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STABILITY OF HIGHER-ORDER HOOD-TAYLOR METHODS*

FRANCO BREZZI AND RICHARD S. FALK$

Abstract. The stability of a higher-order Hood-Taylor method for the approximation of the
stationary Stokes equations using continuous piecewise polynomials of degree 3 to approximate ve-
locities and continuous piecewise polynomials of degree 2 to approximate the pressure is proved. This
result implies that the standard finite element method using these spaces satisfies a quasi-optimal
error estimate. The technique used may also be applied to prove the stability of Hood-Taylor rect-
angular elements of arbitrary degree k for velocities and k- 1 for pressure in eazh variable.
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1. Introduction. The purpose of this note is to prove the stability of a higher-
order Hood-Taylor method for the approximation of the stationary Stokes equations

-Au+Vp--f in,
divu-0 in,
u=0 on0.

The original Hood-Taylor method, proposed in [6], seeks to approximate the velocity u
by continuous piecewise quadratic functions and the pressure p by continuous piecewise
linear functions. The approximate problem has the standard form:

Find Uh e Vh C V (Hol())2 and Ph e Qh C Q {q e L2()" fn q dx 0}
such that

a(Uh, Vh)- (p, divvh)= (f, Vh) for all Vh E Vh,

(div Uh, q) 0 for all qh Qh.

The first error analysis of this method was given by Bercovier and Pironneau [1]. Their
approach was to show that the Hood-Taylor spaces satisfied the condition

(1 1) sup fn div Vh qh dx > "/llVqhllL2(g) for all qh e Qh,
IlvhllL=( )

where /is a constant independent of the meshsize h. This is a modified form of the
standard stability condition

(1.2) sup f divvh qh dx > llqhlli2() for all qh Qh,
IlVhllH ( )
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582 FRANCO BREZZI AND RICHARD S. FALK

which from the general theory of saddlepoint problems developed by Babugka and
Brezzi (cf. [2]), implies the quasi-optimal error estimate

[l" unllri(a) + lip pnIIz(a) _< C inf(l[u vnlIH(a) + lip

where the inf is taken over all Vh E Vh and qh (h. Based on their stability result,
Bercovier and Pironneau were able to prove optimal order error estimates of the form

IIV(u- Uh)llL(a) + hlIV(P- Ph)lIZ(a) <_ Ch2 (llUIIH(a) + IlPl]H(a))
Later, Verfiirth [9] proved that if the modified stability condition (1.1) holds, then
(1.2) also holds, thus fitting the analysis of this method into the standard theory.

The obvious first generalization of the Hood-Taylor method is to consider the
case where Vh consists of continuous piecewise cubics and Qh consists of continuous
piecewise quadratics. It is the purpose of this paper to show that this pair of spaces
also satisfies the stability condition (1.2) and hence the quasi-optimal error estimate
(1.3). The proof uses the ideas of [9] and [1] and follows the presentation in Brezzi
and Fortin [3] for the original Hood-Taylor method. Another proof of the stability
of the original method based on the macro element technique is given in [5], and
a proof of the main result of this paper based on the macro element technique has
been contemporaneously given by Stenberg [8]. We note that for n _> 4 Scott and
Vogelius [7] have shown that, except for some exceptional meshes, the combination
of continuous piecewise polynomials of degree _< n for velocities and discontinous
piecewise polynomials of degree _< n- 1 for pressure satisfy the stability condition
(1.2). In the final section of the paper, we discuss how the mesh restrictions they
require may be weakened when continuous pressure elements are used.

In the next section, we state and prove a numerical integration formula which
will be needed for the proof of our main result in 3. We shall use the standard
notation that the subscript 0, gt applied to a norm denotes the norm in L2(gt) and the
subscript 1, gt denotes the norm in Hl(gt). When the norm is applied to a vector, the
corresponding vector norm is used.

2. A numerical integration formula. The proof of our main result depends
on a quadrature formula which is exact for quartic polynomials on a triangle. To state
this formula, we let al, a2, a3 denote the vertices of a triangle T, a123 the centroid,
and define on each side aiaj the points

(1/2 + + (1/2
where 0 1/ vfi-.

LEMMA 2.1. The quadrature formula

( 3 )TCdX ITI + (ai) + w3 E (aiij)

with ITI the area of T and w 9/20, w2 -1/60, and w3 1/10, is exact for all
polynomials of degree g 4 on T.

