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An approximation scheme for a class of optimal control problems is presented.
An order of convergence estimate is then developed for the error in the approxi-
mation of both the optimal control and the solution of the control equation.

1. INTRODUCTION

In this work, we consider the approximation of a class of optimal control
problems. More specifically, the control problems considered will be those
of systems governed by partial differential equations of elliptic type. The
general approach taken will be to approximate the optimal control and the
solution of the control equation in such a way that the approximating control
problem can be solved by mathematical programming. An error estimate for
the approximation of the optimal control and the solution of the control
equation is then given in an appropriate norm.

A general outline of the paper is as follows. In Section 2 we give a general
formulation of the problem and define the notation to be used. In Section 3
we present an approximation technique and prove a general approximation
theorem. The remainder of the paper contains the application of this
estimate to a specific problem. In Section 4 we define some function spaces,
and in Section 5 prove an a priori estimate for an optimal control problem
set in these spaces. Section 6 contains the description of the construction of
an approximate problem and the application of the general error estimate
developed in Section 3. Finally, in Section 7, we make some comments about
the order of convergence estimate obtained in Section 6, and discuss some
conditions under which it can be improved.

* This research was supported by the National Science Foundation under grant
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2. GENERAL FORMULATION OF THE PROBLEM

The general problem will be formulated in notation similar to that used by
J. L. Lions [5]. Let VVC H be two Hilbert spaces, ¥ dense in H and the
injection of " into H continuous. Identify H with its dual space. If '’ denotes
the dual space of V, then H may be identified with a subspace of I”’ and we
may write " C H C V', where H 1s dense in V" and the injection of H into I
continuous. Let U be a Hilbert space of controls, and let B e Z(U, I"), the
set of linear operators mapping U into 7. For each uc U, let ve I be
the solution of

Ay =f+ Bu

where Ae Z(V, V') and fe I Since y depends on u, write y as y(u). Let
Z(u) = Cy(u) be an observation of y(u), where Ce L(V, #), # a Hilbert
space of observations. Let N € (U, U), N self-adjoint, positive definite, and
satisfying (Nu, u)y > v| u|f for all ue U and some constant » > 0.

For each u € U, we associate the functional

Jw) =1 Cy(w) — Z, % + (Nu, u)y,

where Z, is given in 3. The control problem is then: Find u € K such that
J(u) = inf,., J(v), where K is a closed convex subset of U. Lions has shown
in [5] that this problem is equivalent to the variational inequality: Find u € K
such that

(Cy(®) — Za, CL3@®) — Y)or + Ny w — 1)y >0 VoeK.
We denote these equivalent formulations of the control problem as
Problem (P).
Once again following Lions, we let 5#” be the dual of # and set 4 = A4,
the canonical isomorphism of # — #'. Let C*e Z(o#”, V') denote the

adjoint of C, and 4* € #(V, V') denote the adjoint of A. Finally, for each
control v € U, we define the function p(v) € V as the solution of

A*p(v) = C*A(Cy(v) — Z,).

Using this notation, we are now ready to proceed with the development of
the approximation result.

3. AN APPROXIMATION TECHNIQUE, AN APPROXIMATION THEOREM,
AND A Priort ESTIMATES

The method we will employ to approximate the solution to this problem
proceeds as follows. Let U, be a finite-dimensional subspace of U. Write an
arbitrary element v, € U, as Y7_; ow; , where {w;}%; , are a basis for U, .
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Construct a closed convex subset K, of U,, such that the following conditions
are satisfied:

(1) K should reduce to a finite number of constraints on the «; .

(2) K, should be a ““good” approximation to K in a sense to be made
clearer in Section 6.

