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STABILITY OF HIGHER-ORDER HOOD-TAYLOR METHODS*
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Abstract. The stability of a higher-order Hood—Taylor method for the approximation of the
stationary Stokes equations using continuous piecewise polynomials of degree 3 to approximate ve-
locities and continuous piecewise polynomials of degree 2 to approximate the pressure is proved. This
result implies that the standard finite element method using these spaces satisfies a quasi-optimal
error estimate. The technique used may also be applied to prove the stability of Hood—Taylor rect-
angular elements of arbitrary degree k for velocities and k — 1 for pressure in each variable.
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1. Introduction. The purpose of this note is to prove the stability of a higher-
order Hood-Taylor method for the approximation of the stationary Stokes equations

—vAu+Vp=f inQ,
divu=0 in ,
u=0 ondN.

The original Hood-Taylor method, proposed in [6], seeks to approximate the velocity u
by continuous piecewise quadratic functions and the pressure p by continuous piecewise
linear functions. The approximate problem has the standard form:

Find up € Vi €V = (H}(Q))2 and py € Qn C Q = {q € L2(Q) : [, ¢dz =0}
such that

a(up,vp) — (p,divvy) = (f,vy) for all v, € Vy,
(divup,q) =0 for all g» € Qp.

The first error analysis of this method was given by Bercovier and Pironneau [1]. Their
approach was to show that the Hood-Taylor spaces satisfied the condition

(L1) sup Jq divvh g dz

>7IVanll2(@) for all g € Qp,
vieVa  [IVallLz(e)

where v is a constant independent of the meshsize h. This is a modified form of the
standard stability condition

divv dx
(1.2) sup fﬂ——h-q—h— > Yllanllz2(@) for all gn € Qp,
vaevy  IVallEi(e)
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which from the general theory of saddlepoint problems developed by Babuska and
Brezzi (cf. [2]), implies the quasi-optimal error estimate

(1.3)  Jlu—uplla (@) + Ip = prllLz2@) < Cinf(|lu = vl (@) + 1P — arllz2 @)

where the inf is taken over all vi, € V}, and ¢n, € Q. Based on their stability result,
Bercovier and Pironneau were able to prove optimal order error estimates of the form

IV (u —up)llLz2(q) + AV (D — pr)llz2(e) < Ch2 (lullaze) + llplla2(e)) -

Later, Verfiirth [9] proved that if the modified stability condition (1.1) holds, then
(1.2) also holds, thus fitting the analysis of this method into the standard theory.

The obvious first generalization of the Hood-Taylor method is to consider the
case where V), consists of continuous piecewise cubics and @, consists of continuous
piecewise quadratics. It is the purpose of this paper to show that this pair of spaces
also satisfies the stability condition (1.2) and hence the quasi-optimal error estimate
(1.3). The proof uses the ideas of [9] and [1] and follows the presentation in Brezzi
and Fortin [3] for the original Hood-Taylor method. Another proof of the stability
of the original method based on the macro element technique is given in [5], and
a proof of the main result of this paper based on the macro element technique has
been contemporaneously given by Stenberg [8]. We note that for n > 4 Scott and
Vogelius [7] have shown that, except for some exceptional meshes, the combination
of continuous piecewise polynomials of degree < n for velocities and discontinous
piecewise polynomials of degree < n — 1 for pressure satisfy the stability condition
(1.2). In the final section of the paper, we discuss how the mesh restrictions they
require may be weakened when continuous pressure elements are used.

In the next section, we state and prove a numerical integration formula which
will be needed for the proof of our main result in §3. We shall use the standard
notation that the subscript 0, applied to a norm denotes the norm in L2(2) and the
subscript 1, denotes the norm in H1(2). When the norm is applied to a vector, the
corresponding vector norm is used.

2. A numerical integration formula. The proof of our main result depends
on a quadrature formula which is exact for quartic polynomials on a triangle. To state
this formula, we let a1, a2, az denote the vertices of a triangle T, a123 the centroid,
and define on each side a;a; the points

(2.1) Qi35 = (% + 0)a; + (% —0)aj,

where 8 = 1/+/12.
LEMMA 2.1. The quadrature formula

3
(2.2) / $dz = |T| [ wid(arzs) + w2 Y $(ai) +ws Y _ d(aij) | ,
T i=1 i#j
with |T| the area of T and w1 = 9/20, we = —1/60, and w3z = 1/10, is ezact for all
polynomials of degree < 4 on T.

