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with Order of Convergence Estimates* 

RICHARD S. FALK 

Department of Mathematics, Brown University, Providence, Rhode Island 02912f 

Submitted by J. L. Lions 

An approximation scheme for a class of optimal control problems is presented. 
An order of convergence estimate is then developed for the error in the approxi- 
mation of both the optimal control and the solution of the control equation. 

1. INTRODUCTION 

In this work, we consider the approximation of a class of optimal control 
problems. More specifically, the control problems considered will be those 
of systems governed by partial differential equations of elliptic type. The 
general approach taken will be to approximate the optimal control and the 
solution of the control equation in such a way that the approximating control 
problem can be solved by mathematical programming. An error estimate for 
the approximation of the optimal control and the solution of the control 
equation is then given in an appropriate norm. 

A general outline of the paper is as follows. In Section 2 we give a general 
formulation of the problem and define the notation to be used. In Section 3 
we present an approximation technique and prove a general approximation 
theorem. The remainder of the paper contains the application of this 
estimate to a specific problem. In Section 4 we define some function spaces, 
and in Section 5 prove an a priori estimate for an optimal control problem 
set in these spaces. Section 6 contains the description of the construction of 
an approximate problem and the application of the general error estimate 
developed in Section 3. Finally, in Section 7, we make some comments about 
the order of convergence estimate obtained in Section 6, and discuss some 
conditions under which it can be improved. 
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2. GENERAL FORMULATION OF THE PROBLEM 

The general problem will be formulated in notation similar to that used by 
J. L. Lions [5]. Let k’C H be two Hilbert spaces, I/ dense in H and the 
injection of I/ into H continuous. Identify H with its dual space. If V’ denotes 
the dual space of V, then El may be identified with a subspace of V’ and we 
may write V C H C V’, where H is dense in V’ and the injection of H into r’ 
continuous. Let U be a Hilbert space of controls, and let B E 9(U, IT’), the 
set of linear operators mapping Cr into V. For each u E L”, let y E F’ be 
the solution of 

Ay =f + Bu 

where A E 2’( V, V’) and f~ p-‘. Since y depends on u, write y as y(u). Let 
Z(u) = Cy(u) be an observation of y(u), where C E 2’( V, X), X a Hilbert 
space of observations. Let N E 9( U, U), N self-adjoint, positive definite, and 
satisfying (Nu, u)u > Y 11 24 11; f or all u E U and some constant Y > 0. 

For each u E U, we associate the functional 

where 2, is given in 2. The control problem is then: Find II E K such that 
J(u) = inf,,, J(w), where K is a closed convex subset of U. Lions has shown 
in [5] that this problem is equivalent to the variational inequality: Find u E K 
such that 

(CYW - Zd 3 C[YW - Yw1bf? + oh u - 4rI 2 0 vv E K. 

We denote these equivalent formulations of the control problem as 
Problem (P). 

Once again following Lions, we let %’ be the dual of Z and set II = (1, , 
the canonical isomorphism of &‘-+X’. Let C* E 9(X’, V’) denote the 
adjoint of C, and A* E 2’( V, V’) denote the adjoint of A. Finally, for each 
control v E CT, we define the function p(v) E V as the solution of 

A*p(w) = c*A(cy(v) - Z,). 

Using this notation, we are now ready to proceed with the development of 
the approximation result. 

3. AN APPROXIMATION TECHNIQUE, AN APPROXIMATION THEOREM, 
AND A PRIORI ESTIMATES 

The method we will employ to approximate the solution to this problem 
proceeds as follows. Let U, be a finite-dimensional subspace of U. Write an 
arbitrary element vk E Uk as xf=, aiwi , where {w~}~,~ , are a basis for U, . 
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Construct a closed convex subset Kk of lJ, such that the following conditions 
are satisfied: 

(1) Kk should reduce to a finite number of constraints on the oi . 
(2) Kk should be a “good” approximation to K in a sense to be made 

clearer in Section 6. 

Now pick V, , a finite-dimensional subspace of a Hilbert space containing 
the solution of the control equation y(u). Using some method for the numerical 
solution of elliptic partial differential equations, which we denote method M, 
obtain approximate solutions yh(rui - f) E I’, to the problems 

Ay(w, -f) = Bwi i = I,..., q. 