Now pick V;, , a finite-dimensional subspace of a Hilbert space containing
the solution of the control equation y(). Using some method for the numerical
solution of elliptic partial differential equations, which we denote method M,
obtain approximate solutions y*(z; — f) € V, to the problems

Ay(w; — f) = Buw; i=1,..,q

Also using method M, obtain an approximate solution y*0)e V* to the
problem

Ay(0) = f.
For an arbitrary element

q
Uy = Z oWy € Uk
i=1

define y¥v;) € V), by
q
P (ve) = yM0) + 3, o y™(w; — f).
is1

Now solve the minimization problem:

Problem (P,*)
Find u;* € K, such that

Juu*) = vig,gk Ju(wx),
where
@) =1l Cyh(vk) — 24 ”3? + (Nog, ve)p -

Note that if assumption (1) is satisfied, this problem simply becomes one
of finding the minimum of a quadratic form in «; , subject to a finite number
of constraints on the a,, a nonlinear programming problem. In the event
the constraints are linear, we have a quadratic programming problem.

We would now like to have some estimate for the error that we make in
obtaining an approximate solution instead of the true solution. To obtain such
an estimate we first observe that Problem (P.*) can also be equivalently
written as a variational inequality, i.e., Find #,* € K such that

(CyMu?) — Zy , CLyMwe) — YD) ow + (Nugh, v — %)y = 0
Vﬂk € Kk .
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Since the two formulations are equivalent we also denote this variational

inequality as Problem (P.*). Then we have the following approximation
result.

TuroREM 1. Let u and w,* be the respective solutions of Problems (P)
and (P.*). Then

vilu— b + 1| Clyw) — y" (w3
< (Nu, v — w My + (Nu, v, — w)y + (N(* — u), v, — u)y
+ (Cy(u) — Zg, CLy(v) — y(w)] + Cly(ve) — ()] )
+ (Cy(u) — Zg, Cly(w®) — y™w)] + C(y™(e) — ¥(@n)]))
+ (CIyMuet) — y()], CLyMwe) — y(ve)] + Cly(oe) — (W)
Voe K, Vo, € Ky .

Proof. Adding the two variational inequalities, we obtain

(Cy(w) — Zy, Cly(v) — y(w))wr
+ (CyMuh) — Zy, ClyMwr) — YD or
+ (Nu,v — )y + (Nut, v, — 1)y =0 VoekK, v,ekK;.

Now
(Nu, v — u)y + (Ngh, v, — w)y
= (Nu, v — )y + (Nu, u;,» — u)y
4+ (Nuzt, v, — w)y + (Nuh, u — )y
= (N — "), w* — u)y + (Nu, v — ")y
+ (Nu, v, — w)y + (N — u), v — W)y .
Also

(Cy(w) — Zy, C[y(®) — y@)Dw + (CYYw") — Za, ClyMor) — ¥ @)D

= (Cy(w) — Z4, Cly() — y(w")] + Cly(w") — ¥
+ ClyMw") — y(@))ar
+ (Cy(w?) — Zy, CLyMi) — (@] + Cly() — y(w)]
+ Cly(w) — y"(u"))e

= (Cy(w) — Za, Cly(v) — y(M)] + Cly(wt) — y"(w)))or
+ (CyMw?) — Za, ClyM(ve) — H(@u)] + Cly(or) — y(@))or
+ (Cly(w) — y™wM)], CIyM") — y()])

= (Cy(w) — Za, Cl¥(v) — y(wM)] + Cly(we) — y(@)])
+ (Oy(w) — Zg, Cly(w") — yM(ue)] + CLyMwe) — y(vlor
+ (CIY™Mue") — y(wW)], Cly™(ox) — ¥(2e)] + Cly(we) — y(@))or
+ (Cly(w) — Y], CLy™ue®) — y(@)])oe -

409/44/1-3
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Using the fact that

(Nv, o)y =vivl}, Vvel,

we obtain

vl —wlf + Il Clyw) — ¥ @)l3
< (NVu, v — My + (Nu, v, — )y + (N(," — ), v — w)yp
+ (Cy(w) — Zs, Cly(v) — y(u)] + Cly(vx) — y(u)or
+ (Cy(w) — Zy, Cly(w") — y*()] + ClyMor) — Y(@i))) s
+ (CIyMw) — y(w)], CIyM (o) — ¥(v3)] + CL(wr) — y(@)])
VoeK and Vo, ek,.

