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An analysis is presented for a recently proposed finite element method for the Reissner—
Mindlin plate problem. The method is based on the standard variational principle,
uses nonconforming linear elements to approximate the rotations and conforming linear
elements to approximate the transverse displacements, and avoids the usual “locking
problem” by interpolating the shear stress into a rotated space of lowest order Raviart-
Thomas elements. When the plate thickness t = O(h), it is proved that the method
gives optimal order error estimates uniform in ¢. However, the analysis suggests and
numerical calculations confirm that the method can produce poor approximations for
moderate sized values of the plate thickness. Indeed, for  fixed, the method does not
converge as the mesh size h tends to zero.

1. Introduction

The purpose of this paper is to study a low order finite element scheme proposed
by Ofate, Zarate, and Flores!® for the approximation of the Reissner—Mindlin plate
equations. The main difficulty in the finite element approximation of these equations
is the problem of “locking”, which results in poor approximations for thin plates,
and the scheme proposed in Ref. 15 is one of several which have been proposed
to overcome locking. An attractive feature of this method is that it uses only
linear finite elements. In this paper we prove that when ¢ = O(h), h being the
finite element mesh size, the method attains optimal order accuracy, giving good
approximations and avoiding the locking problem. However, as our analysis suggests
and we confirm by means of numerical calculations, when ¢ is large compared to A
(the case of moderately thick plates), the method does not work well. Indeed, the
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method is not convergent in the classical sense, i.e., when h tends to zero with ¢
fixed.

The Reissner-Mindlin models determine functions ¢ and w, which are defined on
the middle surface € of the plate and approximate the rotation vector and transverse
displacement, respectively, as the minimizers of the energy functional

J(¢p,w) = ;fcw £¢+£f|¢ gradw|? — /

over a subspace of H'(2) x H'(Q) incorporating essential boundary conditions.
Here £¢ denotes the symmetric part of the gradient of ¢, g the scaled transverse
loading function, ¢t the plate thickness, and A = Fk/2(1 + v) where E is Young's
modulus, v the Poisson ratio, and k& the shear correction factor. For all 2 x 2
symmetric matrices 7, C7 is defined by

E
12(1 - v2) [

As is now well understood, standard finite element methods for the Reissner—
Mindlin plate, which approximate ¢ and w by the minimizer of the above energy
functional over a finite element subspace of H!(Q) x H(Q), usually do not con-
verge uniformly with respect to the plate thickness. Rather they are plagued by
a deterioration of accuracy as t tends to zero, known as locking. Many of the
methods which have been proposed to overcome locking take the following form.
The approximate solution {¢@,ws) is determined in a finite element space Vi, x W),
as the minimizer of a modified energy functional

~ [ ()

A2

The modification consists of incorporating the “reduction operator” Ry : Vi —
T, where T’y is an auxiliary finite element space and Ry, is typically either an
interpolation operator or an L2-projection operator. The finite element spaces Vj,
and W, may either be conforming or nonconforming. If they are nonconforming,
the differential operators in (1.1} are of course applied element-by-element. Table 1
exhibits four such methods which use triangular finite elements of relatively low
order.

In the element diagrams in the table, the filled circle, open circle, and arrow are
used to denote degrees of freedom. The filled circle, open circle, denote the value of
both components of a vector quantity at the node, the value of a scalar quantity at
the node, and the value of the tangential component of a vector quantity at an edge
node respectively. Thus three different spaces W, are depicted: standard Lagrange
elements of degree one for the methods of Durdn-Liberman and OfiateZarate—
Flores, Lagrange elements of degree two for the method of Brezzi-Fortin-Stenberg,
and nonconforming piecewise linear elements for the method of Arnold-Falk. For
V}, the spaces are less standard (although they are all recognizable as finite element
spaces which have been used to approximate the velocity for Stokes flow). For the

Cr = v)T + vtr(r)I].

Jn(¢w) = %fncw:w
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Table. 1. Finite element schemes for the Reissner—Mindlin plate based on the reduced energy
functional {(1.1).

Vi R, Reference

By Aniold, Falk (Rel. 3)

II, Brezzi, Fortin, Stenberg (Rdl. 8)

1I, Duran, Liberman {Ref. 10)

> >

>k
> >p

II, Onate, Zarate, Flores (Ref, 15)

Arnold-Falk method this is the space of continuous piecewise linear vector fields
augmented by cubic bubbles, for the Brezzi-Fortin-Stenberg method the space of
continuous piecewise quadratic vector fields augmented by cubic bubbles, for the
Duridn-Liberman method the subspace of continuous piecewise quadratic vector
fields for which the normal component is linear on each edge, and for the Ofiate-
Zarate-Flores method, the space of nonconforming piecewise linear vector fields.
The third and fourth columns in Table 1 show the range I'y, of the reduction op-
erator Ry, and the operator itself. For the Arnold-Falk method, Ty is the space
of piecewise constant vector fields and the reduction operator is the L2-projection,
that is, the elementwise averaging operator. For the Duran-Liberman method and
the OiiateZarate-Flores method, Ty, is the lowest order Raviart—Thomas subspace
of H(rot). That is, it is the space of piecewise linear vector fields for which the tan-
gential component is constant on each element edge and continuous from element
to element. For these methods, the reduction operator is the natural interpolation
operator associated with this space. For the method of Brezzi, Fortin and Stenberg,
T, is the Raviart—-Thomas approximation to H(rot) of one order higher, and R,
the corresponding interpolant.

