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Abstract. We consider the approximation properties of quadrilateral finite element spaces of
vector fields defined by the Piola transform, extending results previously obtained for scalar approx-
imation. The finite element spaces are constructed starting with a given finite dimensional space
of vector fields on a square reference element, which is then transformed to a space of vector fields
on each convex quadrilateral element via the Piola transform associated to a bilinear isomorphism
of the square onto the element. For affine isomorphisms, a necessary and sufficient condition for
approximation of order r + 1 in L2 is that each component of the given space of functions on the
reference element contain all polynomial functions of total degree at most r. In the case of bilinear
isomorphisms, the situation is more complicated and we give a precise characterization of what is
needed for optimal order L2-approximation of the function and of its divergence. As applications,
we demonstrate degradation of the convergence order on quadrilateral meshes as compared to rect-
angular meshes for some standard finite element approximations of H(div). We also derive new
estimates for approximation by quadrilateral Raviart–Thomas elements (requiring less regularity)
and propose a new quadrilateral finite element space which provides optimal order approximation in
H(div). Finally, we demonstrate the theory with numerical computations of mixed and least squares
finite element approximations of the solution of Poisson’s equation.
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1. Introduction. Many mixed finite element methods are based on variational
principles employing the space H(div,Ω) consisting of L2 vector fields with diver-
gence in L2. For such methods, finite element subspaces of H(div,Ω) are generally
constructed starting from a space of reference shape functions on a reference element,
typically the unit simplex or unit square in two dimensions. See, e.g., [4] for nu-
merous examples. These shape functions are then transformed to general triangular,
rectangular, or quadrilateral elements via polynomial diffeomorphisms and the Piola
transform. For the case of triangular and rectangular (or more generally parallel-
ogram) elements, i.e., the case of affine isomorphisms, the order of approximation
so achieved can be easily determined from the highest degree of complete polynomial
space contained in the space of reference shape functions. In the case of arbitrary con-
vex quadrilaterals with bilinear diffeomorphisms, the situation is less well understood.
In this paper, we determine precisely what reference shape functions are needed to
obtain a given order of approximation in L2 and H(div,Ω) by such elements. It turns
out that the accuracy of some of the standard H(div,Ω) finite elements is lower for
general quadrilateral elements than for rectangular elements.

Let K̂ be a reference element, the closure of an open set in R2, and let F : K̂ → R2

be a diffeomorphism of K̂ onto an actual element K = F (K̂). For functions in
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2430 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

H(div,Ω) the natural way to transform functions from K̂ to K is via the Piola
transform. Namely, given a function û : K̂ → R2, we define u = P F û : K → R2 by

u(x) = JF (x̂)−1DF (x̂)û(x̂),(1.1)

where x = F (x̂), and DF (x̂) is the Jacobian matrix of the mapping F and JF (x̂)
its determinant. The transform has the property that if u = P F û, p = p̂ ◦ F−1 for
some p̂ : K̂ → R, and n and n̂ denote the unit outward normals on ∂K and ∂K̂,
respectively, then∫

K

div up dx =

∫
K̂

d̂iv ûp̂ dx̂,

∫
∂K

u · np ds =

∫
∂K̂

û · n̂p̂ dŝ.

Since continuity of u ·n is necessary for finite element subspaces of H(div,Ω), use of
the Piola transform facilitates the definition of finite element subspaces of H(div,Ω)
by mapping from a reference element. Another important property of the Piola trans-
form, which follows directly from the chain rule and which we shall use frequently
below, is that if G is a diffeomorphism whose domain is K, then

PG◦F = PG ◦ P F .(1.2)

Using the Piola transform, a standard construction of a finite element subspace
proceeds as follows. Let K̂ be a fixed reference element, typically either the unit
simplex or the unit square. Let V̂ ⊂ H(div, K̂) be a finite-dimensional space of
vector fields on K̂, typically polynomial, the space of reference shape functions. Now
suppose we are given a mesh Th consisting of elements K, each of which is the image
of K̂ under some given diffeomorphism: K = FK(K̂). Via the Piola transform we

then obtain the space P FK
V̂ of shape functions on K. Finally we define the finite

element space as

Sh = {v ∈ H(div,Ω) | v|K ∈ P FK
V̂ ∀K ∈ Th}.

Recall that Sh may be characterized as the subspace of

V h := {v ∈ L2(Ω) | v|K ∈ P FK
V̂ ∀K ∈ Th},

consisting of vector fields whose normal component is continuous across interelement
edges.