In applying Theorem 1, we will need a priori estimates for the optimal
control z and the solution of the control equation y(x). These follow imme-
diately from the definition of #, i.e., J(¥) < J(v), Vo € K. Then

I Cy(u) — Zal3e + vl ullf <1 Cy(v) — Zslls + (Nv,v)p, VeeK. (4)

Before we can demonstrate the application of Theorem 1, we will first
define some function spaces and then reformulate the problem in these
spaces.

4. SomeE FuncTioN SPACES

Let 2 be a bounded domain in RY with boundary 022. We shall assume
(for convenience) that 812 is of class C*. Let m be a nonnegative integer, and
let C=(2) denote the set of infinitely differentiable functions on £2. Then
H™(Q) will denote the completion of C=({2) in the norm

I8l =( X 1D%0)
lalgm

where

1= ([ 1) "

Let Cy2(£2) be the set of infinitely differentiable functions with compact
support in 2, and denote the completion of Cy*(£2) in the above norm by
Hy™().
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For m a negative integer we define H™(Q2) as the completion of C=({2)
with respect to the norm

(¢, )

geco( | 1l

il =
where

()0 = [ $dx.

For m a negative integer, we also define the space H,™(£2) as the completion
of C=(£2) with respect to the norm

”¢i[m‘— sup M

vece2@) | ¥ llom

We note that H,™({2) = (Hy™(£2)), the dual space of Hg™(£2). Clearly,
Hm™(Q) C H,™(£2) for m a negative integer.

With this notation, we will now consider a system governed by the Dirichlet
problem with distributed control. Set 1" = H (), H =L*(2), and
V' = H;Y(R). Let y(u) be the solution of the Dirichlet problem

Ayu) =f+u in £, )
y(u) =0 on 842,

where

i,5=1
We will assume the following two conditions are satisfied.

(6) A is uniformly elliptic with coefficients in C*({).

(7) The only solution of problem (5) in C=(£2) with zero data (i.e.,
f -+ u=0) is the zero solution.

We now take both U, the Hilbert space of controls and 5, the Hilbert
space of observations to be L3(£2). Then in terms of our original notation, we
have B is the injection of U into V", i.e., L¥R) — H (L), C is the injection
of V into H, i.e., H}2) — L¥2), and A is the identity mapping. Finally,
for simplicity, let the mapping N = vI, where I is the identity mapping.

In this setting, our control problem becomes: Find u € K such that

Jw) = inf @),
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where

J©) = | [(3(e) ~ Zo + ) ds,

and X is a closed convex subset of L3(£2).

Notational Remark. In the sections which follow, we will now use the
letter C to denote a generic constant, not necessarily the same in any two
places.

5. CHOICE OF A SpeciFic CONVEX SET AND THE REGULARITY OF THE
SoLutioON oF THE CORRESPONDING OpPTIMAL CONTROL PROBLEM

We now consider the control problem just defined for a specific choice
of the convex set K, namely

K ={vel¥(): {(x) < v(x) < &4(x) a.e. in 2, where &, and §; are given
functions in L=(Q)}.

For fe H{2) and Z;eL¥), we have for each v €L¥Q), the functions
¥(v) and p(v) € Hy(£2) defined as the respective solutions of

Ay(v) =f+vo in £, ®)
¥() =0 on 982,

A*p(w) :y(v) - Zd in Q’ (9)
@) =0 on 852

We also wish to define what is meant by a weak solution of (8) or (9) under
various other assumptions on the regularity of f, v and Z; . To do so, we apply
the following result, which we state only for the special cases in which it will
be used. (For the general result, see e.g. Schechter [7].)

Let w be the solution of the problem

Aw =F in 2,

10
w=70 on 282, (10)

where 4 is uniformly elliptic with coefficients in C=({2). Then if zero is
the only solution of (10) in C=(2) when F = 0, we have fors = 1, 2, and 3 that
lwl, <ClIFlle VYweC=), (11)

where C is a constant independent of @ and F.
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Now for any F e H*2(Q), let {F,} e C=(2) converge to F in H*%Q) as
n— . Also, let w, € C=(Q2) be the corresponding solution of (10) with
data F,, (it is well known that such a solution exists and is unique). Then,
using (11), we define the weak solution of (10) to be the unique limit in
H3($2) of the sequence {w,,}.