Also using method M, obtain an approximate solution y*(O) E Vh to the 
problem 

For an arbitrary element 

define yh(wk) E vh by 

Vk = C O+Wi E Uk 
i=l 

Q 

Yh(%) = Y’“(O) + C %YhCwS - f >* 
i=l 

Now solve the minimization problem: 

Problem (PIch) 

Find ukh E K, such that 

wfh@kh) = $& ./h(%), 

where 

Note that if assumption (1) is satisfied, this problem simply becomes one 
of finding the minimum of a quadratic form in ai , subject to a finite number 
of constraints on the CQ , a nonlinear programming problem. In the event 
the constraints are linear, we have a quadratic programming problem. 

We would now like to have some estimate for the error that we make in 
obtaining an approximate solution instead of the true solution. To obtain such 
an estimate we first observe that Problem (Pkh) can also be equivalently 
written as a variational inequality, i.e., Find ukh E Kk such that 

(CYh(%ch) - 42 , CrYh@k) - Yh(~khll)Jr + Wkh, fJk - %ch)u 2 0 
Vvk~Kk. 
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Since the two formulations are equivalent we also denote this variational 
inequality as Problem (Pk”). Then we have the following approximation 
result. 

THEOREM 1. Let u and ukh be the respective solutions of Problems (3’) 
and (Pkh). Then 

y II 21 - Ukh ll”u + II CM4 - rhb3111~ 
d (Nu, v - Ukh)” + (k vk - u)” + (N(Ukh - u), vk - & 

+ tcY@) - zd Y cb(v) - +kh)l + cb(vk) - Y@)l)* 

+ (cy(u> - zd I C[y(ukh) - yh(ukh)l + C(Yh(vk) - Y(vk)l)m 
(3) 

+ (C[yh(ukh) - Y(u)l, C[Yh(vk) - Y(vk)l + @(‘k) - Y(u)l).@ 

VVEK, Qv,EK~. 

Proof. Adding the two variational inequalities, we obtain 

(CYW - Zd 9 C[Y(V) - YWSP 
+ (Cyh(ukh> - zd , C[yh(vk) - yh(ukh)l).W 

+ (Nu, v - u)o + (NU,h, Vk - ukyL’ 3 0 QvEK, vUk~Kk. 

Now 

Also 

(h, e, - u)(, + (hkh, vk - fdkh)U 

= (Nu, v - fQ*)u + (Nu, Ukh - U)L, 

+ (NUkh, v, - u)u + (NUk’, u - Ukh)U 

= (N(u - ukh), ukh - t+, + (h, v - Ukh)u 

+ (h vk - u)V + (N(Ukh - II), vk - u)U * 

(cY(u) - zd 9 Cb(v) - Y(u)l)&’ + (Cyn(uk”) - zd 9 Cba(vk) - Yh(ukh)l).@ 

= (@+) - zcZ 2 C[Y(v) - Y(Ukh)l + cb(uk”) - Yh(Ukh)l 

+ C[Yh(Ukh) - YWILP 
+ (Cy(ukh) - zd 9 Cbh(vk) - Y(vk)l + cb(vk) - Y(u)l 

+ cb(u> - Y”(“k”)l).W 

= (@@) - zd , cb(v) - y(“kh)l + Cb(Ukh) - yh(Ukh)h’ 

+ (Cyh(Ukh) - &i 9 Cbh(vk) - Y(vk)l + cb(vk) - Y(u)l).@ 

+ (cb@) - Yh(Ukh)l, Cbh(UkA) - d”)h 

= ((?d”) - zd 3 Cb(v) - Y(“kh)l + C[y(vk) - &)I).@ 

+ tCY@) - zd 3 Cb(Ukh) - yk(“kk)l + Cbh(vk) - Y(vk)l)Jf’ 

+ (cb”(ukh) - Y@)l, Cbh(vk) - Y(vk)l + Cb(vk) - Y@)l)Sf 

+ (cb(u) - yA(Ukh)l~ Cbh(Ukh) - Y(“)l).%@ . 