We now recall a few examples of this construction in the case where K̂ is the
unit square. If we restrict to linear diffeomorphisms F , the resulting finite elements
K = F (K̂) will be parallelograms (or, with the further restriction to diagonal lin-
ear diffeomorphisms, rectangles). If we allow general bilinear diffeomorphisms, the
resulting finite elements can be arbitrary convex quadrilaterals. The best known ex-
ample of shape functions on the reference square for construction of H(div,Ω) finite

element spaces is the Raviart–Thomas space of index r ≥ 0 for which V̂ is taken to
be RT r := Pr+1,r(K̂) × Pr,r+1(K̂). Here and below Ps,t(K̂) denotes the space of

polynomial functions on K̂ of degree at most s in x̂1 and at most t in x̂2. Thus a
basis for RT r is given by the 2(r + 1)(r + 2) vector fields

(x̂i
1x̂

j
2, 0), (0, x̂j

1x̂
i
2), 0 ≤ i ≤ r + 1, 0 ≤ j ≤ r.(1.3)
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QUADRILATERAL H(div) FINITE ELEMENTS 2431

A second example is given by choosing V̂ to be the Brezzi–Douglas–Marini space of
index r ≥ 1, V̂ = BDMr, which is the span of Pr(K̂) and the two additional vec-
tor fields curl(x̂r+1

1 x̂2) and curl(x̂1x̂
r+1
2 ). Another possibility is the Brezzi–Douglas–

Fortin–Marini space V̂ = BDFMr+1, r ≥ 0, which is the subspace of codimension 2
of Pr+1(K̂) spanned by (x̂i

1x̂
j
2, 0) and (0, x̂j

1x̂
i
2) for nonnegative i and j with i+j ≤ r+1

and j ≤ r. We note that for each of these choices V̂ strictly contains Pr(K̂) but does
not contain Pr+1(K̂). Note that BDM0 is not defined, BDFM1 = RT 0, and
BDMr � BDFMr+1 � RT r for r ≥ 1. More information about these spaces can
be found in [4, section III.3.2].

One of the basic issues in finite element theory concerns the approximation prop-
erties of finite element spaces. Namely, under certain regularity assumptions on the
mesh Th, for a given smooth vector field u : Ω → R2 one usually estimates the error
(in some norm to be made more precise) in the best approximation of u by vector
fields in Sh as a quantity involving powers of h, the maximum element diameter. For
instance, given a shape-regular sequence of triangular or parallelogram meshes Th of
Ω with Sh the corresponding Raviart–Thomas spaces of index r ≥ 0, then for any
vector field u smooth enough that the right-hand sides of the next expressions make
sense, there exists πhu ∈ Sh such that (cf. [4])

‖u − πhu‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω),

‖div(u − πhu)‖L2(Ω) ≤ Chr+1|div u|Hr+1(Ω).

In the case of more general shape-regular convex quadrilaterals, the best known
estimate appears to be the one obtained by Thomas in [12]:

‖u − πhu‖L2(Ω) ≤ Chr+1[|u|Hr+1(Ω) + h|div u|Hr+1(Ω)],

‖div(u − πhu)‖L2(Ω) ≤ Chr|div u|Hr+1(Ω).

Note that the order in h for the L2 estimate on u is the same as for the parallelogram
meshes, but additional regularity is required, while the estimate for div u is one order
lower in h. As we shall see below, the latter estimate cannot be improved. However,
in section 4 of this paper, we use a modification of the usual scaling argument to
obtain the improved L2 estimate

‖u − πhu‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω).

We restrict our presentation to two-dimensional domains, the three-dimensional
case being considerably more complicated. We hope to address this issue in future
work. We observe that in [9] the construction of H(div,Ω) elements on hexahedrons
has been considered. The point of view of [9] is somewhat different from ours in that
the elements are not obtained by applying the Piola transform starting from a fixed
set of basis functions on the unit cube. Other papers dealing with modifications of
standard shape functions for the approximation of vector fields are [11, 8]; in the
first paper a simple lowest-order two-dimensional element is proposed (which is not
obtained via the Piola transform), while in the second paper a construction based on
macroelements is presented.

In this paper, we adapt the theory presented in [1] to the case of vector elements
defined by the Piola transform, seeking necessary conditions for L2-approximation of
order r+1 for u and div u. More specifically, we shall prove in section 3 that in order
for the L2 error in the best approximation of u by functions in V h to be of order

D
ow

nl
oa

de
d 

07
/1

4/
14

 to
 1

28
.6

.6
2.

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2432 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

r + 1, the space V̂ must contain Sr, where Sr is the subspace of codimension one of
RT r spanned by the vector fields in (1.3) except that the two fields (x̂r+1

1 x̂r
2, 0) and

(0, x̂r
1x̂

r+1
2 ) are replaced by the single vector field (x̂r+1

1 x̂r
2,−x̂r

1x̂
r+1
2 ). To establish

this result, we shall exhibit a domain Ω and a sequence Th of meshes of it, and prove
that whenever Sr is not contained in V̂ , there exists a smooth vector field u on Ω
such that

inf
v∈V h

‖u − v‖L2(Ω) 	= o(hr).