Proof. Since the quadrature points are easily seen to be a unisolvent set for
polynomials of degree <_ 3 on T, we obtain a formula exact for polynomials of degree
_< 3 by choosing the weights as the integrals of the Lagrange basis functions associated
with those points. By symmetry, the weights at the three vertices will be equal and
the weights at the six points aiij will be equal. Choosing A2,3 implies that
wl 9/20. Next, choosing AA2, we find that w3 1/10. The choice 1 then
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STABILITY OF HIGHER-ORDER HOOD-TAYLOR METHODS 583

implies that w2 -1/60. It thus remains to show that the formula is also exact for
polynomials of degree 4. To accomplish this, we need only show that the formula holds
for the functions A4 and AI,.A3(Ai Aj). Note that the second of these functions is
zero at all integration points and, by symmetry, is easily seen to have zero integral.
Hence the integration formula is valid for these functions. For the function A, a
simple computation (most easily done on the standard reference triangle) shows that
both sides of the formula give the value 1/30.

3. Main results. Let Th be a regular sequence of triangulations of gt (cf. Ciarlet
[4]). To prove our stability result, we shall place a mild restriction on the triangu-
lations, which we describe as follows. Consider h fixed and let $2 denote the set of
triangles with two sides lying on OFt and let $3 denote the set of triangles sharing a
common edge with triangles of $2. We shall assume that Th consists of more than one
triangle, that $2 N $3 is empty, and that triangles of $3 share a common edge with
only one triangle of the set $2. For future reference, we shall denote by $1 the set of
remaining triangles.

THEOREM 3.1. Under the assumptions on Th described above, the spaces

(3.1) Vh {Vh e (H](t)) VhlT e (P3) 2 .for all T e Th},

(3.2) e H (a) e ,or all T e faq dx O}
satisfy the stability condition (1.2).

Proof. We will prove that there exist positive constants - and "2 such that for
every qh 0 in Qh, we can find Vh Vh satisfying

(3.3) f diVVhqh dx > l]qh]l 2

(3.4)
This will imply (1.2) with "7 "/’2. In order to construct Vh, we consider first the
L2-projection h of qh on the space of piecewise constants. It is well known that the
stability condition (1.2) holds if we take a piecewise quadratic continuous velocity field
and a piecewise constant pressure field (e.g., see [5]). This implies that there exists
Wh E Vh such that

(3.5) f div Wh(h dx 0,

(3.6)
Hence we have

(3.7)

f f
diV Whqh dx ./o div Whh dx + ./o diV Wh(qh h) dx

0,n c2 II(Y }Io, llq llo, .
We now construct a function Zh E Vh which takes care, in a suitable sense, of the
"nonconstant" part qh--(lh. Then Vh will be chosen as Vh Wh +Zh, for a convenient
choice of . We first define Zh to be zero at all vertices of Th and Zh" n to be zero
at all the nodes on the edges of Th (there are two such nodes on every edge) with the
exception of the nodes on the common edge of triangles in $2 U $3. Note that this
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584 FRANCO BREZZl AND RICHARD S. FALK

implies that Zh" n 0 on every triangle edge, except the edges that are common to
triangles in $2 and $3. Since Zh must be in (H](gt))2, we need Zh" t (the tangential
component of Zh) to vanish on OFt. We are still free to prescribe Zh at the centroids of
the triangles of Th, Zh" n at the nodes on the common edge of triangles in $2 U $3, and
Zh" t at the nodes on the internal edges. We first choose, for every internal edge e, a
unit tangent vector -e. Note that, by convention, t is oriented in the counterclockwise
direction, and therefore it reverses its direction when seen from an adjacent triangle.
This will not be the case with -e. For triangles T E $2, let e3 denote the interior
edge of T and the unit outward normal along e3. We are now able to complete the
definition of Zh. On every triangle T, we set

Zh (a123) -IT]Vqh(ae3)

and for every edge e of T internal to gt, we define

(3.9)

where the aj are the nodes, on e, of the integration formula (2.2) defined by (2.1).
Finally, we choose at the nodes on the common edge e3 of triangles in $2 U $3,

Zh rl(aiij) -elel2(Vq rl)(aiij),

where by q, we mean qh as defined on T E $2 (the normal derivative of qh will in
general not be continuous across e3) and e is a constant to be chosen later.

