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An Error Estimate for the

Truncation Method for the Solution of

Parabolic Obstacle Variational Inequalities

By Alan E. Berger* and Richard S. Falk**

Abstract.   A rate of convergence is obtained for a truncation method for the numer-

ical solution of a class of parabolic variational inequalities.

1. Introduction.  The truncation method was originally developed for the nu-

merical solution of a free boundary problem modeling simultaneous diffusion and

absorption of a chemical within a substrate [2].  This free boundary problem and a

related free interface problem describing the potential in certain semiconductors have

been shown to be equivalent to obstacle variational inequalities [1], [7], which may

be solved using the truncation method [1].  Problems in fluid dynamics and elasto-

plastic behavior of materials have been formulated in terms of more general variational

inequalities in [4].

The truncation method is a "fixed domain" method, in that it replaces geo-

metrical front tracking (which can become quite complicated in two or three space

dimensions) by simple algebraic operations.  We will develop an error estimate for a

special case of the truncation method for the numerical solution of parabolic obstacle

variational inequalities (Theorem 1 below).  The rate of convergence corresponds to

that found by numerical experiments in [1] and [2].  This will be done by consider-

ing the truncation method procedure as a perturbation (due to quadrature errors) of

an L2 projection type scheme (as presented for example in [9]) for which an error

estimate has been obtained [8].

We first present the method under consideration, show how it can be considered

as a perturbation of a scheme involving L2 projection, and then state and prove the

convergence result.

2. The Parabolic Variational Inequality and the Truncation Method.   Let Í2 be

a smooth convex domain in R2 (or R1) with boundary T. We define (u, w) = Javwdz

for v, w G L2(Í2), and a(v, w) = /n Vi> • Sjwdz for v, w G /7¿(Í2).   Let \p G C2(ñ),

with \p < 0 on T, and let /, ft G C([0, T]  x ñ).  Define

K = {v G /Y¿(S2)/u > i// a.e. (almost everywhere) in £2},
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and let u° be given in K n IV¿(Í2).  The variational inequality to be considered is to

find u(p, t) such that

(la) u(p,t)EK    forr>0,

(lb)    (ut, v - u) + a(u, v - u) > (f, v - u)    for all v E K, almost all t > 0,

(le) u(p,0) = u°(p)    forpEÏÏ.

From [3], for any fixed T > 0, (1) has a unique solution, and «(•, f) —► K is con-

tinuous, ut E L2(0, T, H¿(Sl)), and

0-P<r(ll"('.0ll/f2(ii) + ll«f(->0llL.(n))<~.

The general truncation method for (1) is [1] : given approximate solution values

U" at time t", one uses any appropriate numerical method to obtain the solution

fjn+l  attn+l  of

(2a) ut = V2w + /   in fi,

(2b) u = 0    on T,

(2c) u(-,t")=U".

Then t/"+1 at a mesh point /* of the numerical scheme being used is defined to be

(3) Un+l(P) = mzx(ip(P), Un + l(P)).

We will consider the situation when (2) is solved using the finite element method

with continuous piecewise linear basis functions, explicit time discretization, and

"lumping" of the mass matrix. We now give some notation.  Let Q,h be a triangulated

polygonal region inscribed in SÎ (with maximum mesh length h which is assumed to be

bounded by some constant C,), and let Px, . . . ,Pm be the vertices lying inside £2.

The piecewise linear basis function ip- is 1 at node P-, 0 at the other vertices, and ex-

tended by 0 outside Í2„.  We define Sh = {Lf= x Vfpf/ V¡ E R1} and

W Kh = {VESh/V(Pj) > Wj)J =1.m},

Since Í2 has been assumed to be convex, Sh C //¿(Í2).  We will use the convention

that if V = 2?L j Vjipj, then V can refer to either the element of Sh or the column

vector (F,, . . . , Vm) as the context indicates.  The mass matrix M is M¡¡ = (i¿>¿, <¿>),

the stiffness matrix S is S¡j = aQp¡, ip¡), and the load vector F" is (tp-,/(-, «Ar)).  The

lumped mass matrix L is obtained by computing /n ¡pfö dz by the quadrature rules

fbagdx ~ (b - a)(g(a) + î(ô))/2    (in Ä1);

iabcgdZ ~ (i(a) + ^(5) + ^(C)) area (tóC^/3     (Ín ^2)-

Then letting / be the m x m identity matrix, the specific truncation method for

which we will obtain a rate of convergence is
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(5a) Ü"+1 =(I-AtL~1S)Un + AtL~lFn,    and

(5b) up +1 = max (Uf +l, ^ (/,)).