The example is far from pathological. The domain is simply a square, the mesh se-
quence does not degenerate in any sense—in fact all the elements of all the meshes
in the sequence are similar to a single right trapezoid—and the function u is a poly-
nomial. We use the same mesh sequence to establish a necessary condition for order
r + 1 approximation to div u, namely that div V̂ ⊇ Rr, where Rr is the subspace of
codimension one of Qr+1, the space of polynomials of degree ≤ r + 1 in each vari-
able separately, spanned by the monomials in Qr+1 except x̂r+1

1 x̂r+1
2 . A consequence

of these results, also discussed in section 3, is that while the Raviart–Thomas space
of index r achieves order r + 1 approximation in L2 for quadrilateral meshes as for
rectangular meshes, the order of approximation of the divergence is only of order r
in the quadrilateral case (but of order r + 1 for rectangular meshes). Thus, in the
case r = 0, there is no convergence in H(div,Ω). For the Brezzi–Douglas–Marini and
Brezzi–Douglas–Fortin–Marini spaces, the order of convergence is severely reduced on
general quadrilateral meshes not only for div u but also for u.

In section 4, we show that the necessary conditions for order r+1 approximation of
u and div u established in section 3 are also sufficient. The argument used allows us to
obtain the previously mentioned improved estimate for approximation by quadrilateral
Raviart–Thomas elements. In section 5, we devise a new finite element subspace of
H(div,Ω) which gives optimal order approximation in both �2 and H(div,Ω) on
general convex quadrilaterals. In sections 6 and 7, we present applications of these
results to the approximation of second order elliptic partial differential equations by
mixed and least squares finite element methods. In particular, we show that despite
the lower order of approximation of the divergence by Raviart–Thomas quadrilateral
elements, the mixed method approximation of the scalar and vector variable retain
optimal order convergence orders in L2. By contrast, error estimates for the least
squares method indicate a possible loss of convergence for both the scalar and vector
variable. In the final section, we illustrate the positive results with some numerical
examples and confirm the degradation of accuracy on quadrilateral meshes in the
cases predicted by our theory.

2. Approximation theory of vector fields on rectangular meshes. In this
preliminary section of the paper we adapt to vector fields the results presented in the
corresponding section of [1] for scalar functions. Although the Piola transform is used
in the definition of the finite elements, its simple expression on rectangular meshes
requires only minor changes in the proof given in [1] and so we give only a statement
of the results.

Let K be any square with edges parallel to the axes, namely K = FK(K̂) with

FK(x̂) = xK + hK x̂,(2.1)

where xK ∈ R2 is the lower left corner of K and hK > 0 is its side length. The
Piola transform of û ∈ L2(K̂) is simply given by (P FK

û)(x) = h−1
K û(x̂) where
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QUADRILATERAL H(div) FINITE ELEMENTS 2433

x = FK x̂. We also have the simple expressions div(P FK
û)(x) = h−2

K d̂iv û(x̂) and
‖P FK

û‖L2(K) = ‖û‖L2(K̂).

Let Ω denote the unit square (Ω and K̂ both denote the unit square, but we use
the notation Ω when we think of it as a domain, while we use K̂ when we think of it
as a reference element), and for n a positive integer, let Uh be the uniform mesh of Ω

into n2 subsquares of side length h = 1/n. Given a subspace V̂ of L2(K̂) we define

V h = {u : Ω → R2 | u|K ∈ P FK
V̂ ∀K ∈ Uh}.(2.2)

In this definition, when we write u|K ∈ P FK
V̂ we mean only that u|K agrees with a

function in P FK
V̂ almost everywhere, and so do not impose any interelement conti-

nuity. Then we have the following approximation results.
Theorem 2.1. Let V̂ be a finite-dimensional subspace of L2(K̂) and r be a

nonnegative integer. The following conditions are equivalent:
(i) There is a constant C such that infv∈V h

‖u − v‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω)

for all u ∈ Hr+1(Ω).
(ii) infv∈V h

‖u − v‖L2(Ω) = o(hr) for all u ∈ Pr(Ω).

(iii) V̂ ⊇ Pr(K̂).

Theorem 2.2. Let V̂ be a finite-dimensional subspace of L2(K̂) and r be a
nonnegative integer. The following conditions are equivalent:

(i) There is a constant C such that

inf
v∈V h

‖div u − div v‖L2(Ω) ≤ Chr+1|div u|Hr+1(Ω)

for all u ∈ Hr+1(Ω) with div u ∈ Hr+1(Ω).
(ii) infv∈V h

‖div u − div v‖L2(Ω) = o(hr) for all u with div u ∈ Pr(Ω).

(iii) d̂iv V̂ ⊇ Pr(K̂).
Remark. Since we do not impose interelement continuity in the definition of V h,

in Theorem 2.2 div v should be interpreted as the divergence applied elementwise to
v ∈ V h.

