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A FORTIN OPERATOR FOR TWO-DIMENSIONAL
TAYLOR-HOOD ELEMENTS ∗, ∗∗

Richard S. Falk1

Abstract. A standard method for proving the inf-sup condition implying stability of finite element
approximations for the stationary Stokes equations is to construct a Fortin operator. In this paper,
we show how this can be done for two-dimensional triangular and rectangular Taylor-Hood methods,
which use continuous piecewise polynomial approximations for both velocity and pressure.
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1. Introduction

In this paper, we consider the approximation of the stationary Stokes equations

−ν∆u + ∇p = f in Ω,
div u = 0 in Ω, u = 0 on ∂Ω,

by elements of Taylor-Hood type where Ω is a polygon in R
2 (when triangular elements are considered) or a

union of rectangles in R
2 (when rectangular elements are considered). The construction of the Fortin operator

will be given in detail for the case of triangular elements. The extension to rectangular elements is discussed
briefly in the final section of the paper. More specifically, for triangular elements and k = 2, 3, the velocity
vector u is approximated in the space V k

0,h = V k
h ∩ H1

0(Ω), where V k
h is the space of continuous piecewise

polynomial vectors of total degree ≤ k and the pressure p is approximated in the space Qk−1
h consisting of

continuous piecewise polynomials of total degree ≤ k − 1. The stability of these pairs depends on verification
of the classical inf-sup condition

sup
v∈V 0,h

∫
Ω div v q dx
‖v‖H1(Ω)

≥ γ‖q‖L2(Ω) for all q ∈ Qh, (1.1)
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where γ is a constant independent of the mesh size h. If (1.1) is satisfied, the general theory of saddle-point
problems developed by Babus̆ka and Brezzi then implies the quasi-optimal error estimate

‖u − uh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ C inf(‖u − v‖H1(Ω) + ‖p− q‖L2(Ω)),

where the inf is taken over all v ∈ V 0,h and all qh ∈ Qh.
For many stable pairs (V 0,h, Qh) for the Stokes problem, the inf-sup condition is established by constructing

a Fortin operator Π mapping H1
0(Ω) to V 0,h and satisfying

∫
Ω

div(v − Πv) q dx, q ∈ Qh, ‖Πv‖H1(Ω) ≤ C‖v‖H1(Ω). (1.2)

Using the inf-sup condition for the continuous problem, it is then easy to establish the discrete inf-sup condi-
tion (1.1), i.e., for q ∈ Qh,

γ̄‖q‖L2(Ω) ≤ sup
v∈H1

0(Ω)

∫
Ω div v q dx
‖v‖H1(Ω)

≤ C sup
v∈H1

0(Ω)

∫
Ω div Πv q dx
‖Πv‖H1(Ω)

≤ C sup
v∈V 0,h

∫
Ω div v q dx
‖v‖H1(Ω)

,

which is the discrete inf-sup condition with γ = γ̄/C.
In the case of Taylor-Hood type elements, this approach has not been used, possibly because it is not so

obvious how to construct the Fortin operator, and stability has been established by using a number of other
approaches. Of course, once one has a stability analysis, the existence of a Fortin operator follows directly.
Our aim in this paper, however, is not to prove the existence of a Fortin operator, but to construct it by using
suitable degrees of freedom.

The first error analysis of the (k = 2) Taylor-Hood method was given by Bercovier and Pironneau [1]. Their
approach was to show that the Taylor-Hood spaces satisfy a modified form of the inf-sup condition (1.1), namely,

sup
v∈V 0,h

∫
Ω div v q dx
‖v‖L2(Ω)

≥ γ‖∇q‖L2(Ω) for all q ∈ Qh.

Using this stability result, they obtained optimal order error estimates of the form

‖∇(u − uh)‖L2(Ω) + h‖∇(p− ph)‖L2(Ω) ≤ Ch2(‖u‖H3(Ω) + ‖p‖H2(Ω)).

Later, Verfürth [9] showed that if the modified stability condition holds, then so does (1.1). Stability for the
Taylor-Hood method has also been established using the macro-element technique (see [6] for the case k = 2, [8]
for the case k = 3, and [2,3] for general k ≥ 2 in both two and three dimensions). For k ≥ 4, Scott and Vogelius [7]
have shown, that except for some exceptional meshes, the combination V k

0,h- Q̃k−1
h (i.e., discontinuous pressures)

satisfy the stability condition (1.1). It was then shown in [4] that when Q̃k−1
h is replaced by Qk−1

h , the stability
condition (1.1) is satisfied under a milder restriction on the meshes. The method to be used in this paper is
most closely related to the presentation in Brezzi-Fortin [5] for the case k = 2 and its generalization to the case
k = 3 in Brezzi-Falk [4]. Given the result of [7] for k ≥ 4, these are the most interesting cases.

In the derivation given below, we show how to construct Fortin operators, Π, for the two pairs of Taylor-Hood
elements (corresponding to k = 2 and 3). For some applications, it will also be convenient to construct Π so
that it satisfies the optimal order approximation properties

‖v − Πv‖s ≤ Chr−s‖v‖r, s = 0, 1, 1 ≤ r ≤ k + 1.
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We begin our construction by following the approach described in Brezzi-Fortin [5], which constructs the
function Πv in two pieces, i.e., Πv = Π1v + Π2v. For Π1v, we choose a Fortin operator associated with the
P k − Pk−2 Stokes element, i.e., Π1v ∈ V k

0,h satisfies

∫
Ω

div(v − Π1v)q̃ dx, q̃ ∈ Q̃k−2
h , ‖Π1v‖1 ≤ C‖v‖1,

where Q̃k−2
h denotes the space of discontinuous piecewise polynomials of degree ≤ k− 2. We note that Π1v can

be constructed to also satisfy the error estimate

‖v − Π1v‖s ≤ Chr−s‖v‖r, s = 0, 1, 1 ≤ r ≤ k + 1.