409/44/I-3 
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Using the fact that 

W-J, +I 3 v II 53 II”, VVE U, 

we obtain 

v II u - Ukh ll”u + II CM4 - r”~dllllL 
< (& v - %ch)U + (Nu, vk - &I + (N(ukh - u>, ok - +, 

+ (CYW - -G 9 C[YbJ> -Y(Q)1 + CCY(%) -Y(U)l).@ 

+ (@@) - ‘& 3 Cb(ukh) - yh@kh)l + Cbh(vb) - Y@k)h 

+ (Cbh(Ukh) - Yb)l, cbh(Ok) - y@k)l + %@k) -Y(d)* 

VW E K and b&E&. 

In applying Theorem 1, we will need a priori estimates for the optimal 
control u and the solution of the control equation y(u). These follow imme- 
diately from the definition of IL, i.e., J(u) < J(w), VW E K. Then 

II Cy@) - 2, IL? + v II u 11; d II CM4 - 2, I&? + (NV, +I, VW E K. (4) 

Before we can demonstrate the application of Theorem 1, we will first 
define some function spaces and then reformulate the problem in these 
spaces. 

4. SOME FUNCTION SPACES 

Let 9 be a bounded domain in RN with boundary &? We shall assume 
(for convenience) that aQ is of class C”. Let m be a nonnegative integer, and 
let Cm@) denote the set of infinitely differentiable functions on 0. Then 
P(Q) will denote the completion of Cm@) in the norm 

II d Ilm = (, ; 
oi m 

II Da+ lli)l’z, 

where 

II d II0 = (s, I d I2 q4. 

Let Csm(.Q) be the set of infinitely differentiable functions with compact 
support in Q, and denote the completion of COm(sZ) in the above norm by 
%‘W’). 
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For m a negative integer we define H”(Q) as the completion of Cm(o) 
with respect to the norm 

where 

For m a negative integer, we also define the space H,m(Q) as the completion 
of Cm@) with respect to the norm 

We note that H,“(Q) = (H;“(Q))‘, the dual space of H;“(O). Clearly, 
P(Q) C H,“(Q) for m a negative integer. 

With this notation, we will now consider a system governed by the Dirichlet 
problem with distributed control. Set I,’ = H,l(Q), H = P(Q), and 
I” = W;l(Q). Let y(u) be the solution of the Dirichlet problem 

-dy(u) = f + 24 in 52, 

Y(4 = 0 on ir.Q, 
(5) 

where 

We will assume the following two conditions are satisfied. 

(6) A is uniformly elliptic with coefficients in Cm(a). 

(7) The only solution of problem (5) in P(a) with zero data (i.e., 
f + u = 0) is the zero solution. 

We now take both U, the Hilbert space of controls and Z’, the Hilbert 
space of observations to be L2(sZ). Then in terms of our original notation, we 
have B is the injection of U into V’, i.e., L2(Q) -+ E&i(Q), C is the injection 
of I’ into X, i.e., H,l(sZ) +L2(!2), and A is the identity mapping. Finally, 
for simplicity, let the mapping N = ~1, where 1 is the identity mapping. 

In this setting, our control problem becomes: Find u E K such that 
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where 

and K is a closed convex subset of Lz(l2). 

Notational Remark. In the sections which follow, we will now use the 
letter C to denote a generic constant, not necessarily the same in any two 
places. 

5. CHOICE OF A SPECIFIC CONVEX SET AND THE REGULARITY OF THE 
SOLUTION OF THE CORIBPONDING OPTIMAL CONTROL PROBLEM 

We now consider the control problem just defined for a specific choice 
of the convex set K, namely 

K = @ ~w4: k)(x) < 44 d 51( x a.e. in Sa, where &, and & are given ) 
functions in L”(Q)}. 

For f E H;‘(Q) and 2, eLa(&?), we have for each v ELM, the functions 
y(n) and p(w) E H,,l(&?) defined as the respective solutions of 

Ay(o) =f +v in G, 

Y(V) = 0 on asz, (8) 

A*Pm = Y(W) - & in Q, 

P(V) = 0 on aa 
(9) 

We also wish to define what is meant by a weak solution of (8) or (9) under 
various other assumptions on the regularity off, v and 2, . To do so, we apply 
the following result, which we state only for the special cases in which it will 
be used. (For the general result, see e.g. Schechter [A.) 