Proof. Since the quadrature points are easily seen to be a unisolvent set for
polynomials of degree < 3 on T', we obtain a formula exact for polynomials of degree
< 3 by choosing the weights as the integrals of the Lagrange basis functions associated
with those points. By symmetry, the weights at the three vertices will be equal and
the weights at the six points ai; will be equal. Choosing ¢ = A1A2A3 implies that
w1 = 9/20. Next, choosing ¢ = A1X2, we find that ws = 1/10. The choice ¢ =1 then
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implies that wg = —1/60. It thus remains to show that the formula is also exact for
polynomials of degree 4. To accomplish this, we need only show that the formula holds
for the functions A} and A1 A2A3(A; — A;). Note that the second of these functions is
zero at all integration points and, by symmetry, is easily seen to have zero integral.
Hence the integration formula is valid for these functions. For the function A}, a
simple computation (most easily done on the standard reference triangle) shows that
both sides of the formula give the value 1/30.

3. Main results. Let 7, be a regular sequence of triangulations of Q (cf. Ciarlet
[4]). To prove our stability result, we shall place a mild restriction on the triangu-
lations, which we describe as follows. Consider h fixed and let S2 denote the set of
triangles with two sides lying on 992 and let S3 denote the set of triangles sharing a
common edge with triangles of S2. We shall assume that 7, consists of more than one
triangle, that S2 N S3 is empty, and that triangles of S3 share a common edge with
only one triangle of the set S2. For future reference, we shall denote by S; the set of
remaining triangles.

THEOREM 3.1. Under the assumptions on Ty, described above, the spaces

(3.1) Vi, = {Vh € (H&(Q))Z : Vth € (P3)2 for all T € Th},
(3.2) Qn = {qh €EHY Q) :qn€ P forallT € Th,/ gndx = 0}
Q

satisfy the stability condition (1.2).
Proof. We will prove that there exist positive constants 41 and 2 such that for
every qp # 0 in Qp, we can find vy, € V), satisfying

(3.3) / div vagn dz > v1llgnll3 o
Q

(3.4) IvallLe < v2llgnllo.e-

This will imply (1.2) with 4 = 71 /2. In order to construct v, we consider first the
L2-projection §p, of g on the space of piecewise constants. It is well known that the
stability condition (1.2) holds if we take a piecewise quadratic continuous velocity field
and a piecewise constant pressure field (e.g., see [5]). This implies that there exists
wp, € Vy, such that

(3.5) /Q divwadn dz > c1|Zal12 0,

(3.6) Iwnll1,e < c2llgnllo,-

Hence we have

/ div wpgp dz = / div wp Gy dz + / divwp(gp — @n) dz
Q Q Q

(3.7 > c1l|gnllf o — cellgnllo,ellgn — @nllo,o-

We now construct a function z, € V) which takes care, in a suitable sense, of the
“nonconstant” part g, —§p. Then vy will be chosen as v, = wp,+ 5z, for a convenient
choice of 8. We first define z;, to be zero at all vertices of 7, and zp - n to be zero
at all the nodes on the edges of 7, (there are two such nodes on every edge) with the
exception of the nodes on the common edge of triangles in S U S3. Note that this
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implies that z, - n = 0 on every triangle edge, except the edges that are common to
triangles in Sy and S3. Since z, must be in (H}(£2))2, we need zp, - t (the tangential
component of z) to vanish on Q. We are still free to prescribe z;, at the centroids of
the triangles of 7, zp, - n at the nodes on the common edge of triangles in S2 U S3, and
zp, - t at the nodes on the internal edges. We first choose, for every internal edge e, a
unit tangent vector 7¢. Note that, by convention, t is oriented in the counterclockwise
direction, and therefore it reverses its direction when seen from an adjacent triangle.
This will not be the case with 7¢. For triangles T' € S, let e3 denote the interior
edge of T' and 1 the unit outward normal along es. We are now able to complete the
definition of zp. On every triangle T, we set

(3.8) zn(a123) = —|T'|Vgn(ai23)
and for every edge e of T internal to 2, we define
(3.9) zn - T¢(aiij) = —le|2(Van - 7¢)(aiss),

where the ai;; are the nodes, on e, of the integration formula (2.2) defined by (2.1).
Finally, we choose at the nodes on the common edge e3 of triangles in S2 U S3,

(3.10) zn - 1(asi;) = —ele|2(Va} - 1)(aiij),

where by g2, we mean g5 as defined on T € S (the normal derivative of gn will in
general not be continuous across e3) and ¢ is a constant to be chosen later.