We now show by a standard argument that

Since the points a123, ai, and aiij are a unisolvent set of points for polynomials of
degree _< 3 on T, we write Zh in terms of the Lagrange basis functions corresponding
to these points and use standard inverse estimates to obtain for triangles T

For a pair of triangles T2 $2 and T3 $3 with a common edge, a similar argument,
also incorporating the additional term involving the normal component of Zh, gives
the same result for IlZhll,T., and for T3 we get

The desired result follows by squaring and summing the results over all the triangles.
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STABILITY OF HIGHER-ORDER HOOD-TAYLOR METHODS 585

Now by Lemma 2.1, we have for every T in $1

where the notation has the obvious meaning. We next show by an easy scaling argu-
ment that

2div Zhqh dx >_ C[[qh

Let FT(&) denote the affine mapping from the standard reference triangle to T and
define v o FT for functions v defined on T. Since at least two edges in each triangle
in S are internal, it is easy to check that the expression

IVqh12(a23) + Z Z IVqh "rel2(aiij)

vanishes only if qh is constant and hence is a norm on quadratic polynomials modulo
constants on T. Thus,

<_C[TI(I(th(523)[2+ ZZ[(h..r(iij)]2)egoni

_< C f div Zhqh dx.
.IT

Now let T2 E $2 and T3 E $3 share the common edge e3 and denote by -3 and
3 the counterclockwise unit tangent and outward unit normal vectors to T2 along
e3. We use the superscripts 2 and 3 to denote the values of various quantities on the
triangles T2 and T3, respectively, and the notation e3 to denote that the quantity
which follows is evaluated only on the edge e3. Now since Zh" n vanishes along all the
edges of T2 U T3 except e3,

/T2 div zhqh dx q- /T3 div zhqh dx /T2 Zh’qh dX /T3 ZhVqh dx"
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586 FRANCO BREZZI AND RICHARD S. FALK

By Lemma 2.1, we get that

and

elr2l lVq r312(a,)le3l] ).
Hence,

Employing an argument similar to that used for triangles in S, we get that
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STABILITY OF HIGHER-ORDER HOOD-TAYLOR METHODS 587

and

Te l2 (ai3ij le-,I 2

ea

> CDiiqh h
e3

> ( c)ll. ql0,Ts"

Hence, for e sufficiently small,

T T

Consider now a Vh of the form v w + Zh. om (3.7), (3.13), and (3.16),
we have

c ( c
0, 0,

for (c + c)/(2ClC4) (since h and qh--h are orthogonal in L2(fl)). Finally, (3.6)
and (3.11) give

Ilvhllx, (2 + c3)llqhIlO,,
so that (3.3) and (3.4) hold.

Remark. It is easy to see that if instead of (3.8), (3.9), and (3.10), we choose the
scaling

z(aa) -vq(aa), . (a.) -(vv. r)(),. (,) -(vq. )(,,),
we obtain the Bercovier-Pironneau type inequality

dx cllVqhlIO,llhlIO,.Zhqh

We note that the same proof applies to the case of rectangular elements on a
mesh Th in which we take continuous velocities which are locally Qk {polynomiMs
of degree k in each variable} and a continuous pressure which is locally in Qk-1. The
corresponding quadrature formula will be the tensor product of the one-dimensional
Gauss-Lobatto formul exact for polynomials of degree 2k 1. Thus, we have the
following theorem.

THEOREM 3.2. The spaces

v { (H()) "l ior oa. K },

sisf the sbili condition (1.2).
I is also easy go check that the following negative resul holds.
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588 FRANCO BREZZI AND RICHARD S. FALK

THEOREM 3.3. The combination of continuous Qk velocities and discontinuous
Qk-1 pressure does not satisfy the stability condition (1.2).

To see this, consider the checkerboard function which is locally of the form

qh (X ll)(x /2) (X lk-)(y l)(y /2) (Y--/k-),
where/1,/2,"" ,lk-1 are the internal Gauss-Lobatto quadrature points. An explicit
analysis of the difficulties in the Q1 Q0 case may be found in [5].

4. Remarks on higher-order triangular Hood-Taylor methods. We close
the paper with some remarks about triangular Hood-Taylor methods using the combi-
nation of continuous piecewise polynomials of degree _< n for velocities and continuous
piecewise polynomials of degree

_
n- 1 for pressure, with n >_ 4. As mentioned previ-

ously, Scott and Vogelius have established stability in this range for the combination
of continuous velocities and discontinuous pressures, under certain restrictions on the
mesh. To describe their results, we recall their definition that a vertex is said to be
singular if the edges meeting at that vertex fall on two straight lines. There are four
types of such singular boundary vertices, shown in Fig. 3 of [7]. Following [7], we
define 75[r], to be the space of functions in C(Q), which are polynomials of degree
_< r on each triangle T and vanish on 0 and :p[r],- to be the space of functions ,
which are polynomials of degree _< r on each triangle T and satisfy at any internal
singular vertex the condition

4

(4.1) (-1)i(xo) =0,
i--1

where i(xo) IT(X0) and T,... ,T4 are the triangles meeting at xo, numbered
consecutively. We then let 75[r], denote the subspace of p[r],- consisting of functions
which satisfy the following two additional requirements.

