 10.169 0.75 4.20e−02 4.712 1.01
40 6.17e−02 6.047 0.75 2.09e−02 2.349 1.00
80 3.67e−02 3.595 0.75 1.04e−02 1.173 1.00

160 2.18e−02 2.138 0.75 5.22e−03 0.586 1.00

element. First, we consider the first order Brezzi–Douglas–Marini elements
developed in [11] in two dimensions and [20] and [10] in three dimensions:

Σh = { τ ∈ H(div,Ω; Rn) | τ |T ∈ P1(T ; Rn) ∀T ∈ Th },
Vh = { v ∈ L2(Ω) | v|T ∈ P0(T ) ∀T ∈ Th }.

(3.2)

The difference from the previous choice is that for (3.1), the trial functions
for flux are restricted to H1(Ω; Rn), which means that full interelement
continuity must be imposed (a piecewise polynomial belongs to H1 if and
only if it is continuous). But for the stable choice (3.2), the flux functions
need only belong to H(div), which requires only interelement continuity
of the normal component (a piecewise polynomial vector field belongs to
H(div) if and only if its normal component is continuous across each (n−1)-
dimensional face shared by two elements).

In order that the spaces given in (3.2) are implementable via the stan-
dard finite element assembly procedure—in fact, in order that they that
are finite element spaces in the sense of [13]—we must be able to specify
degrees of freedom for the local shape function spaces P1(T ; Rn) and P0(T )
which enforce exactly the required interelement continuity. For the former,
we choose the moments of degree at most 1 of the normal component of
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Fig. 2. Pcont
1 –Pcont

1 mixed method (unstable) for meshes of 10, 20, and 40 elements.

the field on each face of the element:

τ 7→
∫

f

(τ · ν)p, p ∈ P1(f), f ∈ ∆n−1(T ). (3.3)

(We use the notation ∆k(T ) to denote the set of subsimplices of dimension
k of the simplex T , i.e., the set of vertices for k = 0, edges for k = 1, etc.)
Since the normal component of the field is itself linear, these functionals
exactly impose the desired continuity of the normal component. Choosing
a basis for each of the n-dimensional spaces P1(f) for each of n + 1 faces
f ∈ ∆n−1(T ), we obtain n(n + 1) = dim P1(T ; Rn) degrees of freedom.
These degrees of freedom are clearly unisolvent, since if they all vanish for
some τ ∈ P1(T ), then at each vertex τ · n vanishes for the vector n normal
to each face meeting at the vertex. These normal vectors span Rn, so τ
itself vanishes at each vertex, and therefore vanishes on all of T . Since the
space Vh involves no interelement continuity, we make the obvious choice
of degree of freedom for P0(T ):

v 7→
∫

T

v. (3.4)

The moments (3.3) determine a projection operator ΠΣh
: H1(Ω; Rn) → Σh
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Table 2
Errors and orders of convergence for the Pcont

1 –Pcont
1 mixed method.

u = 1− |x|7/2

‖σ − σh‖L2 ‖u− uh‖L2

n err. % order err. % order

10 2.09e−02 1.464 2.38e−01 20.429
20 5.07e−03 0.355 2.04 1.17e−01 10.066 1.02
40 1.25e−03 0.088 2.02 5.85e−02 5.011 1.01
80 3.11e−04 0.022 2.01 2.92e−02 2.502 1.00

160 7.76e−05 0.005 2.00 1.46e−02 1.251 1.00

u = 1− |x|5/4

‖σ − σh‖L2 ‖u− uh‖L2

n err. % order err. % order

10 3.96e−01 38.769 2.24e−01 25.182
20 3.36e−01 32.875 0.24 1.42e−01 15.974 0.66
40 2.83e−01 27.759 0.24 1.04e−01 11.663 0.45
80 2.39e−01 23.391 0.25 8.23e−02 9.243 0.34

160 2.01e−01 19.689 0.25 6.77e−02 7.601 0.28

onto the first-order Brezzi–Douglas–Marini space, given by∫
f

(ΠΣh
τ) · ν p =

∫
f

(τ · ν)p, p ∈ P1(f), f ∈ ∆n−1(T ),

while the projection operator ΠVh
: L2(Ω) → Vh determined by the degrees

of freedom (3.4) is simply the usual L2-projection. An important relation
between these operators is expressed by the commutativity of the following
diagram:

H1(Ω; Rn) div−−→ L2(Ω)yΠΣh

yΠVh

Σh
div−−→ Vh

(3.5)

(This can be verified via integration by parts.) Note that we have taken
H1(Ω; Rn), rather than H(div,Ω; Rn), as the domain of ΠΣh

. This is be-
cause ΠΣh

defines a bounded operator H1(Ω; Rn) → L2(Ω; Rn). In fact, it
is bounded uniformly in the mesh size h if we restrict to a shape-regular
family of triangulations. However, ΠΣh

does not extend to a bounded op-
erator on all of H(div,Ω; Rn), because of lack of sufficiently regular traces.
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Fig. 3. Pcont
2 –P0 mixed method (unstable).