The Arnold-Falk method was the first Reissner-Mindlin element computable in
the primitive variables ¢ and w which was proved to converge with optimal order,
uniformly with respect to the plate thickness. Brezzi, Fortin, and Stenberg,® fol-
lowing up on the work in Ref. 6, presented an approach for devising and verifying
locking-free Reissner—Mindlin elements, and as an application devised several fami-
lies of such elements. Assuming uniform regularity of the solution they proved that
these elements converge with optimal order uniformly in ¢. The second method
depicted in Table 1 is the simplest treated there. The Durdn-Liberman method is
a simpler method which also fits within the framework of Ref. 8 and so converges
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with optimal order uniformly in ¢£. The Ofiate-Zarate-Flores method was introduced
in Ref. 15 and good performance shown through numerical tests. It is appealing
because of its simplicity, but, in contrast to the other elements depicted in the
table, it has not been proven to be locking-free. In this paper we analyze the
convergence of this method. Our approach is strongly influenced by that of Ref. &,
but we must also consider the effect of the additional consistency error owing to the
nonconformity of the approximation for ¢p. We shall show, among other estimates,
that

ll¢ — drllo + llw — wallo < C max(h?, £%)|gllo -

Thus, we have optimal order convergence in L? for both variables if the plate
thickness ¢ tends to zero at least as quickly as the mesh size h. However this
estimate does not even establish convergence of the method in the classical sense,
that is, when the mesh size tends to zero while the plate thickness is held fixed.
In fact, we show by means of a numerical example that such convergence does not
hold.

Before closing this section, we recall another important approach to the
development of low order locking-free finite element schemes: the use of stabilization
techniques. These are not based on the reduced energy functional (1.1), but rather
on a modification of it in which the coefficient 12 is relaced by (#2 + ah?)~! for
a suitable constant «. A method proposed by Duran, Ghioldi, and Wolanksi® and
simultaneously by Franca and Stenberg!® uses the same elements as the method of
Arnold and Falk, except that the bubble functions are not included in the space V.
In both works it is shown that this choice of spaces results in a uniformly optimal
order method when used with the stabilized energy functional. In fact, as discussed
in Ref. 1, essentially the same scheme results by using static condensation to
eliminate the bubble function in the method of Ref. 3. A similar stabilized
method was proposed by Pitkiranta,'® except that the transverse displacement
was approximated by conforming quadratic instead of nonconforming linear, and no
reduction operator is needed. A simpler stabilized method has been recently
proposed and analyzed by Brezzi, Fortin, and Stenberg.® This uses continuous piece-
wise linear elements for both V; and W),, and the reduction operator is Ily, the
interpolation into the lowest order Raviart-Thomas space. Finally, a variety of
methods have been proposed and analyzed using more involved modifications of
the energy function to achieve stabilization. Cf. Refs. 14 and 17.

In the next section, we present a mixed formulation of the Reissner-Mindlin
problem which will facilitate the analysis of the Ofiate—ZarateFlores method. In
Sec. 3 we prove optimal order error estimates for the case when t < Ch. An
interesting relationship between the Ofiate-Zarate-Flores method and the Morley
method for the approximation of the biharmonic problem is established in Sec. 4.
Finally, in Sec. 5, we present the results of some numerical computations which show
that for ¢t fixed, the method does not converge as the mesh size b tends to zero.
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2. Variational Formulations

For simplicity we henceforth assume that the domain {} is a convex polygon and
restrict our attention to the case of a (hard) clamped plate. The rotation vector
and transverse displacement may then be determined as the unique solution to the
following weak formulation.

Find (¢,w)} € H! x B! satisfying:
(CEd, £99) + M~2(¢p — gradw, ¥ — grad ) = (g,4) for all (4, ) € H' x H".

The space H! denotes the usual Sobolev space of square integrable functions on

which vanish on 8% and which possess square integrable first derivatives, and Ioi !
denotes the corresponding space of two-vector-valued functions. (We use boldface
to denote vector-valued analog of spaces and operators generally.) The parentheses
denote the L? (or L?) inner product. In view of the analysis to follow we also recall
the definition of the differential operators

curlg = (Y | ot = (061/0y - 00 f0x)
and the space

H(rot) = { v € L*(Q)| rot 9 € L3(),% s =0on 30} .