For example, we could define Π1v to satisfy for each triangle T , with vertices a, and edges e,

Π1v(a) = (Rhv)(a),
∫

e

(v − Π1v) · pk−2 ds = 0,
∫

T

(v − Π1v) · pk−3 dx = 0,

where pi denotes vector polynomials of degree ≤ i and Rhv denotes the Clement interpolant of v.
Let Π0q be a suitable approximation to q in Q̃k−2

h to be chosen later. To satisfy (1.2), we then need to
construct Π2v to satisfy:

∫
Ω

div Π2vq dx =
∫

Ω

div(v − Π1v) q dx =
∫

Ω

div(v − Π1v)(q − Π0q) dx, q ∈ Qk−1
h . (1.3)

For both k = 2 and k = 3, the construction of Π2v will rely on the use of appropriate quadrature formulas.
When k = 2, we will use the midpoint rule formula, exact for polynomials of degree ≤ 2, i.e., for φ ∈ P2(T ),

∫
T

φdx =
|T |
3

∑
i<j

φ(aij), (1.4)

where aij denotes the midpoint of the edge eij and |T | the area of T . When k = 3, we will use the following
quadrature formula (cf. [4]), exact for polynomials of degree ≤ 4, i.e., for φ ∈ P4(T ),

∫
T

φdx = |T |
(
ω1φ(a123) + ω2

3∑
i=1

φ(ai) + ω3

3∑
i,j=1
i�=j

φ(aiij)
)
, (1.5)

where ω1 = 9/20, ω2 = −1/60, ω3 = 1/10, ai denote the vertices of T , a123 the centroid, and on each edge
eij = [ai, aj ], aiij = (1/2 + θ)ai + (1/2 − θ)aj , where θ = 1/

√
12.

To make clear the basic idea of the construction of Π2v, we will first consider for both k = 2 and k = 3
a simpler case, when the space H1

0(Ω) is replaced by the space H1
n(Ω) = {v ∈ H1(Ω) : v·n = 0 on ∂Ω}. We then

define V k
n,h = V k

h ∩ H1
n(Ω). Thus, the remainder of the paper consists of four sections on triangular elements,

detailing the construction of the Fortin operator in the spaces, V 2
n,h, V 2

0,h, V 3
n,h, and V 3

0,h, respectively, and
a final section indicating how these ideas can be applied to rectangular elements.
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2. Construction of a Fortin operator in V 2
n,h

To satisfy (1.3), we define Π2v to be zero at all the vertices of Th and Π2v ·n to be zero at the midpoints of
all edges of triangles in Th, where Th is a triangulation of the domain Ω by triangles of maximum diameter h.
Here n is the unit normal to an edge and t the counterclockwise unit tangent vector along the edge. Thus, it
remains to determine Π2v · t at the midpoint of all edges in Th.

To do so, we consider an arbitrary triangle T ∈ Th, and let ai, i = 1, 3 denote the vertices of T , eij denote
the edge joining the vertices ai and aj (with length |eij | and midpoint aij), and tij denote the unit tangent
along eij in the direction from ai to aj . Using the definition of Π2v, the midpoint quadrature rule (1.4), and
the fact that ∇q is constant, we obtain

∫
T

div Π2v q dx =
∫

∂T

Π2v · n q ds−
∫

T

Π2v · ∇q dx

= −
∑

eij∈T

|T |
3

(Π2v · ∇q)(aij) = −
∑

eij∈T

|T |
3

(Π2v · tij)(aij).(∇q · tij), (2.1)

where the vanishing of the boundary integral is a consequence of the fact that on each edge v ·n is a quadratic
polynomial vanishing at three points and thus is identically zero on each edge. Letting MI and MB denote the
set of interior and boundary edges in Th, respectively, and summing over all T ∈ Th, we get

∫
Ω

div Π2v q dx =
∑
T

∫
T

div Π2v q dx = −1
3

∑
eij∈MB

|Tij |(Π2v · tij)(aij).(∇q · tij)

− 1
3

∑
eij∈MI

(|T1ij | + |T2ij |)(Π2v · tij)(aij).(∇q · tij), (2.2)

where for an edge eij ∈MI , T1ij and T2ij denote the two triangles sharing this common edge and for eij ∈MB,
Tij is the triangle with eij as an edge.

We next consider the term
∫
Ω div(v−Π1v)(q−Π0q) dx and, abandoning the approach described in [5], show

that this can also be written as a summation involving the terms (∇q · tij)(aij). We choose Π0q to be the
L2 projection of q into Q̃0

h and observe that using barycentric coordinates on the triangle T ,

3(q − Π0q) =
3∑

i=1

q(ai)[3λi(x) − 1] = q(a1)[(λ1 − λ2) + (λ1 − λ3)]

+ q(a2)[(λ2 − λ1) + (λ2 − λ3)] + q(a3)[(λ3 − λ1) + (λ3 − λ2)]

= [q(a2) − q(a1)](λ2 − λ1) + [q(a3) − q(a2)](λ3 − λ2) + [q(a1) − q(a3)](λ1 − λ3)

= (∇q · t12)|e12|(λ2 − λ1) + (∇q · t23)|e23|(λ3 − λ2) + (∇q · t31)|e31|(λ1 − λ3).