3. A necessary condition for optimal approximation of vector fields
on general quadrilateral meshes. In this section, we determine the properties
of the finite element approximating spaces that are necessary for order r + 1 L2-
approximation of a vector field and its divergence on quadrilateral meshes. The
construction of the finite element spaces proceeds as in the previous section. We
start with the reference shape functions, a finite-dimensional space V̂ of vector fields
on the unit square K̂ = [0, 1] × [0, 1] (typically V̂ consists of polynomials). Given
an arbitrary convex quadrilateral K and a bilinear isomorphism FK of the reference
element K̂ onto K, the shape functions on K are then taken to be P FK

V̂ . (Note
that there are eight possible choices for the bilinear isomorphism FK , but the space
P FK

V̂ does not depend on the particular choice whenever V̂ is invariant under the
symmetries of the square, which is usually the case in practice. When that is not
the case, which we shall allow, it is necessary to specify not only the elements K but
for each a choice of bilinear isomorphism from the reference element to K.) Finally,
given a quadrilateral mesh T of a two-dimensional domain Ω, we can then construct
the space of vector fields V (T) consisting of functions on Ω which belong to P FK

V̂
when restricted to a generic quadrilateral K ∈ T.

It follows from the results of the previous section that if we consider the sequence
Th = Uh of meshes of the unit square into congruent subsquares of side length h = 1/n,
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2434 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

then the approximation estimate

inf
v∈V (Th)

‖u − v‖L2(Ω) = o(hr) ∀ u ∈ Pr(Ω)(3.1)

is valid only if V̂ ⊇ Pr(K̂) and the estimate

inf
v∈V (Th)

‖div u − div v‖L2(Ω) = o(hr) ∀ u with div u ∈ Pr(Ω)(3.2)

is valid only if d̂iv(V̂ ) ⊇ Pr(K̂). In this section we show that for these estimates

to hold for more general quadrilateral mesh sequences Th, stronger conditions on V̂
are required.

Before stating the main results of this section, we briefly recall a measure for the
shape regularity of a convex quadrilateral K, cf. [7, A.2, pp. 104–105] or [13]. From the
quadrilateral K we obtain four triangles by the four possible choices of three vertices
from the vertices of K, and we define ρK as the smallest diameter of the inscribed
circles to these four triangles. The shape constant of K is then σK := hK/ρK , where
hK = diam(K). A bound on σK implies a bound on the ratio of any two sides of K
and also a bound away from 0 and π for its angles (and conversely such bounds imply
an upper bound on σK). It also implies bounds on the Lipschitz constant of h−1

K FK

and its inverse. The shape constant of a mesh Th consisting of convex quadrilaterals
is then defined to be the supremum of the shape constants σK for K ∈ Th, and a
family Th of such meshes is called shape-regular if the shape constants for the meshes
can be uniformly bounded.

The following two theorems give necessary conditions on the shape functions in or-
der to ensure estimates like (3.1) and (3.2) on arbitrary quadrilateral mesh sequences.
The spaces Sr and Rr were defined in section 1.

Theorem 3.1. Suppose that the estimate (3.1) holds whenever Th is a shape-

regular sequence of quadrilateral meshes of a two-dimensional domain Ω. Then V̂ ⊇
Sr.

Theorem 3.2. Suppose that the estimate (3.2) holds whenever Th is a shape-

regular sequence of quadrilateral meshes of a two-dimensional domain Ω. Then d̂iv V̂ ⊇
Rr.

In order to establish the theorems, we shall make use of two results analogous to
Theorem 4 of [1]. To state these results, we introduce some specific bilinear mappings.
For α > 0, let F α and Gα denote the mappings

F α(x̂) = (x̂1, (α + x̂1)x̂2), Gα(x̂) = F α(x̂2, x̂1),(3.3)

each of which maps the unit square K̂ to the quadrilateral Kα with vertices (0, 0),
(1, 0), (1, α + 1), and (0, α).

Lemma 3.3. Let V̂ be a space of vector fields on K̂ such that P F V̂ ⊇ Pr(F (K̂))

when F is any of the four bilinear isomorphisms F 1, F 2, G1, and G2. Then V̂ ⊇ Sr.
Lemma 3.4. Let V̂ be a space of vector fields on K̂ such that div P F V̂ ⊇

Pr(F (K̂)) when F is any of the four bilinear isomorphisms F 1, F 2, G1, and G2.