Let w be the solution of the problem 

Aw=F in 8, 

w=o on asa, 
(10) 

where A is uniformly elliptic with coefficients in C@). Then if zero is 
the only solution of (10) in Cm@) when F = 0, we have for s = 1,2, and 3 that 

II w II, < C[ll F IL81 VW E P(Q, (11) 

where C is a constant independent of w and F. 
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Now for any FE II?~-~(Q), let {F,) E Cm@) converge to F in Hd-2(Q) as 
12 --f co. Also, let w, E Cm(a) be the corresponding solution of (10) with 
data F, (it is well known that such a solution exists and is unique). Then, 
using (1 l), we define the weak solution of (10) to be the unique limit in 
IIs of the sequence {wn}. 

We are now ready to proceed with the discussion of the regularity of the 
solution of the optimal control problem. J. L. Lions has shown in [5] that 
the optimal control u for this problem is given by 

i 

- (lb)Pb) if 4,(4 < - (l/4 P(4 G 4&h 
@(4$ 9 t1 9 4 P = E&d if - (l/d PW < 6x4~ 

Ed4 if - (lb) PC4 > &1(4* 

where P(X) = p(x; u) is the solution of the adjoint equation, and that if 
fi ELM n H1(8), then u E H1(.Q). 

Since we know the form of the optimal control II, we are able to prove the 
following simple result. 

LEMMA 2. Suppose that &, and tl ALL n W(Q). Then 

Proof. Define sets Sz, , Sz, , and Qa contained in 9 as follows: 

Ql = @ E Q &I(~) < - (l/4 P(X) < 51(.+, 
522 = (x E Q: - (WP(x) -=z ifoo(~)), 
Q, = {Lx E Q: - (l/V) p(x) > s‘,(x)}. 

Then 

Hence 

II u 11: = II u IIL, + II u 1112.n, + II fJ IIL, 

= (l/42 II P IL7, + II 5ll II:& + II e1 II:& 

< (lb)” II P III + II 4, II,” + II 4, II,“. 

II u I11 d W2) II P IIt + II so II: + II 5; IIY’“. 

Iff, -G 9 and u E H-l(Q), we have by (11) and the definition following it, 
the estimates 

II r(u)ll1 < c Ilf + u IL-1 G cwll-I + II u II-11 
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II P(U)lll < c II Y(U) - Zd 11-l 

< C[ll Y(~)ll-1 + II Zd 11-J 
< C[llfll-1 + II Zd II-1 + II u II-11. 

Applying Lemma 2 gives the estimate 

II u 111 e {(c2/~2> Ilfll-1 + II z, II-1 + II 24 II-II” + II 50 If + II 51 ll;Y2- (12) 

Since II 24 IL 6 II 24 Ilo , we need only apply (4) to obtain on a priori estimate 
for (1 u (iI in terms of the data v, f, Z, , &, , tr , and K. 

Note. We shall assume for the remainder of the paper that f is given in 
L2(Q) and [,, and [r are given in Lm(Q) n IP(Q). 

6. CONSTRUCTION OF THE APPROXIMATING CONVEX SETS AND 
APPLICATION OF THE ERROR ESTIMATE 

We begin by defining some finite-dimensional subspaces of L2(Q). Let 
K, 0 < k < 1, be a parameter. For a given value of K suppose that Qki, j E Jk , 
are domains satisfying the following: 

(i) Qki~Q,~=~,Vi,j~Jk, 

(ii) D = II?,@, 

(iii) Given a function 4 E H1(Qkj), 3 a constant C independent of K, j, 
and 4 3 

We remark that sufficient conditions for (iii) to hold are that the domains 
Q,j be convex and satisfy the conditions that diamN(Q~j)/&2,j) < C where C 
is a constant independent of k and j, and diam(S2,i) < C’k where C’ is a 
constant independent of k and j. For a proof, see Stampacchia [8]. (Note that 
this last inequality gives a geometric significance to the parameter k, by 
relating k to the diameters of the elements into which D is divided.) 