Hence,

∫
T

div(v − Π1v)(q − Π0q) dx =
|e12|

3
(∇q · t12)

∫
T

div(v − Π1v)(λ2 − λ1) dx

+
|e23|

3
(∇q · t23)

∫
T

div(v − Π1v)(λ3 − λ2) dx+
|e31|

3
(∇q · t31)

∫
T

div(v − Π1v)(λ1 − λ3) dx. (2.3)
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Summing over all T ∈ Th, we get∫
Ω

div(v − Π1v)(q − Π0q) dx =
∑
T

∫
T

div(v − Π1v)(q − Π0q) dx

=
∑

eij∈MI

|eij |
3

(∇q · tij)
∫

T1ij∪T2ij

div(v − Π1v)(λj − λi) dx

+
∑

eij∈MB

|eij |
3

(∇q · tij)
∫

Tij

div(v − Π1v)(λj − λi) dx, (2.4)

where T1ij , T2ij , and Tij are defined as above.
Hence, from (2.2) and (2.4), it is clear that (1.3) will be satisfied if for eij ∈MI , we choose

(Π2v · tij)(aij) = − |eij |
|T1ij | + |T2ij |

∫
T1ij∪T2ij

div(v − Π1v)(λj − λi) dx,

and for eij ∈MB, we choose

(Π2v · tij)(aij) = − |eij |
|Tij |

∫
Tij

div(v − Π1v)(λj − λi) dx.

To estimate the norm of Π2v, we first note that

|(Π2v · tij)(aij)| ≤
|eij |

|T1ij | + |T2ij |
‖ div(v − Π1v)‖T1ij∪T2ij‖λj − λi‖T1ij∪T2ij

≤ |eij |
|T1ij | + |T2ij |

‖ div(v − Π1v)‖T1ij∪T2ij

1√
6
(|T1ij | + |T2ij |)1/2

≤ C‖ div(v − Π1v)‖T1ij∪T2ij .

An easy scaling argument shows that

‖Π2v‖ ≤ Ch‖ div(v − Π1v)‖, ‖Π2v‖1 ≤ C‖ div(v − Π1v)‖ ≤ C‖v‖1.

Combining these results, we see that the operator Π = Π1 + Π2 satisfies (1.2). Finally, we observe that an
estimate for ‖v − Πv‖s, s = 0, 1, follows easily from the previous results, i.e., for 1 ≤ r ≤ 3,

‖v − Πv‖s ≤ ‖v − Π1v‖s + ‖Π2v‖s ≤ ‖v − Π1v‖s + Ch1−s‖v − Π1v‖1 ≤ Chr−s‖v‖r.

3. Construction of a Fortin operator in V 2
0,h

To construct a Fortin operator for functions that vanish on ∂Ω, we will need to distinguish among several
types of triangles: those that have no edges lying on ∂Ω which we designate T 0

h , those that have one edge
lying on ∂Ω which we designate T 1

h , and those that have two edges lying on ∂Ω which we designate T 2
h . Thus

Th = T 0
h ∪ T 1

h ∪ T 2
h . The issue in this case is that since Π2v · t = 0 on ∂Ω, we no longer have the degrees of

freedom (Π2v ·tij)(aij) at our disposal in equation (2.2) to deal with the terms (∇q ·tij)(aij) in (2.4), when aij is
the midpoint of a boundary edge. The remedy, following ideas from other proofs of stability of the Taylor-Hood
element, is to eliminate the terms (∇q · tij)(aij) (when eij ∈ MB) from equation (2.4) and to introduce the
additional degrees of freedom (Π2v ·nij)(aij) at the midpoints of the edges not lying on ∂Ω of triangles in T 2

h .
It will be convenient for the construction to also define T 3

h to be the set of triangles sharing a common edge
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with triangles in T 2
h , and denote by MN the set of edges common to triangles in T 2

h and T 3
h . We shall assume

that T 2
h ∩ T 3

h is empty (so the mesh must consist of more than two triangles).
In this more general case, we will again choose Π2v to be zero at all the vertices of Th. Now Π2v · t will

be zero at the midpoints of boundary edges and Π2v · n will be zero at the midpoints of all edges of triangles
in Th with the exception of the edges in MN . Thus, we need to determine Π2v · t at the midpoints of all edges
not lying on ∂Ω and Π2v · n at the midpoints of edges in MN . For triangles in T 0

h ∪ T 1
h − T 3

h , we can again
use formula (2.1), noting that for triangles in T 1

h , the term (Π2v · t)(aij) will be zero if aij is a midpoint of
a boundary edge. For triangles in T 2

h ∪ T 3
h , we need to use a modified version of (2.1). Let T3 ∈ T 3

h have
edges eij , with midpoints aij , unit tangents tij , and outward unit normals nij . Suppose first that T3 has edges
in common with only one triangle T2 ∈ T 2

h , and denote that common edge by e23. Now, since Π2v · n vanishes
along all the edges of T2 ∪ T3 except e12, we get by the midpoint quadrature rule:∫

T2

div Π2vq dx+
∫

T3

div Π2vq dx = −
∫

T2

Π2v · ∇ q dx−
∫

T3

Π2v · ∇ q dx

= −|T2| + |T3|
3

(Π2v · t23)(a23)(∇q · t23) −
|T3|
3

(Π2v · t13)(a13)(∇q · t13)

− |T3|
3

(Π2v · t12)(a12)(∇q · t12) −
|T2| + |T3|

3
(Π2v · n23)(a23)(∇q · n23).