For the precise description and analysis of the approximation scheme we intro-
duce several finite element spaces. We assume that a quasiuniform shape-regular
family of triangulations of 2 is given with the characteristic mesh size h tending to
zero. For each triangulation, we define

4] [
M}, the usual conforming piecewise linear approximation of H', consisting of
continuous piecewise linear functions vanishing on the boundary;

] [+]

M?1, the usual nonconforming piecewise linear approximation of H?, consisting
of piecewise linear functions which are continuous at the midpoints of element
edges and vanish at the midpoints of boundary edges;

M?, the space of piecewise constant functions; and
o

T}, the lowest order Raviart—Thomas subspace of H(rot), consisting of vector-
valued functions which on each finite element are of the form (@ - by, c + bz)" for
some a, b, ¢ € R, and for which the tangential component on each element edge is
continuous from element to element and vanishes on boundary edges.

el
We shall use M, the vector analog of the nonconforming space to approximate

=]
¢. Differential operators such as £ and rot may be applied to functions in M
element by element; we shall write £, and roty in this case.
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For each of these spaces we define a projection operator mapping into the space
as follows:

o} : Ic;’l NnC{N) — J\OJIIJ, (2 — I} ) (w) == O for all vertices v,
I : "2 = J'lodfl, f(@b — I} 4p) = 0 for all edges e,

9 . L2 — MO, / (¢ — %) = 0 for all triangles T,
T

I : Iof(rot) — Ty, /(1,/; —TIE4p) - 8 = 0 for all edges e.

Since [, 4 - 8 is well-defined for ¢ € M !, the Raviart-Thomas projection II[ 1
is also well-defined for such 4. These operators have a number of properties which
will enter the analysis below and which we now coliect. First they give optimal
order approximation:

9 ~ iwllo + Ally ~ Mpelly < CRE*|lYll2, forally € H' nH?, (2.1)

Il — Wpllo + Al — T pllue < CRAYllz, forall v € H'NH?, (2.2)

Il = TI24llo < Chllll,, for all % € H?, (2.3)
Il = Illo < Chllgll, for all ¥ € H' n Hrot), (2.4)
4 — Miapllo < Chllllan, for all ¢ € M1, (2.5)

where we use the definition

13 5 = 1%l + Il grad,, 1ig

Next, we recall the well-known commutativity property of the Raviart-Thomas
projection,
4]
rot IIL#p = Iy rot+p for all v € H*, (2.6)

]
and its analog for ¥y € M, which takes the form

rot II}:'d: =rotp?y forall ¢ € 1\041 . (2.7)

The analogous property also holds for the projection onto the nonconforming space
[+
ML
. [+
rotp I5e = I rot 4y for all p € H'. (2.8)

The operator curl;, : M® — Ty, is defined by the equation

{curly ¢,%¢) = (¢,rot¢p) for all ¢p € T'y,. (2.9)
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Using it we may state the following discrete analog of the Helmholtz decomposition
(cf. Lemma 3.1 of Ref. 8).

Lemma 2.1. .
T, = grad M} @ curl, MO,

This is an L? orthogonal decomposition.

The approximation scheme of Oiiate, Zarate and Flores uses I\O/I ! ag an approxi-
mation of the space Io{ ! for the rotations and IlOJ ! as an approximation of the space
I} ! for the displacements. In addition it makes use of the interpolation operator
II} as a reduction operator. Thus the discrete solution (¢n,ws) € M I x M Jis
determined by the equations

(CERn, Entp) + MH(ILL ¢, — grad wy, T4 — grad p)

= (g,) for all (3, ) € M* x M}. (2.10)

To analyze the scheme, we follow Ref. 8 to obtain an alternate weak formu-
lation of the continuous Reissner—Mindlin problem. First we use the Helmholtz
decomposition to write

Mt~ ?(gradw — ¢) = gradr + curlp

with v vanishing on 9! and p normalized to have mean value zero. Next
we introduce the auxiliary variable o = curlp. It is then easy to check that

(r,¢,p,o,w) € H' x H' x L? x H (rot) x H! satisfies the following equations:

(gradr,grad ) = (g,x)  for all p € H, (2.11)
(CE,EP) — (p, 10t ) = (gradr, ) for all ¥ € H*, (2.12)
~(rot ¢,q) — A3 (rota,q) =0 for all g € L2, (2.13)
(a,6) — (p,rot 8) = 0 for all 6 € H(rot), (2.14)

(grad w,grad s) = (¢ + A" t?gradr,grads) forall s € H. (2.15)

Note that we use a circumflex over a space to denote the subspace consisting of
functions of mean value zero.

As observed in many papers on the subject, the two Poisson problems (2.11) and
{2.15) decouple from this system. To study the remaining Eqs. (2.12)-(2.14), we

follow Brezzi, Fortin and Stenberg® and define A : [I?I ' H (rot)} x [IO{ ' H (rot)] —
R and B : [H' x H(rot)] x L2 — R by

A, 09,6) = (CE,£9) + A 11 (e, 6),

B(y,8;q) = —(rotv,q) — A7't*(rot 6,¢) .
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With respect to the t-dependent norm

i, 811 = Nl 11} + £21645 + ¢ ot 81i3

on Ioi bx Iof (rot) and the usual norm on L2, the forms A and B are bounded
uniformly in ¢. Note that for the exact solution we have a = curlp and #?rota =
~Atot b, 50 [lb, exl|? = [|$]}2 + A2 rot |13 + £2]| curl pll3. The continuous problem
(2.12)—(2.14) can then be cast into the form:

Find (¢, ) € H' x H(rot) and p € L? such that

A(,;9,8) + B(,8:p) = (gradr,9) for all (16,6) € H' x H{rot), (2.16)
B{¢,o;9) =0 forallge 2. (2.17)

This problem is a saddle point problem of the form considered by Brezzi in Ref. 7.
The two hypotheses of Brezzi’s theorem, which we now state, are easily verified

using Korn’s inequality for the first and simply choosing & =0 in the second.
(B1) There exists v > 0 independent of ¢ such that

A, 8;4,8) > ||v, 8

for all
(4,6) € Z =: { (4,6) € H' x H(rot) | B(w,6;¢) =0 forall ¢ € f}}
= {(1/;,6) € IoIl X I?I(rot)|)\_1t2r0t6=-rot¢} .