We are now ready to proceed with the discussion of the regularity of the
solution of the optimal control problem. J. L. Lions has shown in [5] that
the optimal control « for this problem is given by

—(Up)plx) if £olx) < — (1v) plx) < &i(#),
Do, &1, v) p = (&%) it — (1) p(x) < &),
&%) if = (1) p(x) > &i(#),
where p(x) = p(x; u) is the solution of the adjoint equation, and that if
£, e L°(Q2) N HY(Q), then ue HY(Q).

Since we know the form of the optimal control #, we are able to prove the
following simple resuit.

Lemma 2. Suppose that £, and & € L*(£2) N HY(). Then

el <{QAPANPIE + 11 & 17 41 & 15
Proof. Define sets 2, , £2,, and £, contained in Q as follows:
Q) ={xeQ: £(x) < — (1) p(x) < &)},

2y = {xeQ: — (1v) p(x) < &olx)},
2y = {xeQ: — (1p) px) > &(x)}-

Then
1l =llulio, +llie, +ulie,
= U1, + 11 & e, + 11 & 1Ee,
UMD IE+ ol + &1
Hence

ol <{APDIPIE 1 &I+ & IR

If £, Z;, and u € HY(2), we have by (11) and the definition following it,
the estimates

Nyl < Cllf + il < CULAl-y A+ T#]l-]
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and
()l < Clixy(e) — Zgli4
< Clly@)llq + 11 Zg 1141
SOl flly + 1 Zglloy + T fly]

Applying Lemma 2 gives the estimate

luly SUCP) Nl + 1 Zallg 1 l]® + 1 &1 16 IRV (12)

Since || u]|_; < || #]ly , we need only apply (4) to obtain on a priori estimate
for || u |, in terms of the data v, f, Z;, &, , ¢, and K.

Note. We shall assume for the remainder of the paper that f is given in
L2(£) and ¢, and ¢, are given in L=(2) N HY(£2).

6. CONSTRUCTION OF THE APPROXIMATING CONVEX SETS AND
APPLICATION OF THE ERROR ESTIMATE

We begin by defining some finite-dimensional subspaces of L¥(£2). Let
k, 0 << k < 1, be a parameter. For a given value of % suppose that 2,7,7¢€ [,
are domains satisfying the following:

1) 2N Ry =¢,Vije ],
@ 2=\
jely
(i) Given a function ¢ € H(£2,/), 3 a constant C independent of %, j,
and ¢ 3

< Ckli¢ll

HY (%) *
L2(3,,1) “

! |

,' ¢ m(82) fgk!¢ dx,

We remark that sufficient conditions for (iii) to hold are that the domains
£2,7 be convex and satisfy the conditions that diam™(£2,7)/u(£2,7) < C where C
is a constant independent of % and j, and diam(2,7) < C'k where C’ is a
constant independent of % and j. For a proof, see Stampacchia [8]. (Note that
this last inequality gives a geometric significance to the parameter %, by

relating % to the diameters of the elements into which @ is divided.)
Now define functions @;’: RY — R by

D i(x) =1 if xef,
Oi(x) =0 if x¢Q,



OPTIMAL CONTROL PROBLEMS 37

i.e., @, is the characteristic function of the domain £2,/. We now define a
space of piecewise constant functions Sy(£2) as

%sk: se(x) = Y s /P(x), where 57 € R{ .

Jety

Clearly, since 2 is a bounded domain in R¥, S)(£) is a finite dimensional
subspace of L¥(£2).
Finally, we define convex sets K, , approximations to the convex set K by:

_ - )
Ky = |ore SQ): o fw £, dx <y
g——l—. fldxon.Qk",Vje]k).
W L, |
To simplify notation in what follows, define constants

i 1
My(p) = E) J.ij @ dx

for any ¢ € H(2,7). Then K, may be written as
{vr e SiQ): Mj(€) < vp < M(§) on 27,V € Ji).

We observe that with this definition of K, condition (1) of Section 3 is
satisfied. Furthermore, since the constraints comprising K, are linear, the
approximate solution #,* can be found by solving a quadratic programming
problem (see Section 3).