The commutative diagram (3.5) encapsulates the properties of the
spaces Σh and Vh needed to verify the stability conditions (A1) and (A2).
First, since div Σh ⊂ Vh, any τ ∈ Σh satisfying

∫
Ω

v div τ dx = 0 for all
v ∈ Vh is in fact divergence-free, and so (A1) holds. In order to verify
(A2), let v ∈ Vh be given. Since div maps H1(Ω; Rn) onto L2(Ω) and
admits a bounded right inverse, c.f. [16], we can find τ̃ ∈ H1(Ω; Rn) with
div τ̃ = v and ‖τ̃‖H1 ≤ c‖v‖L2 . Now let τ = ΠΣh

τ̃ . From the commutative
diagram (3.5) we see that

div τ = div ΠΣh
τ̃ = ΠVh

div τ̃ = ΠVh
v = v.

Invoking also the H1(Ω; Rn) → L2(Ω) boundedness of ΠΣh
, we obtain∫

Ω

v div τ dx = ‖v‖2L2 , ‖τ‖H(div) ≤ c′‖v‖L2 ,

from which (A2) follows. Thus the first-order Brezzi–Douglas–Marini ele-
ments (3.2) are stable in n dimensions.

Note that (3.2) coincides with (3.1) in the case n = 1, so these elements
are indeed a generalization to higher dimensions of the simple Pcont

1 –P0

elements. Moreover, they can be viewed as the lowest order case of a
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family of stable elements of arbitrary order:

Σh = { τ ∈ H(div,Ω; Rn) | τ |T ∈ Pr(T ; Rn) ∀T ∈ Th },
Vh = { v ∈ L2(Ω) | v|T ∈ Pr−1(T ) ∀T ∈ Th }.

(3.6)

The interelement continuity for Σh can be specified by continuity of the
moments

τ 7→
∫

f

(τ · n)p, p ∈ Pr(f), f ∈ ∆n−1(T ),

and a set of degrees of freedom determined by these moments with p re-
stricted to a basis in each Pr(f), together with and an additional (r −
1)

(
n+r−1

r

)
moments over T , about which more will be said below. In one

dimension, this is just the Pcont
r –Pr−1 element discussed at the end of the

last section. The first two elements in the Brezzi–Douglas–Marini family
in two dimensions are pictured in Figure 4.

+3

Fig. 4. Brezzi–Douglas–Marini element pairs for r = 1 and 2 in two dimensions.

Although the Brezzi–Douglas–Marini family of elements provide a nat-
ural analogue of the Pcont

r –Pr−1 family of elements to higher dimensions,
it is not the only such analogue. Another is the Raviart–Thomas family in-
troduced in [21] and improved and extended from two to three dimensions
in [19]. To describe it, we define for T ⊂ Rn and integer r ≥ 0,

RTr(T ) = { τ : T → Rn | τ(x) = α(x)+xβ(x), α ∈ Pr(T ; Rn), β ∈ Pr(T ) }.
(3.7)

Then the Raviart–Thomas elements of index r ≥ 0 are

Σh = { τ ∈ H(div,Ω; Rn) | τ |T ∈ RTr(T ) ∀T ∈ Th },
Vh = { v ∈ L2(Ω) | v|T ∈ Pr(T ) ∀T ∈ Th },

(3.8)

with some element diagrams shown in Figure 5. These elements are defined
in all dimensions. In dimension one, the Raviart–Thomas elements (3.8)
coincide with the Brezzi–Douglas–Marini elements (3.6) with r replaced by
r + 1. But for n ≥ 2, these families are distinct.

4. Exterior calculus. The finite elements described above, and oth-
ers, can better be understood with the help of differential forms and exterior
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Fig. 5. Raviart–Thomas element pairs for r = 0 and 1 in two dimensions.

calculus. We begin by recalling the basic notions of exterior algebra. (For
details see, e.g., [3], Ch. 7. Let V be a vector space of dimension n. We
denote by AltkV the space of exterior k-forms on V , i.e., of alternating
k-linear maps V ×· · ·×V → R. That is, an element of AltkV assigns a real
number to k elements of V , is linear in each argument, and reverses sign
when two arguments are interchanged. In particular, Alt1V is simply the
dual space V ∗ and Alt0V may be identified with R. For k > n, AltkV = 0,
while for all k we have

dim AltkV =
(

n

k

)
.

A form in the one-dimensional space AltnV is uniquely determined by its
value on any one coordinate frame (i.e., ordered basis). The value of the
form on any other ordered n-tuple of vectors can be obtained by expanding
the vectors in the coordinate frame to obtain a matrix, and multiplying
the value of the form on the coordinate frame by the determinant of the
matrix.

An inner product on V determines an inner product on each AltkV by
the formula

〈ω, η〉 =
∑

1≤σ1<···<σk≤n

ω(vσ1 , . . . , vσk
)η(vσ1 , . . . , vσk

), ω, η ∈ AltkV

(4.1)
for any orthonormal basis v1, . . . , vn (the right hand side is independent of
the choice of orthonormal basis).

We recall also the exterior product ∧ : AltjV × AltkV → Altj+kV
defined by

(ω∧η)(v1, . . . , vj+k) =
∑

σ∈Σ(j,j+k)

(signσ)ω(vσ1 , . . . , vσj
)η(vσj+1 , . . . , vσj+k

),

ω ∈ AltjV, vi ∈ V,

where Σ(j, j + k) is the set of all permutations of {1, . . . , j + k}, for which
σ1 < σ2 < · · ·σj and σj+1 < σj+2 < · · ·σj+k.