We now show by a standard argument that

(3.11) lznll1,0 < csllgn — nllo,0-

Since the points ai23, a;, and as; are a unisolvent set of points for polynomials of
degree < 3 on T', we write z;, in terms of the Lagrange basis functions corresponding
to these points and use standard inverse estimates to obtain for triangles T' € Si,

3
Izallr < C | |za(a128)| + ) lzn(ai)l + D |z (aiis)|
i=1 i#i

< C | |Van(azs)IT] + Y [Van - T¢(aiis)|lef?
i#j

< CIT||IV(gn = @) lloo,T

< Clign — @nllo,T-

For a pair of triangles T2 € Sz and T3 € S3 with a common edge, a similar argument,
also incorporating the additional term involving the normal component of z;, gives
the same result for ||zp||1,1,, and for T3 we get

1zall1,7s < Cllgn — @nllo,uTs-

The desired result follows by squaring and summing the results over all the triangles.
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Now by Lemma 2.1, we have for every T in Sy
/ divzpqp dz = —/ zy, - Vqp dz
T T

3
= —|T| (leh - Vgn(ai23) + we Z zp, - Vap(a;)
—
(3.12) '
+ w3 Z zp - th(aiij))
i#j

=T | w1|Van|2(ar23)|T| +ws Y D |Van - 7¢[2(aiis)lef? | ,
ego0 i#j

where the notation has the obvious meaning. We next show by an easy scaling argu-
ment that

(3.13) / div zngn dz > Cllgn — @ull§ 7
T

Let Fr(2) denote the affine mapping from the standard reference triangle 7' to T and
define ¥ = vo Fr for functions v defined on T'. Since at least two edges in each triangle
in S7 are internal, it is easy to check that the expression

1/2

Van2(a128) + 3 3 [Van - 7¢[2(aiis)

e@ 09 i#£j

vanishes only if g5 is constant and hence is a norm on quadratic polynomials modulo
constants on T'. Thus,

lan = @uli3z < CITIGn = anl12

S CIT| | [Van(@ras)? + D7 D [Van - 7(asis) |2
ed o0 i#j

< CIT| { [Van(aa2s) 2IT| + ) D [V - 7e(assj) el
e o i#j

SC/ div zpqp dx.
T

Now let T> € Sz and T3 € Ss share the common edge es and denote by 73 and
73 the counterclockwise unit tangent and outward unit normal vectors to T2 along
e3. We use the superscripts 2 and 3 to denote the values of various quantities on the
triangles T> and T3, respectively, and the notation Zea to denote that the quantity
which follows is evaluated only on the edge ez. Now since zp - n vanishes along all the
edges of T2 U T3 except es,

div zpqn dx + / div zpqp dzx = —/ zp,Vap dr — / zr,Vap dz.
T3 T2

T2 T3
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By Lemma 2.1, we get that

- [ wVando = (w1|Vq§|2(a%23>|Tz|
T,

(3.14) +ws Y [IVaR - 782(aiij)es|?

es i#j

+¢|Vq? -n3|2(aiij)|63|2]>
and

- [ zhv«zhdw—|Tal(w1Ith|2<am>|Tal+ws 3 3 IVl - rel2(ad, el?
T e@on i#j

+ws Yy e(Vah - m°)(Va}- 173)(aiij)|83|2)

€3 i#j

(315) > |T3| (W1|th|2((1123)|T3| + w3 Z Z 'th, Te|2(au_1)|e|2
e@ o i#j

€|Ts| 3
—ws) ) [2|T2| IVay - 7312 (aiis)|es|?

es i#j

L]
+ SNIVaE el )

Hence,

divzagrdz + | divzags dz > |Ta| | w1|Va2|2(a2y,)|T2|
T, T3

+ws Y 3 [IV6E - T2 (aig)lesl? + £ Vg - P2 (ais)eal?]
es i#j

+|Ts| | w1|Vg3|2(atpe)|Ts] +wa Y D [Vad - 7¢[2(ad;)lel?
e@oQ i#j

T3] o 4
—w3y Y 3[Ty| Vi - 131*(aii;)|es|?