We now recall that the approximation procedure described in Section 3
also involves obtaining approximate solutions by some method M to the
control equation with various right sides. Suppose that we choose for M a
“Rayleigh-Ritz—-Galerkin” method.

A method of this type for approximating the solution of (8), for example,
may be described generally as follows. Let S be a Sobolev space containing
the solution y(v) of (8). If V,, is a finite dimensional subspace of S, we define
the approximate solution y*(v) as a projection of y(v) onto V', , where the
projection is taken in such a way that the approximate solution y*() is
computable from the data of the original problem (8).

Part of the Rayleigh-Ritz—Galerkin method consists of the construction
of finite dimensional subspaces of S having certain ‘“‘good” approximation
properties. Typically, we have the following situation. Let #, 0 <</ << 1 be a
parameter, and H any fixed hypercube containing our domain 0. Formandr
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any non-negative integers satisfying m < r, let {Sr. (H)} be any one param-
eter family of finite dimensional subspaces of H™(H) (with norm || - ||)
which satisfies the following condition:

(13) Foranyy e H¥(H), 3 a constant C independent of 4 and y such that

inf ||y —xIFf <CH |y
eSh

m,r

0<Im and I<j<gr.

With a condition such as (13), or other similar approximability conditions,
a typical error estimate for a Rayleigh-Ritz—Galerkin method for the
approximation of (8) will have the form

19®) — Y@y < CF1f + 0 200 (14)

where y is a constant satisfying 0 <y <C 2 depending on the choice of method,
and C is a constant independent of £ and (f + ).

For a further discussion of some of these methods, see for example, the
papers of Babuska [1], Bramble and Schatz [3], and Strang [9]. Additional
references can be found in the bibliographies of these papers.

We remark for readers generally unfamiliar with these methods that an
example of subspaces satisfying condition (13) is given by spline functions
defined on uniform meshes of width 4.

Applying the approximation procedure described in Section 3 with the
convex set K, we have constructed and a Rayleigh~Ritz-Galerkin method
satisfying estimate (14), we are able to state the following approximation
result.

THEOREM 2. There exists a constant C depending only on the data f, &, and
&, , such that

/Dl u — w® P + 31l y(w) — Y@M < C[F* + 2.

The proof of Theorem 2 depends on the following approximation results
which we now prove.

LemMa 3. Let u be the solution of Problem (P) and v, be given by
ses, My (u) D (x). Then vy € Ky and 3 a constant C independent of u and k
such that

” u— 'llk ”L’({)) < Ck ” u ”HI(Q) H (15)

l# — v llg-10 < CR? [ %]l - (16)
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Proof. Clearly v, € Si(). Since ue K, £(x) <u(x) < §(x) ae in 2.
Hence,

Mi(&y) < M) < MJ(&y) Vie Ji-

Since vy (%) = M )(u) on £/, v, e Ky .
Since the 2,7 satisfy the condition (iii), we have

1 — vl g < CRIL# g, vie -

Squaring and summing over Vj € [, we obtain

” u— Q)k H[}(n) < Ck “ u Hﬂl(g) .

To obtain an estimate for || # — vy ||_, , we use the fact that the element v,
we have constructed is actually the best approximation to % in L¥£) by all
elements in Sy(£2). To see this, just observe that on each £2,7, v, is the solution
of the problem: minimize || # — ¢ || s(g,) over all constants c. It is easy to see
that ¢ = M,(u) solves this problem. Hence by the characterization of best
approximations,

(—vp,8) =0 Vs, €5(2).

Then
(u — U, X)
u— o)y = X
Ju =l = Sop Tl
~ sup $TUox—s) Vs, € Sy(@)
x€C®(R) f X ”1
g sup H U — U ” “ X — S “ VSk e Sk(g).
xeC®($) Il x 1l
Choosing

se =3, Mp(x) D(x),

jelty
and again applying condition (iii), we have

H X — Sklle(g) < Ck “ X ”Hl(g) .