{B2) There exists v > 0 independent of ¢ such that

B(#.8:9)
1%, 811 Tiallo =

inf sup

F2 I
9€L% (4 6)e H x H(rot)

We note for future reference the following regularity results for (2.11)-{2.15).
The bounds for r, w, ¢ and p were proved in Ref. 3 and those for e follow from
the equations @ = curlp and t*rotex = —Arot¢. There exists a constant C
independent of ¢ such that

il + lleolly + Nz + liplh + tllpllz + lleello + thelly + €]l rot exlly < Cligll—(l 18
2.18

Irllz + llwilz < Cligllo - (2.19)
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We now derive the discrete version of (2.11)-(2.15). Let (¢, ws) solve (2.10).
Then grad wy and I'I}:t,bh belong to I'y,, so we invoke Lemma 2.1 to write

At~ % (grad wy, — IT}, ¢y = grad ), + curly py

o -
with 7, € M} and p, € M. Set a, = curly py, € T;,. Using (2.9) and (2.7), it is
o [ N 0
then easy to see that the quintuple (ry, dn,pn, an,wn) € MIx M1 x M x T} x M}
satisfies

(gradr,.grady) ={g,u) forall ue l\oﬂ, , (2.20)

(CEndn, Enth) — (pr.roty o) = (gradr,, MILep) for all v € ML, (2.21)
—(rots @, q) — A 3 (rot ey, q) = 0 for all ¢ € MO, (2.22)
(e, 6) — (pp,rot§) =0 foralléeT,, {2.23)

(grad wy,,grad s) = (I, ¢, + A"1t? gradr,,grads) forall s € de’(l) .(2.24)

Once again the main part of the analysis deals with Eqs. (2.21)—(2.23), which
we may rewrite in standard form:

Find (¢, an) € ML x Ty, pr € M® such that

Ap(dn, 0n; %, 8) + Br(th,6:p) = (grad vy, H4p) for all (v, 6) € f/fi x Ty,
(2.25)

Bi(¢n,0;9) =0 for all g € M°, (2.26)
where

An(, 06, 8) = (CEncp,Enth) + A1 2(a 6)
Bh(‘b?&;q) = _(IOth ¢sQ) - A—1t2(r0t6»Q) .

Note that A, and Bj are defined just as A and B except that £ and rot are
replaced by the piecewise defined operators £, and rot, when applied to functions

[4]
in the nonconforming space M.

3. Error Estimates

In the preceding section, we reduced the continuous Reissner-Mindlin system to
the saddle point problem (2.16)—(2.17), and the Oiiate—Zarate-Flores method to
the discrete analog of this problem, (2.25)-(2.26). The well-posedness of (2.16)-
{2.17) followed easily from the continuous Brezzi conditions (B1) and (B2). A
seemingly natural way to proceed with the error analysis would be to establish the
discrete analogs of the Brezzi conditions for the discrete problem (2.25)—(2.26), and
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then to apply standard arguments from the theory of mixed methods. However
this approach fails, because the discrete analog of condition {B1) does not hold. To
understand why the condition fails in the discrete case even though it holds in the
contingous case, recall that the continuous result was a simple consequence of Korn’s
inequality. However the discrete analog of Korn’s inequality for nonconforming
linear elements, that is, the statement that

tgrad, Bllo < CllEnslla for all 9 € MY,

is known not to be true (cf. Refs. 11 and 12}. All is not lost, however. The discrete
analog of condition {B1) requires coercivity of the form 4, only over the subspace

Zy of 1\04r ! % T'y, which is defined in Eq. (3.3) below. But, as we show in Lemma 3.2
below, such coercivity does hold with a constant v of the form cmin(1,h?/¢%).
Thus, if ¢ = O(h), 7 is O(1), while for fixed t, v tends to zero as h tends to zero.
This observation is important in understanding both the good performance of the
method when ¢t = O(h) and its failure to converge for fixed ¢ as h tends to zero.
From the strong form of Eq. (2.16), we obtain, using integration by parts, that

A, @5%,8) + Bulib,519) = (gradr) + 2 [ ((CE@)m+ps] -
T

for all (1,8) € M! x Ty
Combining this equation with Eq. (2.25) gives
Ak(tha (23 "J’, 6) + Bh(txba 5§Ph) = Ah.(d’! o f‘!’; 6) + Bh('l»ba 65p)

+ (gradr;, ILw) - (grad r, ) —Z/ [(CEP)n + ps] -
T 48T

for all (1,6) € ML x T4, (3.1)
whence

Ah(nqu*tha Hga_ah=¢’6)+3h(¢s 67p_ph) = Ah(n;;¢_¢’ HE“"%"/% 6)
— (grad 7y, ML) + (grad r, ) + Z/ [(CEPIM + ps] - ¥

for all (¢,6) € ML xT. (3.2)

We now prove a sequence of lemmas which allow us to derive error estimates from
{3.2). For the first two we define

Zy, = {('qb,(ﬁ)el\c;fl x Ty | Bp(v,8;q) =0 forallqEMO}

= {(¢,5) € 1\311 x Th| A~ % rot & =rot, 3 for all g € M° } . {(3.3)
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We note that if (¢, 8) € Z, then
Bn{(1,6;q) =0 forall g€ L?. (3.4)

Lemma 3.1. The solutions of (2.11)-(2.15) satisfy (I}¢p, i) € Z,. The
solutions of (2.20)2.24} satisfy (¢, ) € Zy.