(4.2)
k

At any singular boundary vertex x0, (-1)ii(x0) 0,
i----1

where T1,..., Tk are the triangles meeting at xo, numbered consecutively and

(4.3)

The results of Scott and Vogelius then require a certain nondegeneracy condition
on the triangulations which they decribe as follows. Let x0 denote any nonsingular
vertex and let Oi, 1 <_ <_ k, be the angles of the triangles Ti, 1

_ _
k, meeting at

x0. Define

R(xo) max(10 + 0j -r 1 <_ i,j <_ k and i-j

where the term mod k is dropped if x0 is a boundary vertex. R(xo) measures how
close xo is to being singular. Set

Ri(’h) min(R(xo)’xo is a nonsingular internal vertex of

RB(Th) min(R(x0) xo is a nonsingular boundary vertex of Th),
and

(Th min[Ri(Th ), Rs(’h )].
The main result of [7] which is relevant to this paper is the following theorem (cf.
Theorem 5.2 of [7]).
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STABILITY OF HIGHER-ORDER HOOD-TAYLOR METHODS 589

THEOREM 4.1. Assume that all internal angles at corners of the polygonal do-
main gt are less than 2r. Let -h be a quasi-uniform family of triangulations of, and
let n be an integer >_ 4. Assume that l(Th) >_ > O, with independent of h. Then

div(7)[n],O(Th) 75[n],0(7"h))- 7)[n-1],-l(Th),
and there exists a linear operator

-.

such that
divEh V E [n-1]’-l(Th)

and

with constants C and K independent o.f h, n, and .
Since this result immediately implies the stability condition (1.2) for the spaces

of the theorem, we wish to examine it more closely in the case of continuous pressures
to see if the mesh restriction/(TU) >_ 5 > 0 can be weakened. Examining the proof
of this theorem, we note that the only place the mesh restriction is needed is in the
proof of Lemma 4.1 of [7] which constructs for every E 75[n-]’-(Th) a function
V e [n]’O(Th) [n]’O(Th) satisfying- div v 0 for all vertices of Th

and

with constants C and K that are independent of h, n, and . The mesh restriction is
needed since otherwise the constant C given above will become unbounded as O.
A special case of the proof (cf. (4.2) of [7]) shows in fact that for continuous pressures,
the construction given produces a constant C which remains bounded with only the
condition RB

_
5 > O. In fact, the minimal angle condition implies that R(xo) >_ 5 at

any boundary vertex at which more than four triangles meet and, in the case in which
exactly two or four triangles meet at a nonsingular boundary vertex, the construction
of the proof (considering triangles pairwise) also produces a bounded constant without
requiring R(xo) >_ 5. Since a boundary vertex involving only one triangle is singular,
we only need require the condition R(xo) >_ 5 at nonsingular boundary vertices at
which exactly three triangles meet. We note that from the remarks in [7], this condition
can be eliminated if we require (x0) 0 at such a vertex.

The implication of the above is that under this mild restriction on the mesh and
for n >_ 4, the stability result (1.2) is valid for all pressures C(gt)N[n-1],--I(Th).
Since (4.3) is already satisfied by functions in Qh and (4.1) is automatically satisfied for
continuous pressures, we need only consider the condition (4.2). For singular vertices
with k 2 or 4, (4.2) is again automatically satisfied for continuous pressures. When
k 1 or 3, (4.2) implies, in the case of a continuous pressure , that (x0) 0. If we
seek to satisfy (1.2) by finding a function Vh Vh for which Theorem 4.1 holds, then
this restriction cannot be eliminated, since Vh 0 on 0gt implies in these cases that
div Vh --0 at x0.

If we let X(Th) denote the set of boundary vertices x0, such that xo is either a
vertex of only one triangle or is a boundary vertex at which exactly three triangles
meet and which is either singular or nearly singular in the sense that it satisfies
R(xo) <_ 5 (for some fixed 5 independent of h), then the preceding arguments establish
the following stability result.
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590 FRANCO BREZZI AND RICHARD S. FALK

THEOREM 4.2. Let Th be a regular sequence of triangulations of gt and assume
that X(Th) qJ. Then for n >_ 4, the spaces

Vh {Vh e (H](gt)) 2 VhlT e (p,)2 for all T e Th},

Q {q e H() q e P-l Ior all T e r, /aq dx O }
satisfy the stability condition (1.2).

Finally, we remark that since for continuous pressures, the construction of a Vh
for which Theorem 4.1 holds is not necessary to satisfy (1.2), it is possible that the
hypothesis X(Th) can be further weakened.
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