3. The Truncation Method as a Perturbation of an ¿2 Projection Scheme.  The

L2 projection type method that we will consider (5) to be a perturbation of is (de-

noting its approximate solution vector by W)

(6a) Wn+1 =(/- AtM~lS)Wn + AtM^F",

(6b) Wn+l = ¿2(Í2) projection of Wn + i into Kh.

However, (as discussed in [9]) (6b) is equivalent to

(7)     (W"+1, Vn+1 -Wn+1)>(Wn+l, V" + 1 -Wn+1)    for all Vn+1 EKh,

and so W"+1 E Kh is given by

(Wn+1 - W", V"+i - Wn+1)/At + a(W", Vn+l - Wn+1)

(8)
>(/", Vn+1 -W"+1)    for all Vn+l EKh.

For any V, W E Sh we define the lumped L2 inner product

(9) (V, W)*= V'LW,       \V\2L={V, K)*

and note that

(10) (V, H>)* = (V,W) + q(V, W)    for V,WESh,

where q is the quadrature error.   Analogous to (6)-(8), the truncation method (5) is

precisely: find U"+l in Kn such that

(U"+1 -U", Vn + 1 -Un+1)*/At + a(U", V"+1 -Un+1)

(11)
>(/", Vn+l -Un+l)    for all V"+l EKh.

This follows using the definition of U"+1 to rewrite (11) as

(12)    (i/"+1, Vn+1 -Un+í)*>(Ün+1, Vn+1 -Un+1)*    for all Vn+1 EKh.

Since L is a diagonal matrix whose diagonal entries are positive, (12) gives (5b). But (11)

has the form of (8) with the perturbation qn+1 = q(Un+1 -U",Vn+1 - U"+l)/At

added to the left side.   Since an analysis of (8) is available [8], [6] (actually with

W",f" replaced by Wn+1 ,/"+1 in (8)—but this is not a major change), we are led

to a line of attack on (11).

4. An Error Estimate for the Truncation Method.   Before stating the result, we

need one more bit of technical notation, regarding how rapidly the interface between

where u = \p and u> \p shifts about.   Fix T > 0, and let At = T/N for some positive

integer N (we assume At < C,).   As in [8], we let £2+(i) = {p E i2/«(p, t) > ii(p)}.

For t E (f", t"+1 ] ; let A„(i) be defined to be the symmetric difference of í2+(f"+ ')

and í2+(í), and let 8n(t) be the Lebesgue measure of An(t).  Let 5(t) = 5n(?) when

t G (t", t"+1], n = 0, 1, . . . , N - 1.  We will assume that S(i) < C2Ar a.e. in [0, T]

for some constant C2.   This is generally more restrictive than the assumption in [8],
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thus permitting a more optimistic error estimate.   Making the same assumption as [8]

gives the same rate of convergence as in [8].  We let a denote the size of the smallest

angle occurring in a triangular mesh and for any function g we let |gi2 = (g, g), \\g\\2

= a(g, g).  For our proof we also need to assume that a is independent of h and that

the ratio of the smallest mesh length to the largest mesh length is bounded above by

some constant o > 0, which gives the inverse property

(13) || K||2 < DhT2 | V\2    for V E Sh (D is a constant depending only on a and o).

This is easy to verify on any element of the mesh, and hence (13) follows by summing

over the elements.   Similarly, one observes that there are positive numbers C3 and C4

(independent of Í2 and the mesh) such that

(14) C3|F|2 <m2<C4|K|2     foi VESh.