Proof. The second statement is immediate from (2.22). To verify the first, we use
{2.8), {2.13), and (2.6} to obtain

rot, I =119 rot ¢ = — A" 12110 rot & = — A~ 2 rot I} . W]
Lemma 3.2. There exists v > 0 independent of h and t such that
An(,8:9,8) 2 9 [ min(L, K/E)IIR 5.+ IEnpllf + N8I3 + K¢ xot 8113
for all (¢/,8) € Z,.
Proof. First we recall the discrete Poincaré inequality (see, e.g., Ref. 3),

l¥llo < Cllgrad, ¢llo forally € M,,

which, together with the differential identity
1 0 1
grad, ¢ = &9 + §r0th¢ (_1 0) )
implies that '

I%lln < CClIEHlo + llTotn wlo) for all ¥ € M. (3.5)
Using an inverse inequality and then (3.3), we get that
An(9,8:9,6) > nlEntlly + £1615)
> 1a(lExlls + 116115 + k%8| rot 613)
> w(ll€nsblls + 12116113 + B2¢|| rot 81131 + h* /£2|| vt 9II3)

where the +; are positive constants independent of A and ¢. The desired estimate
then follows from (3.5). a

Qur next lemma is a standard bound on the consistency error due to the non-

o Q
conformity of M! as an approximation of H!. For a proof see, e.g., Ref. 3.

Lemma 3.3. There erists a constant C independent of h such that

;/E,T[(Cfcﬁ)n +ps| - 9] < Ch(||@llz + llpll)lI# ]

forall¢ € H2, pe H', and 4 € M.
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Next we bound the consistency error attributable to the reduction operator and
the approximate forcing function in (2.21).

Lemma 3.4. There exists a constant C independent of h such that if for some
g € L? r € H' satisfies (2.11), 7, € M} satisfies (2.20), and ¥ € M1, then

[(grad r,¥) — (grad ry,, IL,4p)| < Chllr|lz]leb]l1,n -

Proof. Clearly

|(gradr,¥) — (grad ry,, L 4)| = |(gradjr — ru],¥) + (grad 7y, — I} 4}
< llr = rallalillo + llrallalley ~ TR p]lo -

In view of (2.5) and the obvious estimates
Irally < Cllrllys e = rufis < Chllrliz,

the lemma follows. O
We are now ready to prove the basic energy estimate for the method.

Theorem 3.5. There exists a constant C independent of h and t such that

¢ = drllsn + 2l rotle ~ an)llo < Chmax(1, #2/h*)llgllo ,
R (@ — dulilo + tllx — etnllo £ Chmax(1,¢/h)ilglo -
Proof. Choosing (v,8) = (II} ¢ ~ ¢, I} — ap) in (3.2) and using (3.4) and
Lemma 3.1 we get that
A(Ihg — ¢p, Mo — a; o — o, Lo — o)
= An(ITi¢ — ¢, Mo — o I¢ — 6y, T — @)
— (grad ry, IIL [T — i) + (grad r, IT5 ¢ — ¢bp)

+ ZT: LT[(C%)“ +ps] - (I} ~ @) - (3.6)

Applying Lemma 3.3, Lemma 3.4, Schwarz's inequality, and the approximation error
bounds (2.2)-(2.4), the terms on the right-hand side may be bounded above by

Chllidlz + el + lIrilz + texll )T ¢ — Bally,n + HIT e — anllo)
< Chllgllo(IM;é — dnlivs + thIL e — axllo),
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where €' is independent of & and ¢t and we have invoked the regularity estimates
(2.18)-(2.19). On the other hand, Lemma 3.2 furnishes a lower bound for the
left-hand side of (3.6):

¥ [ min(L,h%/6%)| = dall2, + IER(TT0 — B )IE + £ Th e —
+ B2 rot(IF o — ah)||§] .
Combining these two bounds and performing some simple manipulations we get

I — Pnllin + £ ot e — e )lo < Chmax(1, 8 /87%)|\gllo,
€4 (T — )0 + ¢l TIL @ — e[l < Chmax(,¢/R)|gllo -

Now
i — IL; @Iy + tlo — I exllo + £ rot(o — M a)|lo < Chllgllo,

as follows from the {2.2)—(2.4), (2.6} and (2.18). The theorem then follows using
the triangle inequality. O

We now consider L? estimates. As usual, we first define an appropriate dual
problem. For d € L2, let (¢2, p¢, a?) € H! x [* x H(rot) satisfy