Now define functions @,j: RN -+ R by 

CDkj(x) = 1 if x E s&i, 

Dki(x) = 0 if x $ ai, 
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i.e., Gni is the characteristic function of the domain S&j. We now define a 
space of piecewise constant functions S,(Q) as 

sk: sk(x) = C s,jQi,j(x), where skj E Iw 
kJk 

Clearly, since Q is a bounded domain in [WN, S,(Q) is a finite dimensional 
subspace of L2(0). 

Finally, we define convex sets Kk , app roximations to the convex set K by: 

To simplify notation in what follows, define constants 

for any p, E H1(Qki). Then Kk may be written as 

{Vk E s,(Q): M,$$,) < Vk < Mki([,) On Q,‘, vj E Jk}. 

We observe that with this definition of Kk , condition (1) of Section 3 is 
satisfied. Furthermore, since the constraints comprising Kk are linear, the 
approximate solution u kh can be found by solving a quadratic programming 
probIem (see Section 3). 

We now recall that the approximation procedure described in Section 3 
also involves obtaining approximate solutions by some method M to the 
control equation with various right sides. Suppose that we choose for M a 
“Rayleigh-Ritz-Galerkin” method. 

A method of this type for approximating the solution of (8) for example, 
may be described generally as follows. Let S be a Sobolev space containing 
the solution y(v) of (8). If V, is a finite dimensional subspace of S, we define 
the approximate solution J@(V) as a projection of y(v) onto Vh,, where the 
projection is taken in such a way that the approximate solution Y”(V) is 
computable from the data of the original problem (8). 

Part of the Rayleigh-Ritz-Galerkin method consists of the construction 
of finite dimensional subspaces of S having certain “good” approximation 
properties. Typically, we have the following situation. Let h, 0 < h < 1 be a 
parameter, and H any fixed hypercube containing our domain 8. For m and r 
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any non-negative integers satisfying m < r, let (S;,,(H)} be any one param- 
eter family of finite dimensional subspaces of H”(H) (with norm 11 * 11:) 
which satisfies the following condition: 

(13) For anyy E Hi(H), 3 a constant C independent of L andy such that 

With a condition such as (13), or other similar approximability conditions, 
a typical error estimate for a Rayleigh-Ritz-Galerkin method for the 
approximation of (8) will have the form 

where y is a constant satisfying 0 < y < 2 depending on the choice of method, 
and C is a constant independent of h and (f + w). 

For a further discussion of some of these methods, see for example, the 
papers of Babuika [l], Bramble and Schata [3], and Strang [9]. Additional 
references can be found in the bibliographies of these papers. 

We remark for readers generally unfamiliar with these methods that an 
example of subspaces satisfying condition (13) is given by spline functions 
defined on uniform meshes of width h. 

Applying the approximation procedure described in Section 3 with the 
convex set Kk we have constructed and a Rayleigh-Ritz-Gale&in method 
satisfying estimate (14), we are able to state the following approximation 
result. 

THEOREM 2. There exists a constant C depending only on the data f, &, and 
f 1 , such that 

W>ll u - ulch II2 + 4 IIYW -rh(+“W < Cl? + W. 

The proof of Theorem 2 depends on the following approximation results 
which we now prove. 

LEMMA 3. Let u be the solution of Problem (P) and V~ be given by 
Lk WcW @rcW. Th en vk E Kk and 3 a constant C independent of u and k 
such that 

II u - vk IILstRI < Ck II u IIHxtRj , (15) 

II u - vk &.,-I(~) < Ck2 II u I(HI(~) . (16) 
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Proof. Clearly wk E s&2). S ince u E K, &,(x) < u(x) < tl(x) a.e. in s1. 
Hence, 

Since +(x) = M,j(u) on &j, wk E Kk . 
Since the f&j satisfy the condition (iii), we have 

Squaring and summing over Qj E lk we obtain 

To obtain an estimate for 11 u - zlk llPI , we use the fact that the element ZIP 
we have constructed is actually the best approximation to u in O(8) by all 
elements in S&2). To see this, just observe that on each G$j, ZIP is the solution 
of the problem: minimize 11 u - c IJL~(oki) over all constants c. It is easy to see 
that c = Mkj(u) solves this problem, Hence by the characterization of best 
approximations, 

Then 

(u - Vk , Sk) = 0 Qsk E S,(Q). 