(3.1)

Summing over all T ∈ Th, we get∫
Ω

div Π2vq dx = −1
3

∑
eij∈MI

(|T1ij | + |T2ij |)(Π2v · tij)(aij).(∇q · tij)

− 1
3

∑
eij∈MN

(|T1ij | + |T2ij |)(Π2v · nij)(aij).(∇q · nij). (3.2)

We next consider the case when a triangle in T 3
h could have edges in common with two triangles in T 2

h . This
would include the case of a mesh with three triangles. If T1 ∈ T 2

h and T3 ∈ T 3
h share the common edge e13 and

T2 ∈ T 2
h and T3 ∈ T 3

h share the common edge e23, then a simple modification of (3.1) gives the following:

∫
T1

div Π2vq dx+
∫

T2

div Π2vq dx+
∫

T3

div Π2vq dx = −
∫

T1

Π2v · ∇ q dx−
∫

T2

Π2v · ∇ q dx−
∫

T3

Π2v · ∇ q dx

= −|T2| + |T3|
3

(Π2v · t23)(a23)(∇q · t23) −
|T1| + |T3|

3
(Π2v · t13)(a13)(∇q · t13)

− |T3|
3

(Π2v · t12)(a12)(∇q · t12) −
|T2| + |T3|

3
(Π2v ·n23)(a23)(∇q ·n23)−

|T1| + |T3|
3

(Π2v · n13)(a13)(∇q ·n13).

Formula (3.2) then remains unchanged.
We now turn to the modification of formula (2.3), beginning with triangles in T 1

h , where we denote by e23
the edge lying on ∂Ω and a23 the midpoint of that edge. Using the facts that ∇ q is constant on each triangle
and |e12|t12 + |e23|t23 + |e31|t31 = 0, we may rewrite (2.3) as:

∫
T

div(v − Π1v)(q − Π0q) dx =
|e12|

3
(∇q · t12)

∫
T

div(v − Π1v)(2λ2 − λ1 − λ3) dx

+
|e31|

3
(∇q · t31)

∫
T

div(v − Π1v)(λ1 + λ2 − 2λ3) dx

=
|e12|

3
(∇q · t12)

∫
T

div(v − Π1v)(3λ2 − 1) dx+
|e31|

3
(∇q · t13)

∫
T

div(v − Π1v)(3λ3 − 1) dx.
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For triangles in T 2
h , denote by e23 the edge that does not lie on ∂Ω and a23 the midpoint of that edge. Again

using the fact that ∇ q is constant on each triangle, we get from (2.3)

∫
T

div(v − Π1v)(q − Π0q) dx =
|e23|

3
∇q · t23

∫
T

div(v − Π1v)(λ3 − λ2) dx

+
|e12|

3
∇q · [(t12 · t23)t23 + (t12 · n23)n23]

∫
T

div(v − Π1v)(λ2 − λ1) dx

+
|e31|

3
∇q · [(t31 · t23)t23 + (t31 · n23)n23]

∫
T

div(v − Π1v)(λ1 − λ3) dx.

Combining terms, we may write this in the form

∫
T

div(v − Π1v)(q − Π0q) dx =
1
3
(∇q · t23)

[
|e23|

∫
T

div(v − Π1v)(λ3 − λ2) dx

+ |e12|(t12 · t23)
∫

T

div(v − Π1v)(λ2 − λ1) dx+ |e31|(t31 · t23)
∫

T

div(v − Π1v)(λ1 − λ3) dx
]

+
1
3
(∇q · n23)

[
|e12|(t12 · n23)

∫
T

div(v − Π1v)(λ2 − λ1) dx

+ |e31|(t31 · n23)
∫

T

div(v − Π1v)(λ1 − λ3) dx
]
.

Summing over all T ∈ Th, we now obtain

∫
Ω

div(v − Π1v)(q − Π0q) dx =
∑
T

∫
T

div(v − Π1v)(q − Π0q) dx

=
∑

eij∈MI

1
3
(∇q · tij)

(∫
T1ij

div(v − Π1v)φ1ij dx+
∫

T2ij

div(v − Π1v)φ2ij dx

)
,

+
∑

eij∈MN

1
3
(∇q · nij)

(∫
T1ij

div(v − Π1v)ψ1ij dx+
∫

T2ij

div(v − Π1v)ψ2ij dx

)
,

where T1ij and T2ij are again the two triangles sharing the common edge eij , λi now denotes the continuous
piecewise linear function that is equal to one at vertex ai and zero at the other vertices of T1ij ∪ T2ij , and for
m = 1, 2,

φmij = |eij |(λj − λi), ψmij = 0, Tmij ∈ T 0
h ,

φmij = |eij |(3λj − 1), ψmij = 0, Tmij ∈ T 1
h ,

and for Tmij ∈ T 2
h ,

φmij = |eij |(λj − λi) + |eki|(tki · tij)(λi − λk) + |ejk|(tjk · tij)(λk − λj),

ψmij = |eki|(tki · nij)(λi − λk) + |ejk|(tjk · nij)(λk − λj),

where eki and ekj are the other two edges of Tmij .
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It is then immediate that we will satisfy (1.2) by choosing

(Π2v · tij)(aij) = − 1
|T1ij | + |T2ij |

(∫
T1ij

div(v − Π1v)φ1ij dx+
∫

T2ij

div(v − Π1v)φ2ij dx

)
,

(Π2v · nij)(aij) = − 1
|T1ij | + |T2ij |

(∫
T1ij

div(v − Π1v)ψ1ij dx+
∫

T2ij

div(v − Π1v)ψ2ij dx

)
,

for aij the midpoint of an edge in MI and MN , respectively.
An estimate for the norm of Π2v may be obtained by a slight modification of the procedure used in the

previous section, i.e., we have for aij ∈MI ,

|(Π2v · tij)(aij)| ≤ C‖ div(v − Π1v)‖T1ij∪T2ij ,

and for aij ∈MN ,

|(Π2v · nij)(aij)| ≤ C‖ div(v − Π1v)‖T1ij∪T2ij .

Again, an easy scaling argument shows that

‖Π2v‖ ≤ Ch‖ div(v − Π1v)‖, ‖Π2v‖1 ≤ C‖ div(v − Π1v)‖ ≤ C‖v‖1.