In the case V = Rn, there is a canonical basis, and we denote by
dx1, . . . , dxn the elements of the dual basis, which form a canonical basis
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for Alt1Rn. Then a canonical basis for AltkRn consists of the forms dxσ1 ∧
· · · ∧ dxσk , where 1 ≤ σ1 < · · · < σk ≤ n.

For readers less familiar with exterior algebra, it is worthwhile to ex-
amine in detail the example V = R3, endowed with the usual inner product
and orientation. In this case

• The general element of Alt0R3 is c, c ∈ R.
• The general element of Alt1R3 is 〈u, · 〉, or, equivalently,

u1dx1 + u2dx2 + u3dx3, u ∈ R3.
• The general element of Alt2R3 is 〈w, · × · 〉, or, equivalently,

w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2, w ∈ R3.
• The general element of Alt3R3 is g〈 · , · × · 〉, or, equivalently,

gdx1 ∧ dx2 ∧ dx3, g ∈ R.
Thus we may identify Alt0R3 and Alt3R3 with R and Alt1R3 and Alt2R3

with R3.
Next we identify the exterior product AltjR3×AltkR3 → Altj+kR3 for

0 ≤ j ≤ k, j + k ≤ 3. (The exterior product for other values of j, k either
follows from these or is identically zero.) If j = 0, the exterior product is the
ordinary scalar multiplication. The exterior product Alt1R3 × Alt1R3 →
Alt2R3 corresponds under our identifications to the usual cross product
R3 × R3 → R3. Finally, the exterior product Alt1R3 × Alt2R3 → Alt3R3

corresponds to the usual inner product R3×R3 → R. It is straightforward
to check that given the identifications mentioned, the inner product defined
above on AltkR3 is the usual product in R for k = 0 or 3, and the Euclidean
product in R3 for k = 1 or 2.

Having reviewed the basic definitions of exterior algebra, we now turn
to exterior calculus. If Ω is any smooth manifold, we define a smooth
differential k-form on Ω as a mapping ω which assigns to each x ∈ Ω an
alternating linear form ωx ∈ Altk(TxΩ) on the tangent space TxΩ to Ω at
x. We denote the space of all smooth differential k-forms on Ω by Λk(Ω).
We write C0Λk(Ω) to denote the larger space of all continuous differential
forms, and use a similar notation for other functional spaces. For example,
if Ω is a Riemannian manifold, we can talk about L2Λk(Ω), etc.

Differential forms can be integrated and differentiated without the
need for any additional structure, such as a measure or metric, on the
manifold Ω. If 0 ≤ k ≤ n is an integer, f is an oriented piecewise smooth k-
dimensional submanifold of Ω, and ω is a k-form, then the integral

∫
f

ω ∈ R
is well-defined. Thus, for example, 0-forms can be evaluated at points,
1-forms can be integrated on curves, and 2-forms can be integrated over
surfaces. Also, for each such k, the exterior derivative dk is a linear operator
mapping Λk(Ω) into Λk+1(Ω). The de Rham complex of Ω is the sequence
of maps

R ↪→ Λ0(Ω) d−−→ Λ1(Ω) d−−→ · · · d−−→ Λn(Ω) → 0 (4.2)

where we have followed the usual convention of suppressing the subscript
on the dk. This is a complex in the sense that the composition of two con-
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secutive maps is zero (dkdk−1 = 0), and we can consider the kth de Rham
cohomology space, defined to be the quotient of the null space of dk modulo
the range of dk−1. If the manifold is contractible, this complex is exact in
the sense that the cohomology spaces all vanish, or, equivalently, the range
of each map is precisely equal to (and not just contained in) the null space
of the succeeding map.

Assuming that Ω is a Riemannian manifold, so each tangent space TxΩ
is endowed with an inner product, we have an inner product on each Λk(Ω)
which can be completed to a Hilbert space L2Λk(Ω). We can define the
Sobolev space of differential k-forms:

HΛk(Ω) = {ω ∈ L2Λk(Ω) | dω ∈ L2Λk+1(Ω) }.

The L2 de Rham complex

R ↪→ HΛ0(Ω) d−−→ HΛ1(Ω) d−−→ · · · d−−→ HΛn(Ω) → 0

has the same cohomology as the smooth de Rham complex.
Viewing dk as a (closed, densely-defined) unbounded linear operator

mapping L2Λk(Ω) to L2Λk+1(Ω) with domain HΛk(Ω), we may use the
inner product of differential forms to define the adjoint d∗k which maps a
dense subspace of L2Λk+1(Ω) to L2Λk(Ω). Namely, ω ∈ L2Λk+1(Ω) belongs
to the domain of d∗k if there exists d∗kω ∈ L2Λk(Ω) such that

〈d∗ω, η〉L2Λk = 〈ω, dη〉L2Λk+1 , η ∈ HΛk(Ω).

The Hodge Laplacian is then the map d∗d+dd∗ (or, more precisely, d∗kdk +
dk−1d

∗
k−1) which maps a part of L2Λk(Ω) into L2Λk(Ω).

In case Ω is an open subset of Rn, every differential k-form may be
written uniquely in the form

ωx =
∑

i1<···<ik

ai1...ik
(x)dxi1 ∧ · · · ∧ dxik , (4.3)

for some smooth functions ai1...ik
: Ω → R. This is useful for computing

the exterior derivative since:

d(a dxi1 ∧ · · · ∧ dxik) =
n∑

j=1

∂a

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik .

For use later in the paper, we introduce the Sobolev space HsΛk(Ω) consist-
ing of differential forms of the form (4.3) for which the coefficients ai1...ik

∈
Hs(Ω). The corresponding norm is given by ‖ω‖s = (

∑
‖ai1...ik

‖2s)1/2,
which we write simply as ‖ω‖ if s = 0.

For Ω ⊂ Rn, we can also define the notion of polynomial differential
forms. Namely, we say that ω ∈ Λk(Ω) is a (homogeneous) polynomial
k-form of degree r if for any choice v1, . . . , vk ∈ Rn, the map

x 7→ ωx(v1, . . . , vk)



14 DOUGLAS N. ARNOLD, RICHARD S. FALK, AND RAGNAR WINTHER

is the restriction to Ω of a (homogeneous) polynomial of degree r. For
ω given by (4.3), this is equivalent to saying that each of the coefficients
ai1...ik

is a (homogeneous) polynomial of degree r. We denote the spaces
of polynomial k-forms of degree r and homogeneous k-forms of degree r
by PrΛk(Ω) and HrΛk(Ω), respectively. We shall verify below that the
polynomial de Rham complex

R ↪→ PrΛ0(Ω) d−−→ Pr−1Λ1(Ω) d−−→ · · · d−−→ Pr−nΛn(Ω) → 0 (4.4)

is exact for every r ≥ 0 (with the understanding that Hm = Pm = 0
for m < 0). The same is true for the homogeneous polynomial de Rham
sequence

R ↪→ HrΛ0(Ω) d−−→ Hr−1Λ1(Ω) d−−→ · · · d−−→ Hr−nΛn(Ω) → 0 (4.5)

where R = R if r = 0 and R = 0 otherwise.
Finally, still in the case Ω ⊂ Rn, we introduce the Koszul differential

κ = κk : Λk → Λk−1, defined by

(κω)x(v1, . . . , vk−1) = ωx(x, v1, . . . , vk−1). (4.6)

Note that κk−1κk = 0. Also, κ maps HrΛk(Ω) into Hr+1Λk−1(Ω), i.e., the
Koszul differential increases polynomial degree and decreases the order of
the differential form, exactly the opposite of exterior differentiation, which
maps Hr+1Λk−1(Ω) into HrΛk(Ω). The two operations are connected by
the formula

(dκ + κd)ω = (r + k)ω, ω ∈ HrΛk(Ω). (4.7)

This can be used to establish exactness of the homogeneous polynomial
de Rham sequence (4.5), and also of the homogeneous Koszul complex

0 → Hr−nΛn(Ω) κ−−→ Hr−n+1Λn−1(Ω) κ−−→ · · · κ−−→ HrΛ0(Ω) → R → 0

where again R = R if r = 0 and R = 0 otherwise. Adding over polynomial
degrees we get the exactness of (4.4) and of the Koszul complex

0 → Pr−nΛn(Ω) κ−−→ Pr−n+1Λn−1(Ω) κ−−→ · · · κ−−→ PrΛ0(Ω) → R → 0

We use the Koszul differential to define an important space of polyno-
mial forms on a domain T ⊂ Rn:

P+
r Λk(T ) = PrΛk(T ) + κPrΛk+1(T ),

where κ is the Koszul differential defined in (4.6). Clearly

P+
r Λk(T ) = PrΛk(T ) + κHrΛk+1(T )



DIFFERENTIAL COMPLEXES AND STABILITY OF FEM I 15

and, in view of (4.7),

P+
r Λk(T ) + dHr+2Λk−1 = Pr+1Λk(T ).

For 0-forms and n-forms, the P+ spaces are nothing new:

P+
r Λ0(T ) = Pr+1Λ0(T ), P+

r Λn(T ) = PrΛn(T ).

However, for 0 < k < n

PrΛk(T ) ( P+
r Λk(T ) ( Pr+1Λk(T ).

If we identify Λn−1(T ) with C∞(T ; Rn), then P+
r Λn−1(T ) corresponds ex-

actly to the space of Raviart–Thomas polynomial fields defined in (3.7). In
the general case, we may compute their dimensions:

dimP+
r Λk(T ) =

(
n + r

n

)(
n

k

)
+

(
n + r

n− k − 1

)(
r + k

k

)
,

while

dimPrΛk(T ) =
(

n + r

n

)(
n

k

)
.

Finally, we specialize to the case Ω ⊂ R3. Then TxR3 ∼= R3 and
AltkTxR3 may be identified with R for k = 0, 3 and with R3 for k = 1, 2.
We can then interpret the integral in the sense of differential forms as
follows. If ω is a 0-form, and v a point in Ω, then

∫
v
ω = ω(v). If ω is a

function on Ω which we identify with a 1-form and e is an oriented curve
in Ω, then the differential form integral

∫
e
ω =

∫
e
ω · t dH1 where t is the

unit tangent to e (determined uniquely by the orientation) and H1 is 1-
dimensional Hausdorff measure. If ω is a function on Ω which we identify
with a 2-form and f is an oriented surface in Ω, then the differential form
integral

∫
f

ω =
∫

f
ω · ν dH2 where ν is the unit normal to f and H2 is

2-dimensional Hausdorff measure. Finally, if T is an open subset of Ω and
ω a 3-form, then

∫
T

ω is equal to the usual integral of the corresponding
function with respect to Lebesgue measure.