We have

Theorem 1. In addition to the previous hypotheses, assume that the stability

condition At < h2/64D is satisfied, and pick U° in Kh so that \\u° - U°\\ = 0(h).

Let e be a fixed number in (0, Î4].  Then for u the solution of (I), U the truncation

method approximate solution (5), and Z = u - U,

N-l N

E=     max    |Z"|2 +  Y \Zn+l - Zn\2 + Y \\Z"\\2 • Ar
(15) n=i,...,N n=0 n=x

<C- e-2 • At2'2e + Ch2.

We are using C to denote a generic constant independent of At, h, e but which may

depend on Í2, u, f, T, a, a, Cx, C2.  If Í2 C Rl, the epsilons can be omitted; and so

the estimate becomes E < CAr2 + Ch2.

We will outline the logic in a sequence of lemmas, and then give the proofs.   The

e terms in (15) come from the necessity of estimating the terms

(16) p"=u"t + l -{un+l -u")/At.

It is here that smoothness additional to the general a priori estimates seems to be re-

quired, otherwise there may be a CAr term on the right side of (15) [8].   Following

the same kind of analysis and lengthy algebra as in [6], [8], and using results in [5],

one obtains

Lemma 1.

N-l
(17) E<C- e"2 • At2~2e + Ch2 +CY, |<7"+1|Ai;

n=0

and if £2 C Rl, the epsilons can be omitted.

Thus, we must estimate the q".  We need only consider the quadrature error on

elements V, W of Sh, and letting (VW)j be the piecewise linear interpolate of VW,

°(V>W)= Sn[VW - (VW)j] dz

and so by approximation theory,
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Lemma 2.

(18) \q(V, W)\ < Dxh2 \\V\\ \\W\\,    where Dx depends only on a.

Thus from (17), we must consider

ljn+l _ jjn\N-l N-l

(19)       Ex =CAt £ \q"+1\<CAt £ h2
n=0 n-0

At
¡yn+l -Un+i\\.

We first deal with ||(£/"+1 - U")/At\\.  Using (5), (13), (14), the hypothesis that u°

E //2(S2), the choice of U° to be such that ||w° - U°\\ < Ch, and the stability con-

dition on Ar, one has

Lemma 3.

N-l

(20) AtY,(\Un+1-U"\/At)2<C.
n=0

Returning to (19) and using the arithmetic-geometric mean inequality ab < a2/2p

+ pb2/2, and (a + b)2 < 2a2 + 2b2 for a,b,p> 0:

Ex <CAi £ h4Ar2\\Un+l -Un\\2 +y ¿ l|F"+1 -Un+1\\2,
n=0 n=0

which by (13) and Lemma 3 gives

,JV-1

z
n=0

Ex <Ch2 +^ Z\\V"+1 -Un +

(21)

<Ch2 +^N£\W"+l -u"+i\\2 +^Ny]\\Z"+1\\2.
2   ¿* " "        2
Z   n=0 n=0

Now (17) and (21) show that

N-l
E<C • e"2 • Ai2_2e + Ch2 + At £ ||K"+1 -w"+1||2

n = 0

and so Theorem 1 follows by choosing (as will be done in demonstrating Lemma 1)

Vn+1 such that \\V"+l - un+1\\ < Ch.

Proof of Lemma 1. We henceforth take ut to be b+u/bt (the right-hand deriv-

ative). Then by [3], Eq. (lb) is valid for every t > 0. From (lb), (16), and (11) we

have

(un+1 -u" + At • p",un+1 -u"+1)/At

+ a(un+1,vn+1 -un + l) + (Un+1 -{/", V"+l -Un+l)/At

(22)
+ a(U"+1, Vn+i - Un + 1) + qn+l +pn+i

>(f"+l,vn + l -un+1) + (/"+1, V"+l -U"+1)

for all vn+x EK,Vn+l EKh, where
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pn + 1 = a(U" - Un+l, V"+l - U"+l)

(23)
+ (f"+l -f", vn+l - U"+l).