Combining these results, we see that the operator Π = Π1 + Π2 satisfies (1.2). Finally, we observe that an
estimate for ‖v − Πv‖s, s = 0, 1, follows easily from the previous results, i.e., for 1 ≤ r ≤ 3,

‖v − Πv‖s ≤ ‖v − Π1v‖s + ‖Π2v‖s ≤ ‖v − Π1v‖s + Ch1−s‖v − Π1v‖1 ≤ Chr−s‖v‖r.

4. Construction of a Fortin operator in V 3
n,h

To satisfy (1.3), we define Π2v to be zero at all the vertices of Th, Π2v ·n to be zero at the points aiij (defined
in the quadrature formula (1.5)) on the edges of Th and Π2v to be zero at the centroid of each triangle in Th.
Thus, it remains to determine Π2v · t at the points aiij on each edge eij of Th.

Since Π2v ·n ∈ P3 on each edge, and vanishes at four points on each edge, Π2v ·n = 0 on each edge. Hence,
using the above definitions, and the quadrature formula (1.5), we get

∫
T

div Π2vq dx = −
∫

T

Π2v · ∇q dx = −|T |
(
ω1(Π2v · ∇q)(a123) + ω2

3∑
i=1

(Π2v · ∇q)(ai)

+ ω3

3∑
i,j=1
i�=j

(Π2v · ∇q)(aiij)
)

= −|T |ω3

3∑
i,j=1
i�=j

(Π2v · tij)(aiij)(∇q · tij)(aiij). (4.1)

Summing over all T ∈ Th, and letting Aij = aiij ∪ ajji, i 	= j, we get

∫
Ω

div Π2vq dx =
∑
T

∫
T

div Π2vq dx = −ω3

∑
eij∈MB

|Tij |
∑

a∈Aij

(Π2v · tij)(a)(∇q · tij)(a)

− ω3

∑
eij∈MI

(|T1ij | + |T2ij |)
∑

a∈Aij

(Π2v · tij)(a)(∇q · tij)(a). (4.2)
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We next consider the term
∫
Ω div(v−Π1v)(q−Π0q) dx and show that this can also be written as a summation

involving the terms (∇q · tij)(aiij). In this case, we let Π0q ∈ Q̃1
h denote the piecewise linear function that

interpolates q at the vertices of T . Since q − Π0q = 0 at the vertices of T , and in the triangle T , (Π0q)(aik) =
[(Π0q)(ai) + (Π0q)(ak)]/2, we get for points in T , that

q − Π0q = 2λ1λ2[2q(a12) − q(a1) − q(a2)] + 2λ2λ3[2q(a23) − q(a2) − q(a3)] + 2λ1λ3[2q(a13) − q(a1) − q(a3)]

= −2[λ1λ2∆2q(a12) + λ2λ3∆2q(a23) + λ1λ3∆2q(a13)] = −2
∑

1≤i<j≤3

∆2q(aij)λiλj

where ∆2q(aij) = q(ai) + q(aj) − 2q(aij). Hence,∫
T

div(v − Π1v)(q − Π0q) dx = −2
∑

1≤i<j≤3

∆2q(aij)
∫

T

div(v − Π1v)λiλj dx. (4.3)

Now since qtt is constant on each edge, we easily obtain from simple Taylor expansions that

∆2q(aij) = |eij |2qtt/4 =
|eij |
8θ

[∇q · tij(ajji) −∇q · tij(aiij)]. (4.4)

Inserting this result and summing over all T ∈ Th, we get∫
Ω

div(v − Π1v)(q − Π0q) dx =
∑
T

∫
T

div(v − Π1v)(q − Π0q) dx

= −
∑

eij∈MI

|eij |
4θ

[∇q · tij(aiij) −∇q · tij(ajji)]
∫

T1ij∪T2ij

div(v − Π1v)λiλj dx

−
∑

eij∈MB

|eij |
4θ

[∇q · tij(aiij) −∇q · tij(ajji)]
∫

Tij

div(v − Π1v)λiλj dx. (4.5)

Hence, from (4.2) and (4.5), it is clear that (1.3) will be satisfied if for each eij ∈MI , we choose

(Π2v · tij)(ajji) = −(Π2v · tij)(aiij) = −
∫

T1ij∪T2ij
div(v − Π1v)λiλj dx

4θω3(|T1ij | + |T2ij |)
,

and for eij ∈MB, we choose

(Π2v · tij)(ajji) = −(Π2v · tij)(aiij) = −
∫

Tij
div(v − Π1v)λiλj dx

4θω3(|Tij |
·

Applying estimates similar to those used for the space V 2
n,h, we obtain

‖Π2v‖ ≤ Ch‖ div(v − Π1v)‖, ‖Π2v‖1 ≤ C‖ div(v − Π1v)‖ ≤ C‖v‖1, (4.6)

‖v − Πv‖s ≤ Chr−s‖v‖r, s = 0, 1, 1 ≤ r ≤ 4.