!I u - w, II-1 = sup (u - Uk 9 x) 
x@?w) II x III 

= sup c” - ;;; ; - sk) 
vsk E sk(s2) 

X~CYfJ) 1 

< 11 11 - vk 11 /I x - sk 11 
. 

sup 

II x II1 
VSk E S,(Q). 

XdYQ 

Choosing 

Sk = c &j(x) @k+), 

jelk 

and again applying condition (iii), we have 

Hence 
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LEMMA 4. Let sx be t?ze function xjEJk s,%&j(x). Suppose sk E KI, . Then 

3v* E K n jQk H1(12,j) 3 Mkj(v*) = skj 

and 

II v* IIH~~Rt~~ < (II 6, ll~1~ok~3 + II & ll~~c4#2 fori E J, . 

Proof. Given any set of constants c = (Cj}jElk define a function Q(C, X) 

on IR by 

4&x) c5 < 50(x) 
Vk(C, X) = Cj S,(x) < c5 ,< 51(x) forxE&i . 

&) ci > &(4 / 

Clearly vk(c, x) E K for all values of c. Furthermore, since &, and tI E W(Q), 
vk(c, x) E P(sZ,j), Vj E Jk . Since 

and 

it follows easily that 

For any Cj , define a function 

Since 

Wd = j vk(c, x) dx - /.@,i) ski. 
G’ 

I VT&, 4 - v,(C x>l < I cj - G I VX E Qkj, G(cj) 

is a continuous function of cj . Define constants 

and m, = II fl IILm,a, + 1. 

(Recall that & and eI ELM). Then 

G(m,) = 1 &o(x) dx - &$j) ski < 0 
4’ 
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since sk E k;, , i.e., ski > Mki(&). Similarly, 

G(m,) = 1 &(x) dx - p(Rki) ski 3 0 
4’ 

(since sg j < M,j(&)). Since G(cj) is a continuous function, , 

3cj* E [m, , m,] 3 G(cJ = 0, 

i.e., M&+&*, x)) = skj. If c* = {c~*}~~~, , then z1* = o,(c*, x) satisfies the 
conclusion of the lemma. 

LEMMA 5. Let ulih be the solution of Problem (Pkh) and v the v* given by 
Lemma 4 when sk = ukh. Then 3 a constant C independent of &, , t1 and k 
such that 

!I Ukh - 9 11-l < Ck’111 Eo II; + II fl ll”l”“. (17) 

Proof. From the definition of 11 * jjM1 , we have 

Ii ukh - 22 II-1 = sup 
XEC”@ 

(Ukk - uu, X)0 = sup @kl - ‘1 x)0 

II x /IL xcH’(R II x Ill 

Now define functions #kj, j E Jk to be the solutions in H1(Qki) of the varia- 
tional problems 

Then 
G/J:, X)H’(s?*j) 

II Ukh - n II-1 = sup c 
xcHIW ie~k II x Ill 
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Now from the definition of&j, we have that 

and 

The latter inequality may be rewritten as 

s 
$kj dx = 

I 
(uk* - v) dx. 

nkj 4’ 

Hence we have 

II d k H’(r&‘) = ’ II2 s @kh - 0) +k’ dx 
4’ 

= J 
nkf 

(Uk” - 0) [$kj - -& Jnk, 4ki dx] dx 

1 
2 

+ v)dx . 

By the definition of v we have 

Applying the Schwartz inequality, we obtain 

II v ) iq(v) - v 12 dx1112 [r,, 1 glkj - M,f(Tpkf)l2 dxj1’2. 

Applying condition (iii) we have that 

II I k ’ II2 ,rptnk+ < Ck 11 V IIHqnkq Ck 11 A’ ll~q&) 

or that 

by Lemma 4. Hence 

or finally, 

11 ukh - v II-1 < Ck’[ll So II: + II 5, Ilf11’2. 
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With the aid of these three lemmas, we are now ready to prove Theorem 2. 