€3 1A

Employing an argument similar to that used for triangles in S, we get that

121 (6 VR332l + w5 Y- 3 [[VaR - 78 (asseal + £1V4E - s sl
e3 i#j

> Cllgn = @nll3 7,
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and
(3] (VR @t Tl + w0 3 Y193 - 7ef(ad e
e i#j
€|T3|
—n 3 Y SR i (ass esl
es i#j
> csllan — @l g, — Tols 3 5 S22 1963 - moj2(asssfeal?
0,T3 2IT | h J
e3 i#j
> (cs = co€)llgn — Gnll3 -
Hence, for € sufficiently small,
(3.16) div znqn dx + / div zpgp dz > Cllgn — ‘Ih"%"zun'
T T3

Consider now a vy, of the form v, = wy + fBz,. From (3.7), (3.13), and (3.16),
we have

/Qdiv vign dz > c1l|gnll3 o — celldnlloellgn — dullo + Beallgn — dnlld o

2
C1 - C
> Llanl+ (Bes = 52 ) low = BlB 2 Slonlhe

for B = (c? +¢2)/(2c1c4) (since g, and gp, — gp, are orthogonal in L2(€2)). Finally, (3.6)
and (3.11) give

Ivallne < (c2 + Bes)llgnllo.e;
so that (3.3) and (3.4) hold.

Remark. Tt is easy to see that if instead of (3.8), (3.9), and (3.10), we choose the
scaling

zn(a123) = —Van(a123), 2zn - 7(ais;) = —(Van - 7¢)(aiis),
zp - n(aiij) = —e(Vq,% . n)(aiij)a

we obtain the Bercovier-Pironneau type inequality
[ divanan do 2 el Vanloallzaloa.
Q

We note that the same proof applies to the case of rectangular elements on a
mesh 75, in which we take continuous velocities which are locally Qr = {polynomials
of degree < k in each variable} and a continuous pressure which is locally in Qx—1. The
corresponding quadrature formula will be the tensor product of the one-dimensional
Gauss—Lobatto formula exact for polynomials of degree < 2k — 1. Thus, we have the
following theorem.

THEOREM 3.2. The spaces

Vi = {vh € (H}(Q))? : vi|k € Qi for all rectangles K € 14},
Qn = {qh € H1(Q) : gn € Qr—1 for all rectangles K € Th,/ gndx = 0}
Q

satisfy the stability condition (1.2).
It is also easy to check that the following negative result holds.
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THEOREM 3.3. The combination of continuous Qi velocities and discontinuous
Qr—1 pressure does not satisfy the stability condition (1.2).
To see this, consider the checkerboard function which is locally of the form

ghn=(-lh)(z—l) - (@-l-1)y—L)y—1) - (y = lk-1),

where [1,1l2,+-+ ,lx,—1 are the internal Gauss-Lobatto quadrature points. An explicit
analysis of the difficulties in the Q1 — Qo case may be found in [5].

4. Remarks on higher-order triangular Hood—Taylor methods. We close
the paper with some remarks about triangular Hood—Taylor methods using the combi-
nation of continuous piecewise polynomials of degree < n for velocities and continuous
piecewise polynomials of degree < n —1 for pressure, with n > 4. As mentioned previ-
ously, Scott and Vogelius have established stability in this range for the combination
of continuous velocities and discontinuous pressures, under certain restrictions on the
mesh. To describe their results, we recall their definition that a vertex is said to be
singular if the edges meeting at that vertex fall on two straight lines. There are four
types of such singular boundary vertices, shown in Fig. 3 of [7]. Following [7], we
define PI.0 to be the space of functions in C°(Q), which are polynomials of degree
< 7 on each triangle T and vanish on 89 and PI"l=1 to be the space of functions ¢,
which are polynomials of degree < r on each triangle T' and satisfy at any internal
singular vertex the condition

4
(4.1) > (=1)ig(wo) =0,

i=1
where ¢i(z0) = @|1,(z0) and Ti,--- , Ty are the triangles meeting at o, numbered
consecutively. We then let P[r,=1 denote the subspace of PIrl:—1 consisting of functions
¢ which satisfy the following two additional requirements.

k
(4.2) At any singular boundary vertex zo, Z(—l)iq&i(mo) =0,
=1
where T4, , T} are the triangles meeting at zo, numbered consecutively and

(4.3) /Q édz = 0.