5. Construction of a Fortin operator in V 3
0,h

As in the case of V 2
0,h, we need to consider several types of triangles and modify the definition of Π2v, since

we no longer have the degrees of freedom Π2v · tij(aiij) for edges eij lying on ∂Ω. Following the procedure for
the case V 2

0,h, we eliminate the terms (∇q · tij)(aiij) for eij lying on ∂Ω from (4.5) and introduce the additional
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degrees of freedom (Π2v ·nij)(aiij) on the edges not lying on ∂Ω of triangles in T 2
h and (Π2v)(a123) for triangles

in T 1
h ∪ T 2

h .
In this more general case, we will again choose Π2v to be zero at all the vertices of Th. Now Π2v ·t will be zero

at the points aiij of boundary edges and we choose Π2v ·n to be zero at the points aiij of all edges of triangles
in Th with the exception of the edges that are common to triangles in T 2

h and T 3
h . Finally, we choose Π2v

to be zero at the centroids of all triangles in T 0
h . Thus, we need to determine Π2v · t at the points aiij of all

edges not lying on ∂Ω, Π2v · n at the points aiij of edges common to triangles in T 2
h and T 3

h , and Π2v at the
centroids a123 of all triangles in T 1

h ∪ T 2
h . For triangles in T 0

h − T 3
h , we can again use formula (4.1), while for

triangles in T 1
h − T 3

h , we have from (4.1),

∫
T

div Π2vq dx = −|T |ω1(Π2v · ∇q)(a123) − |T |ω3

∑
eij /∈∂Ω

∑
a∈Aij

(Π2v · tij)(a)(∇q · tij)(a).

For triangles in T 2
h ∪ T 3

h , we need to use a modified version of (4.1). Let T3 ∈ T 3
h have edges eij . Suppose first

that T3 has edges in common with only one triangle T2 ∈ T 2
h , and denote that common edge by e23. Let ai

123

denote the centroid of Ti. Now, since Π2v · n vanishes along all the edges of T2 ∪ T3 except e23, we get by the
quadrature formula (1.5) that

∫
T2

div Π2vq dx+
∫

T3

div Π2vq dx = −
∫

T2

Π2v · ∇ q dx−
∫

T3

Π2v · ∇ q dx

= −|T2|ω1(Π2v · ∇q)(a2
123) − ω3(|T2| + |T3|)

∑
a∈A23

(Π2v · t23)(a)(∇q · t23)(a)

− ω3|T3|
∑

a∈A13

(Π2v · t13)(a)(∇q · t13)(a) − ω3|T3|
∑

a∈A12

(Π2v · t12)(a)(∇q · t12)(a)

− ω3(|T2| + |T3|)
∑

a∈A23

(Π2v · n23)(a)(∇q · n23)(a) − |T3|ω1(Π2v · ∇q)(a3
123),

where the last term is not needed if T3 ∈ T 0
h . Summing over all T ∈ Th, we get

∫
Ω

div Π2vq dx = − ω3

∑
eij∈MI

(|T1ij | + |T2ij |)
∑

a∈Aij

(Π2v · tij)(a)(∇q · tij)(a)

− ω3

∑
eij∈MN

(|T1ij | + |T2ij |)
∑

a∈Aij

(Π2v · nij)(a)(∇q · nij)(a) − ω1

∑
T∈T 1

h ∪T 2
h

|T |(Π2v · ∇q)(a123).

We note that if a triangle in T 3
h has edges in common with two triangles in T 2

h , then using an argument analogous
to the one used for V 2

0,h, the above formula will still be valid.
We next consider the modification of formulas (4.3) and (4.5) required for triangles in T 1

h and T 2
h . We begin

by observing that since ∇q is a linear function, ∇q is completely determined by its values at the two points aiij ,
ajji on any edge eij , together with its value at a123. It is easy to check that

∇q =
1
4θ

[λi(2θ + 1) + λj(2θ − 1) − 4θλk]∇q(aiij)

+
1
4θ

[λi(2θ − 1) + λj(2θ + 1) − 4θλk]∇q(ajji) + 3λk∇q(a123), (5.1)

where λk is the barycentric coordinate that is equal to zero on the edge eij .
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Now let T ∈ T 1
h , and denote by e23 the edge lying on ∂Ω. Using the formula

|e12|t12 + |e23|t23 + |e31|t31 = 0,

and the above result, we obtain

|e23|∇q · t23 = −|e12|∇q · t12 − |e31|∇q · t31

= −|e12|
{

1
4θ

[λ1(2θ + 1) + λ2(2θ − 1) − 4θλ3]∇q(a112) · t12

+
1
4θ

[λ1(2θ − 1) + λ2(2θ + 1) − 4θλ3]∇q(a221) · t12 + 3λ3∇q(a123) · t12

}

− |e31|
{

1
4θ

[λ3(2θ + 1) + λ1(2θ − 1) − 4θλ2]∇q(a331) · t31

+
1
4θ

[λ3(2θ − 1) + λ1(2θ + 1) − 4θλ2]∇q(a113) · t31 + 3λ2∇q(a123) · t31

}
.

Since λ1(a223) − λ1(a332) = 0, λ2(a223) − λ2(a332) = 2θ, λ3(a223) − λ3(a332) = −2θ, and 1/(4θ) = 3θ, we have

|e23|[∇q · t23(a223) −∇q · t23(a332)] = |e23|(∇q · t23)(a223 − a332)

= |e12|(∇q(a112) · t12)3θ(2θ − 1) − |e12|(∇q(a221) · t12)3θ(2θ + 1)

+ |e31|(∇q(a331) · t31)3θ(2θ + 1) − |e31|(∇q(a113) · t31)3θ(2θ − 1)

+ |e12|(∇q(a123) · t12)6θ − |e13|(∇q(a123) · t31)6θ.

Using this formula, |e23|[∇q · t23(a223)−∇q · t23(a332)] may be eliminated from formula (4.5) on edges eij ∈MB

for triangles in T 1
h by introducing additional terms containing one of the following expressions:

∇q · t12(a112), ∇q · t12(a221), ∇q · t31(a113), ∇q · t31(a331), ∇q(a123).

We next consider a triangle T ∈ T 2
h . In this case, let e23 be the edge not lying on ∂Ω. We then want to write

the quantities
∇q · t12(a112), ∇q · t12(a221), ∇q · t31(a331), ∇q · t31(a113)

in terms of the quantities
∇q(a223), ∇q(a332), ∇q(a123).