Then d̂iv V̂ ⊇ Rr.
We postpone the proof of these lemmas to the end of the section. Now, based on

Lemma 3.3 and Theorem 2.1, we establish Theorem 3.1.
Proof of Theorem 3.1. To establish the theorem, we assume that V̂ � Sr and

exhibit a sequence Th of shape regular meshes (h = 1, 1/2, 1/3, . . . ) of the unit square
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QUADRILATERAL H(div) FINITE ELEMENTS 2435
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Fig. 1. (a) The mesh T1 of the unit square into four trapezoids. (b) The mesh Th (here h = 1/8)
composed of translated dilates of T1.

for which the estimate (3.1) does not hold. We know, by Lemma 3.3, that for either

α = 1 or α = 2 either P FαV̂ or PGαV̂ does not contain Pr(K
α). We fix this value

of α and, without loss of generality, suppose that

P FαV̂ � Pr(K
α).(3.4)

Set β = α/(1 + 2α). As shown in Figure 1(a), we define a mesh T1 consisting of
four congruent elements K1, . . . ,K4, with the vertices of K1 given by (0, 0), (1/2, 0),
(1/2, 1−β), and (0, β). For h = 1/n, we construct the mesh Th by partitioning the unit
square into n2 subsquares K and meshing each subsquare K with the mesh obtained
by applying FK , given by (2.1), to T1 as shown in Figure 1(b). For each element T
of the mesh Th there is a natural way to construct a bilinear mapping F from the
unit square onto T based on the mapping F α. The first step is to compose F α with
the linear isomorphism E(x) = (x1/2, x2/(1+2α)) to obtain a bilinear map from the
unit square onto the trapezoid K1. Composing further with the natural isometries of
K1 onto K2, K3, and K4, we obtain bilinear maps F j from the unit square onto each
of the trapezoids Kj , j = 1, . . . , 4. Finally, further composition with the map FK

(consisting of dilation and translation) taking the unit square onto the subsquare K
containing T , defines a bilinear diffeomorphism of the unit square onto T .

Having specified the mesh Th and a bilinear map from the unit square onto each
element of the mesh, we have determined the space V (Th) based on the shape func-

tions in V̂ . We need to show that the estimate (3.1) does not hold. To do so, we
observe that V (Th) coincides precisely with the space V h constructed at the start of
section 2 (see (2.2)) if we use V (T1) as the space of shape functions on the unit square
to begin the construction. This observation is easily verified in view of the composition
property (1.2) of the Piola transform. Thus we may invoke Theorem 2.1 to conclude
that (3.1) does not hold if we can show that V (T1) � Pr(K̂). Now, by construction,

the functions in V (T1) restrict to functions in P F1V̂ on K1 = F 1K̂, so it is enough

to show that P F1V̂ � Pr(K1). But F 1 = E ◦F α and, hence, P F1V̂ = PE(P FαV̂ ).
Now E is a linear isomorphism of Kα onto K1, and so PE is a linear isomorphism of
Pr(K

α) onto Pr(K1). Thus P F1V̂ ⊇ Pr(K1) if and only if P FαV̂ ⊇ Pr(K
α) and

so the theorem is complete in view of (3.4).
Proof of Theorem 3.2. The proof is essentially identical to the preceding one,

except that Lemma 3.4 and Theorem 2.2 are used in place of Lemma 3.3 and Theo-
rem 2.1.

Before turning to the proof of Lemmas 3.3 and 3.4, we draw some implications
from Theorems 3.1 and 3.2 for the approximation properties of the extensions of stan-
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2436 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

dard finite element subspaces of H(div,Ω) from rectangular meshes to quadrilateral
meshes. By definition, Sr ⊆ RT r, so Theorem 3.1 does not contradict the possibility
that the Raviart–Thomas space of index r achieves order r + 1 approximation in L2

on quadrilateral meshes, just as for rectangular meshes. This is indeed the case (see
the discussion in section 1). But divRT r = Qr which contains Rr−1 but not Rr.
Thus we may conclude from Theorem 3.2 that the best possible order of approxima-
tion to the divergence in L2 for the Raviart–Thomas space of index r is only r on
quadrilateral meshes, one degree lower than for rectangular meshes, and, in particu-
lar, there is no convergence for r = 0. (This lower order is achieved, as discussed in
section 1.) In contrast to the Raviart–Thomas spaces, for the Brezzi–Douglas–Marini
and Brezzi–Douglas–Fortin–Marini spaces there is a loss of L2-approximation order
on quadrilateral meshes. Both BDMr and BDFMr+1 contain Pr, which is enough
to ensure order r+1 approximation in L2 on rectangular meshes. However, it is easy
to check that BDMr contains S�(r−1)/2� but not S�(r+1)/2� so that the best possi-
ble order of approximation for the Brezzi–Douglas–Marini space of index r on general
quadrilateral meshes is 
(r+1)/2�, a substantial loss of accuracy in comparison to the

rectangular case. For the divergence, we have d̂ivBDMr = Pr−1(K̂) which contains
R�(r−2)/2� but not R�r/2�. Therefore the best possible order of approximation for
the divergence for the Brezzi–Douglas–Marini space of index r on general quadrilat-
eral meshes is R�r/2�. Similarly, the best possible order of L2-approximation for the
Brezzi–Douglas–Fortin–Marini space of index r + 1 on general quadrilateral meshes
is 
(r + 2)/2�, while since d̂ivBDFMr+1 = Pr(K̂), the best possible rate for the
divergence is 
(r + 1)/2�. We specifically note that in the lowest index cases, namely

when V̂ = RT 0, BDM1, or BDFM1 (which is identical to RT 0), the best approx-
imation in H(div,Ω) does not converge in H(div,Ω) for general quadrilateral mesh
sequences. Section 8 of this paper contains a numerical confirmation of this result.