The results of Scott and Vogelius then require a certain nondegeneracy condition
on the triangulations which they decribe as follows. Let zo denote any nonsingular
vertex and let 6;,1 < i < k, be the angles of the triangles T;,1 < i < k, meeting at
9. Define

R(zo) =max{|0; +6; —7|:1<éi,j<kandi—j=1 mod k},
where the term mod k is dropped if z¢ is a boundary vertex. R(zo) measures how
close zg is to being singular. Set
Ry(mh) = min{R(zo) : zo is a nonsingular internal vertex of 7},
Rp(mh) = min{R(zo) : o is a nonsingular boundary vertex of 75},
and .
R(m) = min[R;(mh), Re(mh)]-

The main result of [7] which is relevant to this paper is the following theorem (cf.
Theorem 5.2 of [7]).
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THEOREM 4.1. Assume that all internal angles at corners of the polygonal do-
main  are less than 2w. Let T, be a quasi-uniform family of triangulations of 2, and
let n be an integer > 4. Assume that R(7y) > 6 > 0, with § independent of h. Then

div(PInL0(ry) x Plnl0(ry)) = Pln=1l=1(r),
and there exists a linear operator
,Cﬁ : ’]5[""1]»—1(7'h) — ’ﬁ[nlyo(rh) X 'ﬁ["]’o(’rh),

such that
divLhip=¢ V¢ € Pin-ll-1(r,)
and
1£gllLe < C(n— 1)K ||gllo,0
with constants C and K independent of h, n, and ¢.

Since this result immediately implies the stability condition (1.2) for the spaces
of the theorem, we wish to examine it more closely in the case of continuous pressures
to see if the mesh restriction Ioi(rh) > 6 > 0 can be weakened. Examining the proof
of this theorem, we note that the only place the mesh restriction is needed is in the
proof of Lemma 4.1 of [7] which constructs for every ¢ € Plr=1=1(r;) a function
v € PlO(1y,) x Plrl.0(7,) satisfying

¢ —divv =0 for all vertices of

and
[vllse < CrX|éllo,0,

with constants C and K that are independent of i, n, and ¢. The mesh restriction is
needed since otherwise the constant C' given above will become unbounded as § — 0.
A special case of the proof (cf. (4.2) of [7]) shows in fact that for continuous pressures,
the construction given produces a constant C which remains bounded with only the
condition Rp > 6§ > 0. In fact, the minimal angle condition implies that R(zo) > 6 at
any boundary vertex at which more than four triangles meet and, in the case in which
exactly two or four triangles meet at a nonsingular boundary vertex, the construction
of the proof (considering triangles pairwise) also produces a bounded constant without
requiring R(zo) > 4. Since a boundary vertex involving only one triangle is singular,
we only need require the condition R(zo) > § at nonsingular boundary vertices at
which exactly three triangles meet. We note that from the remarks in [7], this condition
can be eliminated if we require ¢(zo) = 0 at such a vertex.

The implication of the above is that under this mild restriction on the mesh and
for n > 4, the stability result (1.2) is valid for all pressures ¢ € CO(Q) N Plr—1=1(7,),
Since (4.3) is already satisfied by functions in @5 and (4.1) is automatically satisfied for
continuous pressures, we need only consider the condition (4.2). For singular vertices
with k = 2 or 4, (4.2) is again automatically satisfied for continuous pressures. When
k =1 or 3, (4.2) implies, in the case of a continuous pressure ¢, that ¢(zo) = 0. If we
seek to satisfy (1.2) by finding a function v € V}, for which Theorem 4.1 holds, then
this restriction cannot be eliminated, since vy, = 0 on 92 implies in these cases that
divvy =0 at xo.

If we let X (1) denote the set of boundary vertices o, such that z¢ is either a
vertex of only one triangle or is a boundary vertex at which exactly three triangles
meet and which is either singular or nearly singular in the sense that it satisfies
R(z0) < 6§ (for some fixed § independent of k), then the preceding arguments establish
the following stability result.
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THEOREM 4.2. Let 7, be a regular sequence of triangulations of Q and assume
that X(m,) = 0. Then for n > 4, the spaces

Vi = {vh € (H}(Q))2 : vi|r € (Pn)? for all T € 73},
Qr = {qh € HY(Q):qp € Pp—1 for allT € Th,/ gpdz = O}
Q

satisfy the stability condition (1.2).

Finally, we remark that since for continuous pressures, the construction of a vy,
for which Theorem 4.1 holds is not necessary to satisfy (1.2), it is possible that the
hypothesis X (75) = 0 can be further weakened.
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