Now (22) (with qn+l + p"+1 omitted) is (formally) the situation analyzed in [6] and

[8], so we will follow the analysis there as closely as possible.   By direct algebraic

verification (noting that a(v, w) is symmetric), one has that (22) is equivalent to

{|Z«+i|2 -(z"+1,z")}/Ar + ||Z"+1||2

<a(un+1,vn+1 -Un+1)-(fn+l,v"+1 -U"+l)

+ a(Un+l, Vn+1 -«"+')

(24)
-(/"+1, Vn+t -u"+l) + (p",vn+l -u"+l)

+ (un+1 -un,vn+1 -Un+1)/At + (Un+1 -U", Vn+l -un+i)/At

+ qn + l   +pn+l

We let A denote the bounded linear operator from H2(ß) into ¿2(Í2) satisfying the

integration by parts relation

(25) a(w,g) = (Aw,g)    for w E H2(il), g E H*(Çl).

Then operating separately on each side, (24) is equivalent to

(|Z" + 1|2 - |Z"|2 + |Z"+1 -Z"|2)/2Af + ||Z"+1||2

<(«?+1 +Aun+1 -/"+1,d"+1 - Un+l + Vn+l -un+l)

(26)
+ a(Zn+l,un+1 - K"+1)-(pn,Z" + 1)-(p", Vn+1 -un+x)

+ (Z"+1 -Zn,un+1 - Vn+l)/At + qn+l +pn+1.

We now choose Vn+1 EKn to be the approximation to«"+1 used in [8] (in the

notation of [8], V"+1 = [Sh(un+l - i//)], + i///; where Sh is a smoothing function

which keeps nonnegative functions nonnegative), so

|K"+1 -un+1\<Ch2    and    \\Vn+1 - un+l\\ <Ch.

By Lemma 4 of [5], we may take v"+l(p) = max(Un+1(p), i//(p)) for p E £2, and

have vn+1 EK with |u"+1 - Un+1\ <D2h2 (D2 depending only on ^ and a).  We

also recall (e.g. [10]) that for some constant D3 depending only on Í2, |w|2 <Z)3||w||2

for w E #¿(£2).

Multiplying (26) by 2Ai and summing from n = 0, . . . , TV for each 0 <N

< N - 1, we easily establish that



PARABOLIC OBSTACLE VARIATIONAL INEQUALITIES 625

E-2\Z°\2

N-l

<4At Y,   {\(u"+l +Aun+l -fn+1,vn+1 -Un+l + Vn+1 -u"+1)\

n = 0

(27) + \a(Z"+1,u"+1 - Vn+l)\ + |(p",Z"+1)|

+ \(pn,V"+l-un+1)\ + |(Z"+1 -Z",un+l -V"+1)/At\

+ \qn+l\ + \pn+l\}.

Applying the approximation results and the arithmetic-geometric mean inequality, the

first two terms on the right side of (27) can be bounded by C7t2 and Ch2 +

Ai2^0||Z"+11|2/16, respectively.

The next two expressions can be bounded by

Ar ¿ ||Z"+Y/16 + CAt ¿     sup   |(p", w)|2 + CAr £  \pn\h2.
n=0 n = 0  llw||=l „ = 0

The expression

N-l

4 £  |(Z"+1 -Z",w"+1 - Vn+l)\

n=0

is shown in [8] to be bounded by

N

Ch2 + \ZN\2/S + At £ ||Z"||2/8.
n=l

From the definition of pn+x and the arithmetic-geometric mean inequality we obtain

|p"+1|< 32HÍ/"-t/"+1||2/9 + 9||i/n + 1 -i/" + 1||2/128

+ C\fn+1 -/"|2 + \Vn+l - ¿7"+1|2/128£)3

< 64D/T2\U" - V" + V"+1 - Un+1\2/9

+ C\\V" - Vn+1\\2 +C||F"+1 -M"+1||2

+ 5||Z"+1||2/32 + C\f"+l -/"|2

< \2SDh-2\Zn+l -Z"\2/9 + OT2\un - V"\2

+ Ch-2\un+i - Vn+1\2 +C||F"-m"||2

+ C\\un -u"+1|l2 +C||F"+1 -w" + 1||2

+ 5||Zn+1||2/32 + C\fn+l -/"|2.