Continuing with the identification of forms on R3 with functions and
vector fields, we find that d0 = grad, d1 = curl, d2 = div, κ3 is multiplica-
tion of a scalar field by x to get a vector field, κ2 takes the cross product of
a vector field with x to produce another vector field, and κ1 takes the dot
product of a vector field with x. Thus the differential complexes discussed
above can be written as follows.
The smooth de Rham complex:

R ↪→ C∞(Ω)
grad−−−→ C∞(Ω; R3) curl−−→ C∞(Ω; R3) div−−→ C∞(Ω) → 0

The L2 de Rham complex:

R ↪→ H1(Ω)
grad−−−→ H(curl,Ω; R3) curl−−→ H(div,Ω; R3) div−−→ L2(Ω) → 0
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The polynomial de Rham complex:

R ↪→ Pr(Ω)
grad−−−→ Pr−1(Ω; R3) curl−−→ Pr−2(Ω; R3) div−−→ Pr−3(Ω) → 0

The Koszul complex:

0 → Pr−3(Ω) x−−→ Pr−2(Ω; R3) ×x−−→ Pr−1(Ω; R3) ·x−−→ Pr(Ω) → R → 0

The Hodge Laplacian on 0-forms and 3-forms is the ordinary Lapla-
cian ∆ = div grad viewed as an unbounded operator on L2(Ω) with certain
boundary conditions imposed in its domain (basically, Neumann conditions
in the case of 0-forms and Dirichlet conditions in the case of 3-forms). Sim-
ilarly, the Hodge Laplacian on 1-forms and 2-forms gives the vector Lapla-
cian curl curl− grad div with two different sets of boundary conditions. We
will say more on this in Section 6.

5. Piecewise polynomial differential forms. Let T be a triangu-
lation by simplices of a domain Ω ⊂ Rn. In this section we define, in a
unified fashion, a variety of finite-dimensional spaces of differential forms
on Ω which are piecewise polynomials with respect to the triangulation T .
In the cases where we can identify differential forms with functions and
vector fields on Ω, these spaces correspond to well-known finite element
spaces, such as the Lagrange space, the Brezzi–Douglas–Marini spaces, the
Raviart–Thomas spaces, and the Nedelec spaces of [19, 20].

We begin by describing a set of degrees of freedom for the polynomial
spaces PrΛk(T ) and P+

r Λk(T ), which will reveal a strong connection be-
tween the Pr and P+

r spaces. For T a simplex in Rn, 0 ≤ k ≤ n, and
r > 0, an element ω ∈ PrΛk(T ) is uniquely determined by the following
quantities (see [20] for the case n = 3):∫

f

ω ∧ ζ, ζ ∈ P+
r−d−1+kΛd−k(f), f ∈ ∆d(T ), k ≤ d ≤ n. (5.1)

(For r < 0, we interpret P+
r Λk(T ) = PrΛk(T ) = 0.) Note that for ω ∈

Λk(T ), ω naturally restricts on the face f to an element of Λk(f). Therefore,
for ζ ∈ Λd−k(f), the wedge product ω ∧ ζ belongs to Λd(f) and hence the
integral of ω ∧ ζ on the d-dimensional face f of T is a well-defined and
natural quantity. A set of degrees of freedom for PrΛk(T ) is obtained
from the quantities in (5.1) by restricting the weighting forms ζ to bases
of the spaces P+

r−d−1+kΛd−k(f). Notice that the degrees of freedom for
a PΛ type space involve the moments on faces weighted by elements of
P+Λ type spaces. The reverse is true as well. The degrees of freedom for
ω ∈ P+

r Λk(T ) are obtained in a similar way (by selecting bases) from the
moments∫

f

ω ∧ ζ, ζ ∈ Pr−d+kΛd−k(f), f ∈ ∆d(T ), k ≤ d ≤ n. (5.2)
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This set of degrees of freedom was presented in [17]. See also [19].
In this way, we obtain two families of piecewise polynomial k-forms,

each indexed by polynomial degree r:

PrΛk(T ) = {ω ∈ HΛk(Ω) | ω|T ∈ PrΛk(T ) ∀T ∈ T },
P+

r Λk(T ) = {ω ∈ HΛk(Ω) | ω|T ∈ P+
r Λk(T ) ∀T ∈ T }.

We believe these should be regarded as the most natural finite element
approximations of the Sobolev differential form spaces HΛk(Ω). This is
certainly true in n = 1 dimension, where for each r ≥ 0 and partition of
the domain, we obtain a unique finite element discretization of H1(Ω) and
of L2(Ω): the Pcont

r+1 space of continuous piecewise polynomials of degree
r+1 and the Pr space of all piecewise polynomials of degree r, respectively.
For k = 0 in any number of dimensions, then

P+
r Λ0(T ) = Pr+1Λ0(T )

is the usual Lagrange space of all continuous piecewise polynomials of de-
gree r+1, the most natural discretization of H1(Ω) ∼= HΛ0(Ω). For k = n,
we get

P+
r Λn(T ) = PrΛn(T )

is the space of all piecewise polynomials of degree r, the most natural dis-
cretization of L2(Ω) ∼= HΛn(Ω). For k = n−1, we may identify HΛn−1(Ω)
with H(div,Ω; Rn), and P+

r Λn−1(T ) is the Raviart–Thomas space of in-
dex r and PrΛn−1(T ) the Brezzi–Douglas–Marini space of index r, the
best known discretizations of H(div). Finally, for k = 1, n = 3, HΛ1(Ω)
can be identified with H(curl,Ω; R3) and P+

r Λ1(T ) and PrΛ1(T ) are the
Nedelec finite element spaces of the first and second kind, respectively, the
best known spaces of H(curl) elements, illustrated in Figure 6.