Hence

T —oefly < su Chijuly CRl xlh

< CR? .
ey Ik el
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LemMma 4. Let s, be the function 3 e, 57®y'(x). Suppose s, € Ky . Then
31}* € K N n Hl(QkJ) El Mﬁ(‘v*) == sk
jely

and
” ‘Z)* ”Hl(ﬂkj) < (” fo ”i[‘(ﬁkil + “ f]_ ”?Il(ﬁki))llz forje ]k *
Proof. Given any set of constants ¢ = {¢;};.,, define a function v;(c, x)
on 2 by

£ol) ¢; < £o(*)
o(c, x) = {¢; Eo(x) < 65 < &4(x) forx e 2,7
§(%) ¢ > &(x)

Clearly vi(c, ) € K for all values of ¢. Furthermore, since £, and ¢, € H{((),
(¢, x) € HY$2,9), Vje [, . Since

| wi(e, %)) < max(] &y(x)! , | &(x)))

and

0&(x)
ox;

b

Ov(e, x) I '
T ox;

),

ox;
it follows easily that

1 oles s,y < U & gy + | £ B )%

For any ¢; , define a function

Gley) = | wale ) dx — p(@y) .

2
Since

| ele, ®) — €, x)| < | ¢; — & | Vx € 2,7, G(c;)
is a continuous function of ¢; . Define constants
mo = - ” fo ”L‘”(Q) - 1 and m;[ = ” 61 ”Lw(g) —'_ 1-

(Recall that &, and & € L*(£2)). Then

Glmo) = [ &) dx — (@) 57 <O
2%
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since s, € K, i.e., 57 = M, (&). Similarly,

G(my) = L ) E(x)ydx — w57 =0

(since s,/ << M,(,)). Since G(c;) is a continuous function,
Ac;* € [my , my] 2 G(¢;) =0,

ie, Myi(vc*, x)) = ;. If ¢* = {¢;*}sey, » then v* = v(c*, ) satisfies the
conclusion of the lemma.

LemMAa 5. Let u be the solution of Problem (P*) and v the v* given by
Lemma 4 when s, — w,t. Then 3 a constant C independent of &, &, and k
such that

g — vy < CRYY &1 -+ 1 & P12 (17
Proof. From the definition of || - {|_; , we have
; (us* — v, x)o (4" — v, X)o
h =3 —_—
vl = R T Xk el Txh

(ukh — 9, X)LZ(QkJ')
= sup
xeH'(®) ,-ez,k hx th

Now define functions ¢,7, j € J, to be the solutions in H*(,7) of the varia-
tional problems

@ Doy = @ — o Vg WE HY($2).

Then
G X)Hlm,ﬁ)
|z —vfly = sup
XeHU®R) s ll x I
|6, g, I X ”Hl(n,,")
< sup
XeHUQ) jc5, W x lh
) 1/2 ) 1/2
(X 162 Bna) (T 1 xlBaa)
i€y ieJy
< sup
xeH1(2) Il x

( l . l 2 1/2
l¢ ;] I Y, i ) .
i, k NHY D
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Now from the definition of ¢,7, we have that

I,/ “Zlm,,f) = (%" — v,9)) pay

and )
(8 Darayn = () — v, D, -

The latter inequality may be rewritten as
f b, dr = f (4 — v) dx.
gki nki

Hence we have

194 Bnayy = || 4" — o) ds
i 1 i
= J.nb’ (ukh — 1}) [¢k — m J.nk, ¢k dx| dx

1 » 2
+ ) Uﬂ,‘f(uk — ) dx] .
By the definition of ¥ we have
19 Briagn = | IM(0) — o] ! — My(o,)] d.
&
Applying the Schwartz inequality, we obtain
2 ; 1/2 , 1/
“ ‘ij "Hl(ﬁ.’) < %J‘ l Mk’(v) —v '2 dxz zj | (Pk, - Mkj("’kj)lz dx
0,7 2,4
Applying condition (iii) we have that

” ‘ij Hzl(nkﬁ) < Ck ” v “Hl(ﬂk’) Ck ” ¢kj ”HI(;;.J)

or that
12 oy < CR® lhgsiay < ORI & IBragayy + 11 & a2
by Lemma 4. Hence
N — ol < (T CHIIE o, + 116 Bsl)

jey

or finally,
lu — vy < CRY| & IB + Il & 15T
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With the aid of these three lemmas, we are now ready to prove Theorem 2.