This follows directly from (5.1) by choosing i = 2, j = 3, and k = 1. Hence, these quantities can also be
eliminated from (4.5) on edges eij ∈MB for triangles in T 2

h .
Inserting these results, we can then satisfy (1.3) by obvious choices, analogous to those in the previous

section, of the quantities Π2v · t at the points aiij of all edges not lying on ∂Ω, Π2v · n at the points aiij of
edges common to triangles in T 2

h and T 3
h , and Π2v at the centroids a123 of all triangles in T 1

h ∪ T 2
h . As in the

discussion for V 2
0,h, these changes do not affect the estimates given in (4.6).

6. Construction of a Fortin operator on rectangles

In this final section, we show how the ideas previously developed can be extended to rectangles. To keep the
treatment brief, we consider here only approximations to u in the space V k

n,h = V k
h ∩ H1

n(Ω), (rather than
V k

0,h = V k
h ∩H1

0(Ω)), since as we have seen in the previous sections, the extension to zero boundary conditions
is quite technical. Rather than change notation, we now use V k

h to denote the space of continuous piecewise
polynomial vectors of degree ≤ k in each variable and Qk−1

h , the approximating space for p, to denote the space
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of continuous piecewise polynomials of degree ≤ k − 1 in each variable. We again set Πv = Π1v + Π2v, where
now Π1v is a Fortin operator associated with the Qk − Q̃k−2 Stokes element, i.e., Π1v ∈ V k

0,h satisfies∫
Ω

div(v − Π1v)q̃ dx, q̃ ∈ Q̃k−2
h , ‖Π1v‖1 ≤ C‖v‖1,

where Q̃k−2
h now denotes the space of discontinuous piecewise polynomials of degree ≤ k − 2 in each variable.

We note that Π1v can be constructed to also satisfy the error estimate

‖v − Π1v‖s ≤ Chr−s‖v‖r, s = 0, 1, 1 ≤ r ≤ k + 1.

For example, we could define Π1v to satisfy for each rectangle K, with vertices a, and edges e,

Π1v(a) = (Rhv)(a),
∫

e

(v − Π1v) · pk−2 ds = 0,
∫

K

(v − Π1v) · pk−2 dx = 0,

where pi denotes vector polynomials of degree ≤ i in each variable and Rhv denotes the Clement interpolant
of v.

Let Π0q be a suitable approximation to q in Q̃k−2
h to be chosen later. To satisfy (1.2), we again need to

construct Π2v to satisfy:∫
Ω

div Π2vq dx =
∫

Ω

div(v − Π1v) q dx =
∫

Ω

div(v − Π1v)(q − Π0q) dx, q ∈ Qk−1
h . (6.1)

As in the case of triangular elements, we shall make use of a suitable quadrature formula. In this case, it
is the two-dimensional Gauss-Lobatto formula, exact for polynomials of degree ≤ 2k − 1 is each variable, and
given on the rectangle Rij = [xi−1, xi] × [yj−1, yi] by:

1
|Rij |

∫ xi

xi−1

∫ yj

yj−1

f(x, y) dy dx = H2
0 [f(xi−1, yj−1) + f(xi, yj−1) + f(xi−1, yj) + f(xi, yj)]

+H0

k−1∑
m=1

Hm[f(xi,m, yj−1) + f(xi,m, yj) + f(xi−1, yj,m) + f(xi, yj,m] +
k−1∑
m=1

k−1∑
l=1

HmHlf(xi,m, yj,l), (6.2)

where the Hi denote the Gauss-Lobatto weights, and xi,1, . . . , xi,k−1 and yj,1, . . . , yj,k−1 denote the interior
Gauss-Lobatto points in the intervals [xi−1, xi] and [yj−1, yi], respectively.

To satisfy (6.1), we define Π2v to be zero at all the vertices of Th and Π2v · n to be zero at the interior
Gauss-Lobatto points on the edges of Th. Thus, it remains to determine Π2v · t at the interior Gauss-Lobatto
points on each edge eij of Th and Π2v at the interior Gauss-Lobatto points of each rectangle in Th.

Since Π2v ·n ∈ Pk on each edge and vanishes at k+ 1 points on each edge, Π2v ·n = 0 on each edge. Hence,
using the quadrature formula (6.2), we get

∫
Rij

div Π2v q dx = −
∫

Rij

Π2v · ∇q dx = −|Rij |H0

k−1∑
m=1

Hm

[
(Π2v · t)(xi,m, yj−1)(∇q · t)(xi,m, yj−1)

+ (Π2v · t)(xi,m, yj)(∇q · t)(xi,m, yj) + (Π2v · t)(xi−1, yj,m)(∇q · t))(xi−1, yj,m)

+ (Π2v · t)(xi, yj,m)(∇q · t)(xi, yj,m)
]
− |Rij |

k−1∑
m=1

k−1∑
l=1

HmHl(Π2v · ∇q)(xi,m, yj,l).

Since the analysis is similar to the case of triangles, we now present only some of the main calculations,
further simplifying the presentation by restricting our attention to the two lowest order cases, k = 2 and k = 3.
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Letting MI and MB denote the set of interior and boundary edges in Th, respectively, and summing over
all Rij ∈ Th, we get for k = 2,

∫
Ω

div Π2v q dx =
∑

Rij∈Th

∫
Rij

div Π2v q dx = −H0H1

∑
eij∈MB

|Rij |(Π2v · tij)(aij).(∇q · tij)

−H0H1

∑
eij∈MI

(|R1ij | + |R2ij |)(Π2v · tij)(aij)(∇q · tij) −H2
1

∑
Rij∈Th

|Rij |(Π2v · ∇q)(xi,1, yj,1), (6.3)

where aij denotes the midpoint of the edge eij , R1ij and R2ij denote the two rectangles sharing this common
edge eij ∈ MI , and Rij is the rectangle with edge eij ∈ MB. For k = 3, we obtain a similar expression with
two interior Gauss-Lobatto points per edge and four interior Gauss-Lobatto points in each rectangle.