Fig. 6. Lowest order Nedelec H(curl) elements of the first kind and the second kind.

These spaces fit together to provide a number of piecewise polynomial
analogues of the de Rham complex. For any r ≥ 0, we have the complex

R ↪→ P+
r Λ0(T ) d−−→ P+

r Λ1(T ) d−−→ · · · d−−→ P+
r Λn(T ) → 0. (5.3)
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In case r = 0, this is the complex of piecewise polynomial forms introduced
by Whitney to calculate de Rham cohomology [22]. It has the same coho-
mology spaces as the smooth de Rham complex, so, in particular, is exact
if Ω is contractible. The connection betweens Whitney’s forms and mixed
finite elements was recognized by Bossavit [7]. Using an element diagram
to stand in for the corresponding finite element space, in n = 3 dimensions
the complex of Whitney forms may be represented

R ↪→ grad−−−→ curl−−→ div−−→ → 0

The degrees of freedom in (5.1) and (5.2) determine projection oper-
ators Πk

r : Λk(Ω) → PrΛk(T ) and Πk
r+ : Λk(Ω) → P+

r Λk(T ) respectively.
These may be used to relate the smooth de Rham complex (4.2) to the
piecewise polynomial de Rham complex (5.3). Namely, the following dia-
gram commutes:

R ↪→ Λ0(Ω) d−−→ Λ1(Ω) d−−→ · · · d−−→ Λn(Ω) −−→ 0

Π0
r+

y Π1
r+

y Πn
r+

y
R ↪→P+

r Λ0(T ) d−−→ P+
r Λ1(T ) d−−→ · · · d−−→ P+

r Λn(T ) −−→ 0

Another piecewise polynomial differential complex with the same co-
homology uses the PrΛk spaces:

R ↪→ Pr+nΛ0(T ) d−−→ Pr+n−1Λ1(T ) d−−→ · · · d−−→ PrΛn(T ) → 0 (5.4)

The complex (5.3) is a subcomplex of (5.4), in the sense that each space
occurring in the former complex is a subspace of the corresponding space
in the latter complex. The complex (5.4) appears, generalized to the case
of degree varying by the element, in [14]. Note that this complex ends with
the same space PrΛn(Ω) = P+

r Λn(Ω) as (5.4), but in contrast with (5.3)
the degree index r decreases with increasing differential form order k.

In one dimension the two complexes (5.3), (5.4) coincide, but in two
dimensions they are distinct. In n > 2 dimensions there are additional
piecewise polynomial complexes which can be built from the same PrΛk

and PrΛk+1 spaces, have the same cohomology, and end in the same space
PrΛ0(T ). These are intermediate between (5.3) and (5.4), and strictly
ordered by the subcomplex relationship. Specifically, there are 2n−1 such
piecewise polynomials complexes in n dimensions. In three dimensions the
other two are

R ↪→ Pr+2Λ0(T ) d−−→ Pr+1Λ1(T ) d−−→ P+
r Λ2(T ) d−−→ PrΛ3(T ) → 0

and

R ↪→ Pr+2Λ0(T ) d−−→ P+
r+1Λ

1(T ) d−−→ Pr+1Λ2(T ) d−−→ PrΛ3(T ) → 0
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6. Differential complexes and stability. Let Ω be a contractible
subdomain of Rn and 0 ≤ k ≤ n an integer. Given f ∈ L2Λk(Ω), define
L : HΛk−1(Ω)×HΛk(Ω) → R by

L(τ, v) =
∫

Ω

(
1
2
〈τ, τ〉 − 〈dτ, v〉 − 1

2
〈dv, dv〉+ 〈f, v〉

)
dx,

where the angular brackets indicate the inner product of forms as defined in
(4.1). Then L admits a unique critical point, (σ, u) ∈ HΛk−1(Ω)×HΛk(Ω)
determined by the equations∫

Ω

〈σ, τ〉 dx =
∫

Ω

〈dτ, u〉 dx ∀τ ∈ HΛk−1(Ω), (6.1)∫
Ω

〈dσ, v〉 dx +
∫

Ω

〈du, dv〉 dx =
∫

Ω

〈f, v〉 dx ∀v ∈ HΛk(Ω). (6.2)

Note that this critical point is a saddle point—a minimizer with respect to
σ and a maximizer with respect to u—but is not generally obtained from
a constrained minimization problem for σ via introduction of a Lagrange
multiplier. Equations (6.1) and (6.2) are weak formulations of the equations

σ = d∗u, dσ + d∗du = f,

respectively, and hence together, give the Hodge Laplacian problem (dd∗+
d∗d)u = f . Implied as well are the natural boundary conditions that the
trace of u as a k-form on ∂Ω and the trace of du as a (k + 1)-form on ∂Ω
both must vanish.