Thus, using the stability condition on Af,
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4At Y   |p"+1|<8 £  |Z" + 1 -Z"|2/9 + C7t2 + 5Ai £ ||Z"||2/8
n=0 n=0 n=l

+ CAr2{||/f||22
Lí(0,T,L'-(ü.))

ll"fH22 , }•

The further estimation of the terms involving p" follows the method of analysis

in [8].  The only (small) difference involves the use of our hypothesis on S(f) for

which the following lemma is convenient.

Lemma 4.  Let H E L°°(Q), w E H0(£l), S a (Lebesgue) measurable subset of

Í2, a = measure (S). Let e be in (0, xti\ .  Then for some constant £>4 depending only

on Í2,

J = j' H(z)w(z)dz 4 L    (Í2)

Proof.   From [10], if q = e~l, then w E Lq(Sl) and ||w|| q       <£>4e-1IM|.

Let p = q/(q - 1).  Then J < \\H\\  _     ||w||  _       and the result quickly follows.   In
LP(S)        Lq(Sl)

the case Í2 C Rl, the result holds with the epsuons omitted, since then //'(Í2) C

C°(ñ).

Using Lemma 4 with S = An(t) within the analysis in [8] results in

N-l T

At Y     sup   |(p", w)|2 < CAf2 + Ce-2)o82-2e(t)dt.
N-l

z
„ = 0 llw|| = l

Finally, we observe that |p"| < C since

M+l

P"=fn      (u^'-u^XAtT1 ds

and ut E L°°(0, T, L°°(ß)).  Combining all these results and recalling the hypothesis

8(t) < C2Af a.e. in [0, T] completes the proof of Lemma 1.

Proof of Lemma 2.   From approximation theory (e.g. [11]) on each triangle (or

interval) e¡,

\\VW-(VW)j\\
L    («,)

<Dxh        max
Ui + 02=2

bß>     bß2

3^i  b/2

(VW)

L"(e,)

where Dx is a constant depending only on a (and reference to y is to be omitted in 1

space dimension).  Since V and W are linear functions on e¡, this implies that

J"e K™0j - (VW)] dz  < 2Dxh2 fe(\VxWx\ + \VyWy\ + \VxWy\ + \VyWx\)dz

and so summing over the elements yields the result.

Proof of Lemma 3.  Equation (5a) gives (Í71 - U°, V)*/At + a(U°, V) =

(/°, V) for VESh, from which, using (14), (25), and (13), there results
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\(Ul - U°)/At\L <    sup    \a(U°, V)\ + y/c¡ \f°\
w\L=i

<n/c^(v/d^1||m° - U°\\ + \Au°\ + \f°\).

By hypothesis, u^ E H2(ß), and ||u° - UQ\\ < Ch, so by noting, from (5b), that

\Ul - U°\L < It/1 - U°\L, one has \Ul - U°\L <DQAt for some sufficiently large

D0.  Now using Eqs. (26) and (27) of [1], along with (13) shows that when Ar <

2h2/D,

(28) l(/ - AtL~lS)V\L < \V\L    for VE Sh.

By (5b)

{Un+l  _vn\L  <(t;«+l   -Un\L.

Thus by (5a) and (28),

(29) \Un + l - U"\L < \U" - Un~l\L + At\L-1(Fn-F"-l)\L.

Now using the mean value theorem, and recalling that F" = (<£:,/(•, nAt)), it follows

easily that IF/1 - F^x \ <D5hkAt for / = 1, . . . , m, where k = 1 in Rl, k = 2 in

R2, and D5 depends only on ft.  Also, m is bounded by three times the number of

elements which is bounded by D6h~k (where De depends only on a, a, and the length

or area of Í2).   Since IT1 is a diagonal matrix whose elements are bounded above by

D1h~k (£>7 depending only on a and a), one then obtains

(3°) AflZT1^" -F"_1)|£ <D8Af2,

where D8 = Ds\jD¿D1.  Using (29) and (30), we have (by induction);

\Un+1 -U"\L <D0At + nD8At2,

and then (14) completes the proof.
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