Proof (Theorem 2). In the setting in which we are considering the general 
problem, Theorem 1 gives the estimate 

” II u - Ukh l&(Q) + II Y(U) - YA(u;)ll;qn, 

< v(tl, 0 - UkA) + v(u, wk - u) + v(uk h - 24, Vk - u) 

+ (Y(U) - 2, 9 [UC4 - YWI + [Yhc) - Yo41) 
+ (Y@> - &i 9 b@kk) - yh@kh)l + bh(‘k) - Y(‘k)l) 

+ (yh(UkA) - y@), bA(vk) - &k)l + bbk) - id’)]) 

VVEK and vvk E Kk , 

(18) 

where (-, 0) denotes the usual L”(Q) inner product. 
Since u E s(Q), we have the estimates 

Applying the Schwartz inequality to each of the remaining terms on the 
right side, we obtain 

” 11 u - ukA 11’ + iI@) - yA(UkA)i12 

< v 11 u 111 [II w - ukA h-1 + 11 Dk - u II-11 

+ v 11 UkA - u 11 \I wk - u 11 + 11 Y(u) - &3 11 [II Y@) - Y@kA)ll 

+ 11 y@k) - y(u)li + 11 Y(UkA) - YA(UkA)ii + I/ Y”@k) - Y(wk)IIl 

+ 11 yA@kA) - y(u)11 [II y’(“k) - d”k)li + I/ i+k) - y(“)lll 

where now II . 11 denotes II . IILl . 
Applying the arithmetic-geometric mean inequality to the terms 

11 ukh - u 11 11 ok - u 11 9 11 yh(UkA) - y(@)li iI y’(“k) - Y(wk)ll Y 

and 
11 yA(ukA) - y(u)ll II yhk) - @)I\ 9 

and regrouping terms, we have the estimate: 

(42) 11 u - UkA 11’ + 4 II y@) - yA(UkA)l12 

< v 11 u 111 [II v - l(kA h-1 + 11 vk - u II-11 + (d2) II Dk - u I\* 

+ 11 Y@) - & 11 [II id”) - Y(“kA)ll + II Y@k) - Y(u)li 

+ 11 y(uk”) - yA(“kA)ll + Ii Y”@k) - Y(wk)lll 

+ 11 y’(@k) - yap* + II Y@k) - id”)il” 

VVEK and bb,~K,. 
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Using (1 I), we have the a priori inequalities 

Inserting these inequalities, our error estimate becomes 

(42) 11 u - Ukh iI* + + 11 y@) - yh(Ukh)l12 

< (4) 11 Ok - u iI* 

+ [v 11 24 111 + c ily(“) - & iI] [Ii w - llkh II-1 + 11 wk - u t/-l] 

+ c2 11 Ok - u iI% + II $(“k) - Y(“k)li* 

+ I/y(u) - & 11 [IIY(“kh) - Yh(“kh)ll + I/ yk(‘k) - Y(wk)lll 

VWEK, wk~Kk. 

(19) 

Using inequalities (4) and (12), we are able to obtain a priori estimates for 
the quantities II u l/r and 11 y(u) - 2, II . Hence the errors II u - ukh II and 
II y(u) - yh(ukh)l( will depend only on how well we can approximate the 
unknown solutions u and ukh by elements of Kk and K respectively, and on 
how “good” an approximation the method M that we choose gives to the 
solutions y(ukh) and y(wlc) of the control equations 

Ay(ukh) =f + llkh in Q, 

Y(Ukh) = o on ai2; (20) 

&do,) =f + wk in Q, 

Y@k) = o on asz. (21) 

From (15)-(17) of Lemmas 3 and 5, we have estimates for 1) u - We II , 
11 u - wk 11-r , and II ukh - w 11-r . Estimates for the quantities Ily(ffkh) - yh(‘Lkh)lj 
and (1 y(wk) - yh(wk)ll follow immediately from (14), i.e., 

11 y(Ukh) - yh(“kh)ll d thy Ilf + Ukh II 3 w 

IIy(wk) - yh(wk)il < thy Iif + wk /I * (23) 

Using estimates (22) and (23) along with estimates (15)-(17) for the quantities 
11 u - Ok hl , iI u - wk ii-1 9 and II ukh - w 11-r , inequality (19) becomes 

(42) 11 u - ukh II* + i+ 11 Y(u) - yh(Ukh)l12 

+ [v II 24 III + c II Y(U) - 2, Ill Pa II u Ill + Ck2(ll 50 II,” + II h ll3”“l 
+ c*[ck* 11 u Ill]” + Lchv Ilf + wk 111” 

+IIy(~)--Z,~~[ChvIlf+zckhI~+ChYIlf+wk~I]. (24) 
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We have already observed that we have a priori estimates for 11 u \I1 and 
11 y(u) - Z, 11 . Sincef, &, , and e1 are data, to complete the estimate, we need 
only to obtain a priori bounds on the quantities \I ukh // and (I ok (I which are 
independent of k and h. 