Let us consider more concretely the situation in n = 3 dimensions,
identifying the spaces L2Λk(Ω) with function spaces as described at the
end of Section 4. For k = 3, (6.1), (6.2) become: find σ ∈ H(div,Ω; R3),
u ∈ L2(Ω) such that∫

Ω

σ · τ dx =
∫

Ω

div τu dx ∀τ ∈ H(div,Ω; R3), (6.3)∫
Ω

div σv dx =
∫

Ω

fv dx ∀v ∈ L2(Ω), (6.4)

i.e., the weak formulation of the steady state heat conduction problem
(with unit resistivity) discussed in Section 1. This is the standard mixed
formulation for the Dirichlet problem for the Poisson equation: (6.3) is
equivalent to the differential equation σ = − gradu and the boundary
condition u = 0, while (6.4) is equivalent to div σ = f .

For k = 2, the unknowns σ ∈ H(curl,Ω; R3) and u ∈ H(div,Ω; R3)
satisfy the differential equations

σ = curl u, curlσ − grad div u = f,
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and the boundary conditions u×ν = 0, div u = 0 on ∂Ω, so this is a mixed
formulation for the vectorial Poisson equation

(curl curl− grad div)u = f (6.5)

with the auxiliary variable σ = curlu. For k = 1, (6.1), (6.2) is a different
mixed formulation of the vectorial Poisson equation (6.5). Now σ ∈ H1(Ω)
and u ∈ H(curl,Ω; R3) satisfy

σ = −div u, (gradσ + curl curl)u = f,

with boundary conditions u · ν = 0, (curl u)× ν = 0.
Finally, we interpret the case k = 0. Here, in view of the L2 de Rham

sequence, we interpret HΛ−1(Ω) as R with the operator HΛ−1(Ω) →
HΛ0(Ω) just the inclusion of R in H1(Ω). Thus, the unknowns are σ ∈ R
and u ∈ H1(Ω), (6.1) just gives the equation σ =

∫
Ω

u dx/ meas(Ω), while
(6.2) is ∫

Ω

gradu · grad v dx + σ

∫
Ω

v dx =
∫

Ω

fv dx ∀v ∈ H1(Ω).

Thus we just have the usual weak formulation of the Neumann problem for
the Poisson equation (if

∫
Ω

f dx = 0, then σ = 0).
Returning now to the case of general n, suppose we are given a trian-

gulation, and let

R ↪→ Λ0
h

dh−−→ Λ1
h

dh−−→ · · · dh−−→ Λn
h → 0 (6.6)

denote any of the 2n−1 piecewise polynomial de Rham complexes discussed
in Section 5, e.g., (5.3) or (5.4). Here we use dh to denote the restriction
of the exterior differential d, and we shall denote by d∗h its adjoint. We
further suppose we have a commuting diagram of the form

R ↪→Λ0(Ω) d−−→ Λ1(Ω) d−−→ · · · d−−→ Λn(Ω) −−→ 0

Π0
h

y Π1
h

y Πn
h

y
R ↪→ Λ0

h
dh−−→ Λ1

h
dh−−→ · · · dh−−→ Λn

h −−→ 0

(6.7)

We shall demonstrate stability of the finite element method: find σ ∈
Λk−1

h , u ∈ Λk
h such that∫

Ω

〈σ, τ〉 dx =
∫

Ω

〈dτ, u〉 dx ∀τ ∈ Λk−1
h , (6.8)∫

Ω

〈dσ, v〉 dx +
∫

Ω

〈du, dv〉 dx =
∫

Ω

〈f, v〉 dx ∀v ∈ Λk
h. (6.9)
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Let B : [HΛk−1(Ω) ×HΛk(Ω)] × [HΛk−1(Ω) ×HΛk(Ω)] → R denote the
bounded bilinear form

B(σ, u; τ, v) =
∫

Ω

(〈σ, τ〉 − 〈dτ, u〉+ 〈dσ, v〉+ 〈du, dv〉) dx.

Stability of the method (6.8), (6.9) is equivalent to the inf-sup condition for
B restricted to the finite element spaces [4]. That is, we must establish the
existence of constants γ > 0, C < ∞ such that for any (σ, u) ∈ Λk−1

h × Λk
h

there exists (τ, v) ∈ Λk−1
h × Λk

h with

B(σ, u; τ, v) ≥ γ(‖σ‖2HΛk−1 + ‖u‖2HΛk), (6.10)
‖τ‖HΛk−1 + ‖v‖HΛk ≤ C(‖σ‖HΛk−1 + ‖u‖HΛk). (6.11)

We shall do so by proving the existence of a discrete Hodge decom-
position (Lemma 6.1) and some estimates associated with it (Lemma 6.2).
Such discrete Hodge decompositions have been used to establish the sta-
bility of mixed methods in specific cases going back at least as far as [15].
See also [6] for a more recent exposition.

Lemma 6.1. Given u ∈ Λk
h, there exist unique forms ρ ∈ d∗h(Λk

h) ⊂
Λk−1

h and φ ∈ dh(Λk
h) ⊂ Λk+1

h with

u = dhρ + d∗hφ, d∗hρ = 0, dhφ = 0, (6.12)

‖u‖2 = ‖dhρ‖2 + ‖d∗hφ‖2. (6.13)

Proof. This is a special case of a more general result. Let

0 → X
f−−→ Y

g−−→ Z → 0

be a short exact sequence where X, Y , and Z are finite-dimensional Hilbert
spaces and f and g linear maps. Then Y decomposes into orthogonal
summands A := R(f) = N (g) and B := N (f∗) = R(g∗). Thus any y ∈ Y
may be decomposed as y = fx + g∗z for some unique x ∈ X, z ∈ Z, and
we have ‖y‖2Y = ‖fx‖2Y + ‖g∗z‖2Y . We apply these results with Y = Λk

h,
Z = dh(Λk

h) ⊂ Λk+1
h , and X = d∗h(Λk

h) ⊂ Λk−1
h .