(CES™,E) — (p*,rot ) = (d,4) forall o € H', (3.7)
—(rot¢?,q) — t*(rotat,q) =0 forallqe I?, (3.8)
(a?,8) — (p*,rot 6) = 0 for all § € H{rot), (3.9)

and let w® € H! be determined by

(gradw? grad s) = (¢%,grads) forall s € H. (3.10)
Then, from Theorem 7.1 of Ref. 3, we have the following regularity result.
wllz + 118211z + lp*lls + £llp4ll2 + lleello + tl rot ?{lo < Clldljo - (3.11)

Before using this dual problem to obtain L? estimates, it will be convenient to
first establish two approximation results. The first deals with an approximation
property of II}, when applied to functions of a special form and the second bounds
the consistency error attributable to the reduction operator and the approximate
forcing function in a manner different from Lemma 3.4.
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Lemma 3.6. Assume that 9 € I}1, pe g NH?, z¢ H® and
At~?(grad g — ¥) = grad s + curlyg
for some s € H! N H? and q € H?. Then
|(grad z,% ~ IT, %)} < Chmax(h, t)|zll2 [||M||2 + t(fisll2 + ||fli|2)] :

Proof. First observe that for each edge e joining vertices a and b, I} grad j is an
element of I';, satisfying

J(ieradw s = [gradu-s= [ dufds = ) - ula)

e

= I} () — Mh(a) = ] d(ITh 1) /ds = _[ grad Iy -s.

Since gradII} x4 € T, and from the above, has the same values at the degrees of
freedom as IT} grad z, we get

1’[}: grady = grad T} . (3.12)
Using this fact, we have
(grad z,4 — I} ¢) = (grad z,grad y — 1T} [grad u])
— A7 % (grad z,[I — II}][grad s + curl g])
= —(Az,u-Tkp) — A7 3(grad 2, [I — II}][grad s + curlg])
< llellallie = T allo + CRlz]l1 [|(X — TS)(grad s + curlq)]lo
< CR3ell2llzll2 + ER) 2l (lsllz + Ngll2)]

< Chmax(h, 1)zt [llallz + t(llsll2 + lgll)] - D

[ o
Lemma 3.7. Assume that for some g € L? | r € H' satisfies (2.11) and v, € M}
satisfies (2.20) and that (%, p?, a?,w?) satisfies the above dual problem. Then there
exists a constant C independent of b such that

(gradr, IT; ¢%) — (grad r, I IT;¢%)| < Chmax(h,t)||gllolld]lo -
Proof. We first observe that I} IT; ¢ = II} ¢¢. Hence,
{gradr, fld)d) —{gradr, HEH};qbd)

= (grad[r — r,,], I} ¢%) + (grad 7, [I} ¢ — I} 1T} 0%)

= (gradlr — 3], ;0" — ¢%) — (r — )., div §%)
+ (grad ry, IT} ¢¢ — IIL 1T} ¢0%)

= (gradfr — rp], I ¢* — ¢%) — (r — 14, div %) + (grad r,, M 0% — &%)
+ (grad(rs — 1], ¢* — I} ¢") + (grad 7, ¢* — I} ).
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Applying standard estimates, we obtain

(gradr, I ¢%) — (gradry, I M;¢%)| < CR?|rlloll¢7]l2 + [(grad r, ¢¢ — I 6%)]
< CRgllolidlo + |(gradr, ¢¢ — TEY)|.

To estimate the last term, we observe that from (3.7)-(3.10), it follows that ¢ has
the Helmholtz decomposition

gradw® — ¢% = A7 % curlp?.

d

Applying Lemma 3.6 with ¢ = ¢ p=w? z=7r s=0,q=p*and the a priori

estimates (2.19) and (3.11), we get
|(gradr, ¢ ~II,¢%)| < Chmax(h, t)||r|l2{llw? (|2 +t]ip||2] < Chmax(h,¢)l|glolld]o -

Combining these results establishes the lemma. O
Using this result, we now prove the first of our L? estimates.

Theorem 3.8.
¢ — dullo < C max(h?,%)||gllo -

Proof. Integrating the strong form of (3.7) by parts, we obtain
(d,¢ — ¢n) = (CES, Enep — bn))
— (p%, rot[¢p — 1)) - Z/ [ng,dn + pds] (¢ — ).
T JoT

Now observe that using (2.13), (2.22), and (3.9}, we get

(p%, roty[d — dn]) = =212 (p%, rot[a — o)) = A7 (0, o — @)

so that we may rewrite the equation above as
(d, ¢~ &) = An(¢%, 0% ¢~ dp,a —an) — ) /aT[CEd)dn +pla] - (¢ — ¢n).
T

By Lemma 3.1, (I} ¢%, IT, a%} € Z), and hence from (3.4), Bx(IT};¢%, I % ¢) = 0
for all ¢ € L*{Q). From (3.1), we then obtain

An{¢ — dn, a — ap; M1 ML a?)

= —(grad ry, I} IT;¢%) + (grad r, [T} 6%) + Z/BT[(C&b)n + ps] - ML¢° .
T
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Combining these results, we obtain
(d,¢ — ¢n) = An(¢® - ;0% a® — M0 ¢ ~ dp, 0 — o)

+3 L (cegn +ps) - (i - ¢°)

= fa (€@t tr'e) - (b= )
T

+ (gradr, IT¢%) — (grad ry, I{IT;¢).