Since both ukh and ok E Kk, they must both satisfy Mkj(&,) < ukh, 
vk < Mk~((l) on Q,j Vj E Jk . Hence 

Now 

Hence 

Obviously, the same estimate holds for Q . Finally then, we have shown 
that there exists a constant C depending only on the data f, &, , and E1 such 
that 

(42) II u - ukh II2 + t II Y(U) - P(~~~)ll~ d W2 + 4. (25) 

In the next section we make some observations about this order of con- 
vergence estimate and discuss some conditions under which it can be 
improved. 

7. DISCUSSION OF THE ORDER OF CONVERGENCE ESTIMATE 

Before we discuss the improvement of estimate (259, we first observe that 
the errors we are making in solving the approximate problem instead of the 
original one arise from two sources. One of these is that we are using an 
approximate solution to the control equation instead of the true solution. 



46 FALK 

We observe from the derivation of (19) that if y(u) - 2, ELM, but does 
not E s(Q), then the last term in (19) cannot be improved. However, if we 
assume additional regularity for f and Z, , then y(u) - Z, can be shown to be 
an element of P(Q) for some 0 \< j < 3 (i.e., if fE JP(Q) and Z, E H3(J2), 
then y(u) - Z, E P(Q)). From the definition of (j * (I+ , we have the estimate 

(Y(4 - Zd 9 [Y(UkA) - Yh@kh)l + [(Yh@4 - YWI) 
,< II Y(U) - Zd Iii [II Y(UkA) - Yhh311-~ + II YAbd - YbJll-il. 

In addition to inequality (14) we might expect the error in the Raleigh-Ritz- 
Gale&in method that we select to also satisfy an estimate of the form 

IIY(‘) -YA(“)ll-j G ‘IiD Ilf + ’ llL*2(6)) 9 

where now 0 < /3 < 2 + j. If so, then instead of (25), our final error will be 
< C(P + As + As). For /3 > y, this will be an improvement. When p > 2y, 
we may say that we have achieved optimality, with respect to a given Raleigh- 
Ritz-Gale&in method, in the part of the error caused by use of this method. 

For example, if f eL2(J2) and Z, E H2(Q), and we use the “least-squares 
method” of Bramble and Schatz [3] with a subspace Si,s (e.g., quintic 
splines), then we have the estimates 

II YW - YAwllo < at2 Ilf + v 110 9 
II YW - YA(“)ll-2 < a4 Ilf + v llll * 

Hence the parts of our error estimate reflecting the use of this method are 
optimal, i.e., they duplicate up to a multiplicative constant, the error in the 
method. 

We now turn to the error caused by looking for the optimal control not in 
P(Q), but rather in some finite dimensional subspace S,(Q) of L2(Q). From 
inequality (19) we recall that the terms in the error estimate reflecting this 
part of the error are 

(42) II UK - ZJ II29 

and 

rv 11 u 111 + c Iii+) - -% 111 [II ok - Ic i-1 + 11 ‘u - #kA ii-l] 

From estimates (15x17), we have that all these terms are at least O(K2). 
Hence the error in the terms 11 u - ukA (I and (I y(u) - yA(ukA)jj caused by 
using the approximate convex set Kk instead of the original convex set K 
is O(K). 

Since it is known that the best approximation in L2(Q) to an arbitrary 
element u E H’(Q) by elements of S,(Q) is O(K), our estimate is optimal in the 
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sense that it duplicates up to a multiplicative constant, the best approximation 
properties of the subspace S,(Q). 

A practical result of the preceding discussion is that it tells us how to 
choose the relationship between k and h for computation, i.e., set k2 = C/S 
where C is a constant and 8 = min(2y, /I). 
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