Lemma 6.2. Suppose that for any u ∈ Λk
h of the form (6.12),

‖d∗hφ‖ ≤ K‖dhu‖, ‖ρ‖ ≤ K ′‖dhρ‖,

where K and K ′ are constants independent of ρ, φ, and h. Then the
stability conditions (6.10) and (6.11) are satisfied.

Proof. Let τ = σ− tρ ∈ Λk−1
h and v = u+dhσ ∈ Λk

h with t = 1/(K ′)2.
Using (6.13), the hypotheses of the lemma, and a simple computation, we
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get

B(σ, u; τ, v) = ‖σ‖2 + ‖dhσ‖2 + ‖dhu‖2 + t‖dhρ‖2 − t

∫
Ω

〈σ, ρ〉 dx

≥ 1
2
‖σ‖2 + ‖dhσ‖2 + ‖dhu‖2 + t‖dhρ‖2 − t2

2
‖ρ‖2

≥ 1
2
‖σ‖2 + ‖dhσ‖2 + ‖dhu‖2 + ‖dhρ‖2(t− t2(K ′)2/2)

≥ 1
2
‖σ‖2 + ‖dhσ‖2 +

1
2
‖dhu‖2 +

1
2(K ′)2

‖dhρ‖2 +
1

2K2
‖d∗hφ‖2

≥ 1
2
‖σ‖2 + ‖dhσ‖2 +

1
2
‖dhu‖2 +

1
2(K ′′)2

‖u‖2,

where K ′′ = max(K ′,K). Hence, we obtain (6.10) with γ > 0 depending
only on K and K ′. The upper bound (6.11) follows from the fact that

‖ρ‖ ≤ K ′‖dhρ‖ ≤ K ′‖u‖.

The hypotheses of the lemma are easily seen to be valid if we allow
the constants K and K ′ to depend on h, with K the norm of the inverse
of dh restricted to the orthogonal complement of its kernel in Λk

h and K ′

is the norm of the inverse of dh restricted to the orthogonal complement
of its kernel in Λk−1

h . To show that the constants K and K ′ can be taken
independent of h, we need to make use of approximation properties of the
interpolation operators Πk

h and elliptic regularity of appropriately chosen
boundary value problems. We shall assume that for u ∈ H1Λk−1(Ω) with
du ∈ Λk

h,

‖u−Πk−1
h u‖ ≤ Ch‖u‖1.

We note that the condition du ∈ Λk
h is needed in some cases for the inter-

polant Πk−1
h u to be defined. We next consider boundary value problems

of the form: Given σh ∈ Λk−1
h , find (σ, u) ∈ HΛk−1(Ω) × dHΛk−1(Ω)

determined by the equations∫
Ω

〈σ, τ〉 dx =
∫

Ω

〈dτ, u〉 dx ∀τ ∈ HΛk−1(Ω), (6.14)∫
Ω

〈dσ, v〉 dx =
∫

Ω

〈dhσh, v〉 dx ∀v ∈ dHΛk−1(Ω). (6.15)

This is a weak formulation of the equations

σ = d∗u, dσ = dhσh, du = 0,

together with the natural boundary condition that the trace of u as a k-form
on ∂Ω vanishes. We shall assume that the solution satisfies the regularity
estimate:

‖σ‖1 ≤ C‖dhσh‖.
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We apply this result first in the case when σh = ρ. Since d∗hρ = 0,
there exists uh ∈ dhΛk−1

h such that ρ = d∗huh, i.e.,∫
Ω

〈ρ, τ〉 dx =
∫

Ω

〈dτ, uh〉 dx ∀τ ∈ Λk−1
h . (6.16)

Since dσ = dhσh ∈ Λk
h, we have by the commuting diagram (6.7) that

dΠk−1
h σ = Πk

hdσ = dσ = dhσh = dhρ. Choosing τ = ρ−Πk−1
h σ, we get

‖ρ‖ ≤ ‖Πk−1
h σ‖ ≤ ‖σ‖+ ‖σ −Πk−1

h σ‖ ≤ C‖σ‖1 ≤ ‖dhρ‖.

To establish the first inequality of the lemma, it is enough to show
that ‖φ‖ ≤ C‖d∗hφ‖, since

‖d∗hφ‖2 = (φ, dhd∗hφ) = (φ, dhu) ≤ ‖φ‖‖dhu‖.

Because dhφ = 0, we can write φ = dhw, w ∈ Λk
h. We then apply our

regularity result in the case when σh = w and k is replaced by k + 1.
Hence, ‖σ‖1 ≤ C‖dhw‖ ≤ C‖φ‖. Since dσ = dhσh ∈ Λk+1

h , we again use
the commuting diagram (6.7) to write

dΠk
hσ = Πk+1

h dσ = dσ = dhσh = dhw = φ.

Now

‖φ‖2 = (dΠk
hσ, φ) = (Πk

hσ, d∗hφ) ≤ ‖Πk
hσ‖‖d∗hφ‖.

But

‖Πk
hσ‖ ≤ ‖σ‖+ ‖σ −Πk

hσ‖ ≤ C‖σ‖1 ≤ C‖φ‖.

Combining these results establishes the first inequality.
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