Setting d = ¢ — ¢y, and applying standard results for nonconforming methods,
Theorem 3.5, and Lemma 3.7, we obtain:

¢ — éullg < C [I€n(¢? — T lollER (D — Br)llo + £Plle? — T lollex — exnllo
+h(||l2 + i)l grad, (IT;¢¢ — ¢%)lo
+h(ll¢%lz + )]l grada(é — éa)llo
+i(grad r, I} ¢%) ~ (grad s, M IT; ¢)]
< C [hmax(h, )(||6%(l2 + tle?ll)lgllo + RNl + lph) 12
+max(h?,£)([l6%|2 + (1) llgllo + b max(h, t)llgllohdflo] -
Applying (2.18) and (3.11) completes the proof. O

From these results, we easily obtain the following error estimate for the approxi-
mation of w.

Theorem 3.9.
o = wnlly < Ofh + max(h?, )] lglo.

Proof. Using (2.15) and (2.24), then (2.11) and (2.20), we get that
(grad[Iw — ws], grad{IThw — wn]) = (grad(lTiw - o], grad[Mw — w))
+ (¢ — HLop + A1 grad[r — 1y}, grad[IThw — wh]).
= (grad[Ihw — o], grad[IThw — w))
+(¢~ T, ¢ +[¢ — ¢u] + [T} — I[¢ — ¢], grad[IT}w — wi]).
It easily follows by standard estimates that
o = wills < C(lw — Mhalls + 6 — IEdllo + 6 ~ dallo + hll grad, (& — é)llo)
< C(hllwll2 + kligll, + max(t?, B)ligllo) < Clh + max(t?, h*)][lglle. O

Finally, we apply another standard duality argument to obtain an L? error
estimate for w — wy.
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Theorem 3.10.
llw — wrllo < Cmax(h?,t*)|gllo -

Q o
Proof. Let z € H! and 2z, € M} be the respective solutions of

(grad z,grad s) = (w —wh,s} forall s € o8 ,
(grad z,,grad s) = (w —ws,s) forall s € .ﬂod’é
Then, using (2.11) and (2.20), we get

(w —wh,w ~—ws) = (gradfw — ws], grad z)
= (gradw — wy], grad[z — zx])(¢ ~ II5 ¢p + A~ 1% grad[r — 4], grad z;,)
= (grad[w — wa], grad[z — z1]) + (¢ — I} ¢4, grad z;,)
= (gradfw — wal, grad[z — z,)) + (¢ — I, grad[z, — z])
+(¢ — I ¢, grad z) + ([T}, — T[$ — pu], grad zx) + (¢ ~ ¢dn, grad z;).
Hence, applying Theorems 3.5-3.9, Lemma 3.6, (2.4), (2.18) and (2.19), we obtain

o — wrll3
< (lw —wall + fl — ML llo)llz — 2l + [T} — I)[¢p — @alllol grad za o
+1lé — dnlloll grad zxllo + (¢ — I} ¢, grad )|
< Clhfw — wall + hlig — T ¢llo + kil grad, (¢ — én)llo + 16 — @nllo]ll=]l2
+i(¢ — I} ¢, grad z)|
< Cmax(h?, t%)||g}lo|zl2 -

Using the fact that ||z|l2 < C|jw — wp|lo, we obtain the result of the lemma. O

4. Connection to the Morley Method for the Biharmonic Equation

The method analyzed in this paper has another interesting property. For fixed
h, the method approaches a modified Morley method for the biharmonic as ¢
tends to zero. More precisely, we shall establish the following result. Let M2
denote the subspace of Morley elements, consisting of piecewise quadratics which
are continuous at element vertices and vanish at boundary vertices, and whose
normal derivatives are continuous at midpoints of edges and vanish at midpoints of
boundary edges.

Theorem 4.1. Assume that (¢n,wn) € ML x M} is the solution of (2.10). Then

}i_{l(l) ¢ = grad, z th_l% gradw, = IIE grad, zj,
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where z;, € M? satisfies the modified Morley equations
(CEr grad,, zy, &, grad, v,) = (g,}v,) for all v, € ]\04’3 . (4.1)

We note that a connection to the Morley method is observed in Ref. 15 and that
the modified Morley method given above has been previously discussed by Arnold
and Brezzi in Ref. 2 where it is shown to be essentially equivalent to the mixed
method of Hellan-Hermann-Johnson.

To establish this theorem, we will use the following relationship between the
Morley space and the space of nonconforming piecewise linear finite elements. The
proof is analogous to that of Theorem 4.1 of Ref. 12.

Lemma 4.2. . .
grad, M? = {1 € M : roty 4 =0}.

Proof of Theorem 4.1. Let (¢2,p%,al,w?} denote the solution of (2.21)—(2.24)
with ¢ = 0. We first show that

lim ¢, = b, lim grad w;, = grad w) .