We conclude this section with the proofs of Lemmas 3.3 and 3.4.
Proof of Lemma 3.3. By hypothesis P F V̂ ⊇ Pr(F (K̂)) or, equivalently, V̂ ⊇

P−1
F [Pr(F (K̂))], for F = F 1, F 2, G1, and G2. Thus it is sufficient to prove that

Sr ⊆ Σr := P−1
F 1 [Pr(K

1)] + P−1
F 2 [Pr(K

2)] + P−1
G1 [Pr(K

1)] + P−1
G2 [Pr(K

2)].(3.5)

We will prove this using induction on r.
Now for any diffeomorphism F : K̂ → K and any u : K → R2, we have, directly

from the definition of the Piola transform, that

(P−1
F u)(x̂) = JF (x̂)DF (x̂)−1u(x) =

⎛
⎜⎜⎝

∂F2

∂x̂2
(x̂) −∂F1

∂x̂2
(x̂)

−∂F2

∂x̂1
(x̂)

∂F1

∂x̂1
(x̂)

⎞
⎟⎟⎠u(x).(3.6)

Specializing to the case where F = F α or Gα given by (3.3), we have

(P−1
Fαu)(x̂) =

(
α + x̂1 0
−x̂2 1

)
u(x), (P−1

Gαu)(x̂) =

(
x̂1 −1

−α− x̂2 0

)
u(x).

Thus, when u(x) is the constant vector field (1, 0), (P−1
F 1u)(x̂) = (1 + x̂1,−x̂2), and

when u(x) ≡ (0, 1), (P−1
F 1u)(x̂) = (0, 1) and (P−1

G1u)(x̂) = (−1, 0). These three vector
fields span S0, which establishes (3.5) in the case r = 0.

Suppose now that Sr−1 ⊆ Σr−1 for some r ≥ 1. To complete the induction we
need to show that Sr ⊆ Σr. Now Sr is spanned by Sr−1 plus the 4r + 4 additional
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QUADRILATERAL H(div) FINITE ELEMENTS 2437

vector fields

(x̂i
1x̂

r
2, 0) and (0, x̂r

1x̂
i
2), 0 ≤ i ≤ r,

(x̂r+1
1 x̂j

2, 0) and (0, x̂j
1x̂

r+1
2 ), 0 ≤ j ≤ r − 1,

(x̂r
1x̂

r−1
2 , 0) and (x̂r+1

1 x̂r
2,−x̂r

1x̂
r+1
2 ).

Pick 0 ≤ i ≤ r, and set F = Gα and u(x) = (0,−xr−i
1 xi

2) ∈ Pr(K
α). Note that

x = Gαx̂ = (x̂2, (α + x̂2)x̂1). Then

(P−1
Gαu)(x̂) = (xr−i

1 xi
2, 0) = (x̂r−i

2 (α + x̂2)
ix̂i

1, 0) = (x̂i
1x̂

r
2, 0) + iα(x̂i

1x̂
r−1
2 , 0)

(mod Sr−1).

Since Sr−1 ⊆ Σr by the inductive hypothesis, and since we may take both α = 1 and
α = 2, we conclude that (x̂i

1x̂
r
2, 0) ∈ Σr (for 0 ≤ i ≤ r) and also that (x̂r

1x̂
r−1
2 , 0) ∈ Σr.

In a similar way, setting F = F α and u(x) = (0, xr−i
1 xi

2), we conclude that

(0, x̂r
1x̂

i
2) ∈ Σr, 0 ≤ i ≤ r. The choice F = F α and u(x) = (xr−j

1 xj
2, 0) together with

the fact that Σr ⊇ Qr × Qr, which is a consequence of the proof thus far, implies
that (x̂r+1

1 x̂j
2, 0) ∈ Σr for 0 ≤ j ≤ r − 1. The choice F = Gα with the same choice of

u similarly implies that (0, x̂j
1x̂

r+1
2 ) ∈ Σr for 0 ≤ j ≤ r − 1.

Finally, with u(x) = (xr
2, 0), we find that (P−1

F 1u)(x̂) = (x̂r+1
1 x̂r

2,−x̂r
1x̂

r+1
2 )

(mod Qr ×Qr), which completes the proof of (3.5) and so the lemma.