Proof (Theorem 2). In the setting in which we are considering the general
problem, Theorem 1 gives the estimate

vie —~u’ “iz(g) + it y(w) — yh(“kh)“iﬂ(m

<, v — w) + v, v — u) + V(" — u, v — u)
+ () — Zs, [¥(0) — y(wM)] + [(2e) — y(@)]) (18)
+ (y(w) — Zg, [y(u?) — Y] + [Moe) — y(ve)))
+ (M) — y(u), [¥M(vs) — y(@)] + [3(v) — y(W)])
Yve K and Vv, e K,

where (-, -) denotes the usual L%(£) inner product.
Since u € HY(£2), we have the estimates
(v —u) <llulhllo —w*l,

(w0, —uw) <|lully | v — 2]l .

Applying the Schwartz inequality to each of the remaining terms on the
right side, we obtain
viiue —w?|? + || y(u) — Y (M)
Svllulhllo —wtlly + o —ull]
+yllu? —ullllop —ull +113() — Zgll [| ¥(v) — (M)l
+ ly(oe) — y(@)l + | y(e®) — YNl + 1| Y (w) — y(wll]
+ M) — y()i [l y™M(2r) — ¥l + 1| ¥(v) — y(@)1]
where now || - || denotes || - |i12¢q) -

Applying the arithmetic-geometric mean inequality to the terms

flu® — wllilop —ull, | (™) — y(ll 1| yM(or) — (vl
and
| y*w) — ()l 11 (o) — ¥,
and regrouping terms, we have the estimate:
@2l u — w4+ 3 y(w) — )
Svliulhllo— g+ o —2lla] + @2) v — = |?
+ 1l y(w) — Za || [l y(2) — y(@M)ll + | y(0r) — y(u)l
+ 1l () — Y + 1 y™(or) — y(@ell]
+ | 9Mwe) — y@IP + | ¥(ve) — y(@)I?
VoeK and Vo, e K, .
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Using (11), we have the a priori inequalities

| 7(@) — Muplllo <N ¥(®) — Y < Cllv — w4,
Il ¥(we) — Y@l <l ¥(vr) — ¥, < Cllop — ull, -

Inserting these inequalities, our error estimate becomes

VI2) e — w2 + || y(w) — yMu)P
< E2)lve —ul?
+lluly + Clly@) — Zall v — wlly + o —=lly)  (19)
+ C¥llop — uly + | (o) — ¥
+ 11 3@) — Za || [ll () — 3 ) + | Y4(2) — y(@pl]
Yve K, v, e K, .

Using inequalities (4) and (12), we are able to obtain a priori estimates for
the quantities |[«|; and (|¥(x) — Z;||. Hence the errors ||u — u;*|| and
Il 3(2) — y*(, ")) will depend only on how well we can approximate the
unknown solutions # and #,* by elements of K, and K respectively, and on
how *‘good” an approximation the method M that we choose gives to the
solutions y(u#;*) and y(v,) of the control equations

Ay(u) =f +wt  in L,

y(ug*) =0 on 8%2; (20)
Ay(v) =f + v, in £, (1)
W) =0 on 0Q.

From (15)-(17) of Lemmas 3 and S5, we have estimates for || u — v, ||,
lu — o[y, and || #,* — v||_, . Estimates for the quantities || ¥(1,*) — y*(u;*)||
and || ¥(vr) — y*(v,)| follow immediately from (14), i.e.,

| ¥y — Y@ < Ch || f + w ], (22)
| ¥(wr) — ¥*(wlll < CH || f + el - (23)
Using estimates (22) and (23) along with estimates (15)—(17) for the quantities
lu—ollg, |l # — v]l1, and || w* — v |_; , inequality (19) becomes
/2) lu — w [P + 31 y(u) — y* (")
< (v/2) [CR |l u],]?
+ Wlluly + Clly@) — Za ] [CR | ully + CE(| & I} 411 & 1)

+ CHCR | u |l ]* + [CRY || f + v I
+ 1 y(w) — Z [CH (| f + w || + CR || f + o l]- (24)
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We have already observed that we have a priori estimates for || #|; and
| ¥(u) — Z;|| . Since f, &, , and £, are data, to complete the estimate, we need
only to obtain a priori bounds on the quantities {| #,* || and || v; || which are
independent of & and h.