As in the case of triangles, the main new idea in this paper is to show that the term
∫
Ω

div(v−Π1v)(q−Π0q) dx
can also be written as a summation involving the terms (∇q · tij)(aij) (i.e., the tangential derivative of q at
the interior Gauss-Lobatto points along rectangle edges), and ∇q at the Gauss-Lobatto points interior to the
rectangles in Th. This is done by showing that q − Π0q can be written in this form.

For the case k = 2 we choose, as in the case of triangles, Π0q to be the L2 projection into piecewise constants,
i.e., on the rectangle R,

Π0q =
1

4|R| [q(xi−1, yj−1) + q(xi, yj−1) + q(xi−1, yj) + q(xi, yj)].

To simplify computations, we consider the unit square. Then

8[q − Π0q] = 2q(0, 0)[4(1 − x)(1 − y) − 1] + 2q(1, 0)[4x(1 − y) − 1] + 2q(0, 1)[4(1 − x)y − 1] + 2q(1, 1)[4xy − 1]

= 2q(0, 0)[(1 − 2x)(1 − 2y) − 2x− 2y + 2] + 2q(1, 0)[(2x− 1)(1 − 2y) + 2x− 2y]

+ 2q(0, 1)[(1 − 2x)(2y − 1) + 2y − 2x] + 2q(1, 1)[(2x− 1)(2y − 1) + 2y + 2x− 2]

= [q(1, 0) − q(0, 0)][(2x− 1)(1 − 2y) + 2(2x− 1)] + [q(1, 1) − q(1, 0)][(2x− 1)(2y − 1) + 2(2y − 1)]

+ [q(0, 1) − q(1, 1)][(1 − 2x)(2y − 1) + 2(1 − 2x)] + [q(0, 0) − q(0, 1)][(1 − 2x)(1 − 2y) + 2(1 − 2y)]

= (∇q · t)(1/2, 0)(2x− 1)(3 − 2y) + (∇q · t)(1, 1/2)(2x+ 1)(2y − 1)

+ (∇q · t)(1/2, 1)(1 − 2x)(2y + 1) + (∇q · t)(0, 1/2)(1 − 2y)(3 − 2x),

where t denotes the counterclockwise unit tangent vector to R. Hence, with this choice of Π0q, q − Π0q will
have the desired form. Since the term ∇q at the center of the rectangle does not occur in this expression, we
may choose Π2v = 0 at this point. The remainder of the analysis is similar to the case of triangles.

For the case k = 3, we choose Π0q to be the piecewise bilinear interpolant of q. Then, again performing
calculations on the unit square, we have

q−Π0q = 2x(1−x)(1− y)(1−2y)[2q(1/2, 0)− q(0, 0)− q(1, 0)]+2x(1−x)y(2y−1)[2q(1/2, 1)− q(0, 1)− q(1, 1)]

+ 2(1 − x)(1 − 2x)y(1 − y)[2q(0, 1/2)− q(0, 0) − q(0, 1)] + 2x(2x− 1)y(1 − y)[2q(1, 1/2)− q(1, 0) − q(1, 1)]

+ 4x(1 − x)y(1 − y)[4q(1/2, 1/2)− q(0, 0) − q(1, 0) − q(0, 1) − q(1, 1)].

Terms of the form 2q(1/2, 0) − q(0, 0) − q(1, 0) are handled just as in the case of triangles by using (4.4) to
write them as the difference of the tangential derivative of q at the two interior Gauss-Lobatto points along the
edge. Thus, it remains to show that 4q(1/2, 1/2)− q(0, 0)− q(1, 0)− q(0, 1)− q(1, 1) can be written in terms of
the tangential derivative of q at the two interior Gauss-Lobatto points along the rectangle edges and ∇q at the
Gauss-Lobatto points interior to the rectangle.
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First write

4q(1/2, 1/2)− q(0, 0) − q(1, 0) − q(0, 1) − q(1, 1) = [2q(1/2, 1/2)− q(1/2, 0)− q(1/2, 1)]

+ [2q(1/2, 1/2)− q(0, 1/2)− q(1, 1/2)] +
1
2
{
[2q(1/2, 0)− q(0, 0) − q(1, 0)]

+ [2q(1/2, 1)− q(0, 1) − q(1, 1)] + [2q(0, 1/2)− q(0, 0) − q(0, 1)] + [2q(1, 1/2)− q(1, 0) − q(1, 1)]
}
.

The last four terms as handled as above, so we only have to deal with the first two terms. Since q ∈ Q2(R),
the function 2q(x, 1/2) − q(x, 0) − q(x, 1) is a quadratic in x, so can be written as a linear combination of its
values at the four Gauss-Lobatto points on [0, 1], i.e., at x = a0 = 0 and x = a3 = 1, and the two interior
Gauss-Lobatto points, which we denote a1 and a2. As above, we can then write 2q(ai, 1/2)− q(ai, 0) − q(ai, 1)
as a linear combination of qy(ai, a1) and qy(ai, a2). When i = 0 or i = 3, these will be tangential derivatives
on the boundary of the rectangle. The other term is handled in a similar manner. Combining these results,
we see that the term 4q(1/2, 1/2)− q(0, 0)− q(1, 0) − q(0, 1)− q(1, 1) can be written in terms of the tangential
derivatives of q at the interior Gauss-Lobatto points on the boundary of the rectangle and the gradient of q at
the Gauss-Lobatto points in the interior of R. The remainder of the derivation follows as in the case of triangles.
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