Proof of Lemma 3.4. The hypothesis is that div P F V̂ ⊇ Pr(F (K̂)) for F =

F 1, F 2, G1, and G2. Now d̂iv û(x̂) = JF (x̂) div(P F û)(F x̂), so d̂iv V̂ contains
all functions on K̂ of the form x̂ �→ JF (x̂)p(F x̂) with p ∈ Pr(F (K̂)) and F ∈
{F 1,F 2,G1,G2}. To prove the lemma, it suffices to show that the span of such
functions, call it Σr, contains Rr. Note that JF α(x̂) = α+x̂1 and JGα(x̂) = −α−x̂2.

For r = 0, we take p ≡ 1 and F = F 1, F 2, and G1, and find that Σr contains
1 + x̂1, 2 + x̂1, and −1 − x̂2. These three functions span R0, so Σ0 ⊇ R0.

We continue the proof that Σr ⊇ Rr by induction on r. Now Rr is the span of
Rr−1 and the 2r + 3 additional functions x̂r+1

1 x̂i
2 and x̂i

1x̂
r+1
2 , 0 ≤ i ≤ r, and x̂r

1x̂
r
2.

Taking p(x) = xr−i
1 xi

2 and F = F α we find that the function x̂ �→ x̂r−i
1 (α+ x̂1)

i+1x̂i
2

belongs to Σr. Modulo Rr−1 (which is contained in Σr by the inductive hypothesis),
this is equal to the function x̂ �→ x̂r+1

1 x̂i
2 + (i + 1)αx̂r

1x̂
i
2. Using both α = 1 and 2,

we conclude that x̂r+1
1 x̂i

2 belongs to Σr for 0 ≤ i ≤ r and that x̂r
1x̂

r
2 does as well.

The same choice of p with F = Gα shows that Σr contains the functions x̂i
1x̂

r+1
2 ,

0 ≤ i ≤ r, and completes the proof.

4. Sufficient conditions for optimal order approximation. In this section
we show that the necessary conditions we have obtained in the previous section are
also sufficient for approximation of order r + 1 in L2 and H(div,Ω). To state this
more precisely, we recall the construction of projection operators for H(div) finite

elements. We suppose that we are given a bounded projection π̂ : Hr+1(K̂) → V̂

(typically this operator is specified via a unisolvent set of degrees of freedom for V̂ ).

We then define the corresponding projection πK : Hr+1(K) → P F V̂ for an arbitrary
element K = F (K̂) via the Piola transform, as expressed in this commuting diagram:

Hr+1(K̂)
π̂−−−−→ V̂

P F

⏐⏐� ⏐⏐�P F

Hr+1(K) −−−−→
πK

P F V̂
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2438 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

That is, πK = P F ◦ π̂ ◦ P−1
F . Finally a global projection operator πh : Hr+1(Ω) →

V (Th) is defined piecewise: (πhu)|K = πK(u|K). (The degrees of freedom used to
define π̂ will determine the degree of interelement continuity enjoyed by πhu. In
particular, for the standard H(div) finite element spaces discussed previously, the
degrees of freedom ensure that on any edge ê of K̂, (π̂u) · n̂ on ê depends only on
u · n on ê. From this it results that πhu ∈ H(div).)

The following two theorems contain the main results of this section.
Theorem 4.1. Let π̂ : Hr+1(K̂) → V̂ be a bounded projection operator. Given

a quadrilateral mesh Th of a domain Ω, let πh : Hr+1(Ω) → V (Th) be defined as

above. Suppose that V̂ ⊇ Sr. Then there exists a constant C depending only on the
bound for π̂ and on the shape regularity of Th, such that

‖u − πhu‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω)(4.1)

for all u ∈ Hr+1(Ω).

Theorem 4.2. Let π̂ : Hr+1(K̂) → V̂ be a bounded projection operator. Given
a quadrilateral mesh Th of a domain Ω, let πh : Hr+1(Ω) → V (Th) be defined as

above. Suppose that d̂iv V̂ ⊇ Rr. Suppose also that there exists a bounded projection
operator Π̂ : Hr+1(K̂) → d̂iv V̂ such that

d̂iv π̂û = Π̂ d̂iv û ∀û ∈ Hr+1(K̂) with d̂iv û ∈ Hr+1(K̂).(4.2)

Then there exists a constant C depending only on the bounds for π̂ and Π̂ and on the
shape regularity of Th, such that

‖div u − div πhu‖L2(Ω) ≤ Chr+1|div u|Hr+1(Ω)(4.3)

for all u ∈ Hr+1(Ω) with div u ∈ Hr+1(Ω).
Remarks. 1. It follows immediately that if the hypotheses of both theorems are

met, then πh furnishes order r + 1 approximation in H(div,Ω):

‖u − πhu‖H(div,Ω) ≤ Chr+1(|u|Hr+1(Ω) + |div u|Hr+1(Ω))

for all u ∈ Hr+1(Ω) with div u ∈ Hr+1(Ω).
2. The commutativity hypothesis involving the projection Π̂ plays a major role

in the theory of H(div,Ω) finite elements. It is satisfied in the case of the Raviart–
Thomas, Brezzi–Douglas–Marini, and Brezzi–Douglas–Fortin–Marini elements, as well
as for the new elements introduced in the next sections, with Π̂ equal to the L2 pro-
jection onto d̂iv V̂ .