Since both #* and o,€ K, they must both satisfy M,(£,) <
7, < M (&) on 2,7 Yje J,. . Hence

h
u.”,

I uk"ilﬁ = ‘- }ukh |2dx = z J 'lukh |2dx = 2 #(ij) | “kh |2
0

Y 3,
< X w04) max( MR, | MAE))
< T MO T MY + | MAEY.
Now
| MAE) =[] | s <o J, 1
Hence

< L[] 1&rde+ [ 16 1mde] <U&IE+I&IE,
ot

jety Ut

or finally,
el < T & 2 + 1 €, 2TV

Obviously, the same estimate holds for v, . Finally then, we have shown
that there exists a constant C depending only on the data f, &, and ¢, such
that

G2 e — wl P + Fivw) — MM < C* + ). (25)

In the next section we make some observations about this order of con-
vergence estimate and discuss some conditions under which it can be
improved.

7. DiscussioN OF THE ORDER OF CONVERGENCE ESTIMATE

Before we discuss the improvement of estimate (25), we first observe that
the errors we are making in solving the approximate problem instead of the
original one arise from two sources. One of these is that we are using an
approximate solution to the control equation instead of the true solution.
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We observe from the derivation of (19) that if y(u) — Z; € L*(§2), but does
not € H(£2), then the last term in (19) cannot be improved. However, if we
assume additional regularity for fand Z,; , then y(u) — Z; can be shown to be
an element of H(R2) for some 0 <7 < 3 (ie, if fe HYQ) and Z, € H3(Q),
then y(u) — Zz; € H¥)). From the definition of || - ||_; , we have the estimate

(3(w) — Za, [y(?) — YMw")] + [(9"(ve) — H(@6)])
<N yw) — Zally [ y(u®) — yHl-s + 1 9M20) — Y]

In addition to inequality (14) we might expect the error in the Raleigh—Ritz—
Galerkin method that we select to also satisfy an estimate of the form

ly(@) — y"@I_; < CHIIf + vl »

where now 0 << 8 <{ 2 + j. If so, then instead of (25), our final error will be
K C(h* + h® + k2). For B > v, this will be an improvement. When 8 > 2y,
we may say that we have achieved optimality, with respect to a given Raleigh—
Ritz—-Galerkin method, in the part of the error caused by use of this method.

For example, if f € L% ) and Z; € H¥{2), and we use the “least-squares
method” of Bramble and Schatz [3] with a subspace Sj (e.g., quintic
splines), then we have the estimates

| 3(@) — 3@l < CHE|If + 2l
I ¥(@®) —y"(@)le < CRAIf+2llo-

Hence the parts of our error estimate reflecting the use of this method are
optimal, i.e., they duplicate up to a multiplicative constant, the error in the
method.

‘We now turn to the error caused by looking for the optimal control not in
L?(£2), but rather in some finite dimensional subspace S(£2) of L%(£2). From
inequality (19) we recall that the terms in the error estimate reflecting this
part of the error are

ED) o —ult,  [Pllulh+ Cliyw) — Zall v — ullg + |7 — ]

and
C?llo, —ulfy.

From estimates (15)«(17), we have that all these terms are at least O(k%).
Hence the error in the terms || # — ;|| and || ¥(z) — y"(u;*)| caused by
using the approximate convex set K, instead of the original convex set K
is O(k).

Since it is known that the best approximation in L%f2) to an arbitrary
element u € HY(£2) by elements of S,(£2) is O(k), our estimate is optimal in the
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sense that it duplicates up to a multiplicative constant, the best approximation
properties of the subspace S,(£2).

A practical result of the preceding discussion is that it tells us how to
choose the relationship between k and 4 for computation, i.e., set k% = Ch?
where C is a constant and § = min(2y, B).
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