Subtracting the limit version of (2.21)-(2.24) from the original version, we obtain

(Cé'h[th — 2],gh’¢) — (pn — p%,foth P)=0 forally e Mi s (4.2)
—(roty[¢r — @3], 9) — A eE (rot[an — @], q) = A" ¥ (rot @, g) for all g € MO,

(4.3)

(o, — ), 8) — (pr, —p}, 1ot 6) =0 forall 6 €Ty, (4.4)

grad[w, — ?], grad s) = (ILL [y, — ¢%] + A" 12 grad 7, grad s) for all s € ﬂoll .
h h k (405)

Choosing % = ¢, — ¢, ¢ = P — pp, and § = A1t (e, — ) and adding the first
three equations, we obtain

(CEn[@n — D2), En[don — PO + A7 (ap, — @), o, — @?)

=2 (rotad, p) — pr) = A (), an — %)

It follows easily that lim;—o £x[¢n — ¢}] = 0. Using (4.2) and the properties of

the M 1 — M Stokes element, it is easy to show that lim,_qp$ — ps = 0. I then
follows from (4.4) that lim, .o aty, — @) = 0. From (4.3), we can then conclude that
lim, g rot ¢, — )] = 0 and hence that lim,_o ¢ — @9 = 0. Finally, we conclude
from (4.5) that lim;_gws — w) = 0.
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To complete the proof, we show that ¢) = grad,,z; and grad w? = I} grad,, z;,

[+]
where z, € M?2 satisfies the modified Morley equation {4.1). Now using (2.22) with
t =0, (2.7) and (2.9), we have for all piecewise constant g;, that

0 = (roty ¢3,qn) = (ot I} &), @1,) = (IT} $}, curly, gp) .

Using the above, Lemma 2.1, and (2.24) with ¢ = 0 it easily follows that grad ] =
IIf ¢). Now since rot; ¢} = 0, we may use Lemma 4.2 to write ¢ = grad,, z5,

where z, € M2, Thus it only remains to show that z; satisfies (4.1). Choosing

+] o
4, = grad, v, for vs € M? and noting that ¥, € ML and rot, ¢, = 0, we get
from (2.21) with ¢ = 0, that

(CthS?l,Eh grad, v,) = (gradry, Hg grad, v,).

Now observing that (3.12) is also valid when grad p is replaced by grad, v, (the
proof is unchanged), we have

I} grad, v, = grad T} vy, .
Then using (2.20), we get

(CELPY, Engrad,, vs) = (grad ry, grad I v,) = (g, Tkwg).
Hence, z, € M? satisfies (4.1). O

5. Numerical Results

The error estimates derived in the previous section show that when ¢ = O(h), the
method gives optimal order error estimates for all the variables, independent of £.
Thus, we do not hawve a locking problem in the usual sense. However, when h is small
compared with #, the error estimates deteriorate and do not show the convergence
of the method for fixed ¢t as b — 0. In this section, we present the results of some
numerical computations to show that this failure of convergence is not a problem
with the proof, but a problem with the method.

The example we consider is a circular plate which is clamped on its edge and
loaded by g = cos@ (we use polar coordinates + and # to describe the problem and
its solution, but compute in Cartesian coordinates). Exploiting symimetry we need
only discretize one quarter of the domain, and thus the computational domain is
the quarter of the unit circle contained in the first quadrant. Essential boundary
conditions ¢, = ¢s = w = 0 are imposed on the curved portion of the boundary,
while on the vertical segment of the boundary the only essential boundary conditions
imposed are ¢p» = w = 0 and on the horizontal segment of the boundary only ¢ = 0
is imposed. For the Young modulus, Poisson ratio, and shear correction factor we
take E =1, ¥ = 0.3, and k = 5/6, and for the thickness we take the three values
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t =1, 0.1 and 0.01. For each value of the thickness we compute on a sequence of
six meshes with 4, 16, 64, 256, 1024 and 4048 elements. The fourth mesh, with 256
elements, is shown in Fig. 1.

Fig. 1. An intermediate mesh with 256 elements.

The exact solution of this problem can be expressed in terms of a modified Bessel
function,* and thus we can compute the exact error in the numerical solution. The
solution has a boundary layer, but it is too weak to interfere with the convergence
of linear elements (all three components are bounded in H? uniformly with respect
to® t). The first graph in Fig. 1 is a loglog plot of the L?-errors as a function
of mesh size for the transverse displacement and the first component of rotation
(the error for the second component is very similar). Note the apparent optimal
second-order convergence of all three components when ¢ = 0.01, but it is evidently
divergence when ¢ = 1. In the case ¢ = 0.1 there is reasonable convergence for A
not too small, but the convergence slows gignificantly when A decreases, especially
for the rotation.

For sake of comparison, the performance of two other elements for the same prob-
lem are shown. The second plot in Fig. 2 depicts the performance of a straightfor-
ward discretization using conforming piecewise linear elements for both the rotation
and the displacement. This method suffers from locking. Thus the apparent con-
vergence is good for ¢ large, but poor for ¢ small (precisely the opposite as for the
Ohnate—Zarate-Flores method). The final plot in Fig. 2 depicts the performance of
the Arnold-Falk element. This is a truly locking-free element, in the sense that op-
timal order convergence can be proven to hold uniformly for ¢ € (0,1]. The robust
performance of this element is clear in the plot.
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