3. When applied to the Raviart–Thomas elements of index r, Theorem 4.1 gives

‖u − πhu‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω)

and Theorem 4.2 gives

‖div u − div πhu‖L2(Ω) ≤ Chr|div u|Hr+1(Ω).

The latter estimate is proved in [12], but the former estimate appears to be new. It
improves on the estimate given in [12]:

‖u − πhu‖L2(Ω) ≤ Chr+1[|u|Hr+1(Ω) + h|div u|Hr+1(Ω)].
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QUADRILATERAL H(div) FINITE ELEMENTS 2439

The proofs of the theorems depend on the following two lemmas which are
strengthened converses of Lemmas 3.3 and 3.4.

Lemma 4.3. Let V̂ be a space of vector fields on K̂ containing Sr. Then P F V̂ ⊇
Pr(K) for all bilinear isomorphisms F of K̂ onto convex quadrilaterals K = F (K̂).

Proof. It is sufficient to show that Sr ⊇ P−1
F [Pr(K)], since then the hypothesis

V̂ ⊇ Sr implies that

P F V̂ ⊇ P FSr ⊇ P FP−1
F [Pr(K)] = Pr(K).

Now (3.6) tells us that

P−1
F u =

(
∂F2/∂x̂2 −∂F1/∂x̂2

−∂F2/∂x̂1 ∂F1/∂x̂1

)
(u ◦ F ).

Since u ∈ Pr(K) and F is bilinear, u ◦ F ∈ Qr(K̂). Also, again in view of the
bilinearity of F , the matrix appearing in this equation is the sum of a constant
matrix field and one of the form (x̂1,−x̂2)

T (a2,−a1) (where ai ∈ R is the coefficient
of x̂1x̂2 in Fi). It follows immediately that P−1

F u ∈ Sr.

Lemma 4.4. Let V̂ be a space of vector fields on K̂ such that d̂iv V̂ ⊇ Rr. Then
div P F V̂ ⊇ Pr(K) for all bilinear isomorphisms F of K̂ onto convex quadrilaterals
K = F (K̂).

Proof. Let p ∈ Pr(K) be arbitrary. Choose any u ∈ H(div,Ω) such that
div u = p. From the identity

(d̂iv P−1
F u)(x̂) = JF (x̂)(div u)(x),

we have d̂iv P−1
F u = JF · (p ◦F ). Now p ∈ Pr(K) and F is bilinear, so p ◦F belongs

to Qr(K̂) and JF is linear. Thus q̂ := d̂iv P−1
F u ∈ Rr.

Invoking the hypothesis that Rr ⊆ d̂iv V̂ , we can find v̂ ∈ V̂ such that d̂iv v̂ = q̂.
Then

p(x) = div u(x) = JF (x̂)−1(d̂iv P−1
F u)(x̂)

= JF (x̂)−1q̂(x̂) = JF (x̂)−1 d̂iv v̂(x̂) = div P F v̂(x).

This shows that p ∈ div P F V̂ as required.
Proof of Theorem 4.1. We will show that if V̂ ⊇ Sr and K is any convex quadri-

lateral, then

‖u − πKu‖L2(K) ≤ Chr+1
K |u|Hr+1(K) ∀u ∈ Hr+1(K),(4.4)

where hK = diam(K) and the constant C depends only on π̂ and the shape constant
for K. The theorem follows easily by squaring both sides and summing over the
elements.

We establish (4.4) in two steps. First we prove it under the additional assumption
that hK = 1, and then we use a simple scaling argument to obtain it for arbitrary K.

For the first part we use the Bramble–Hilbert lemma. In view of Lemma 4.3 and
the fact that π̂ is a projection onto V̂ , it follows that πKu = u for all u ∈ Pr(K).
Now under the assumption that hK = 1, the Piola transform P FK

is bounded and
invertible both from L2(K̂) to L2(K) and from Hr+1(K̂) to Hr+1(K) with bounds in
both norms depending only on the shape constant. A similar statement holds for P−1

FK
.
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2440 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

Since π̂ is bounded from Hr+1(K̂) to L2(K̂), it follows that πK = P FK
◦ π̂ ◦ P−1

FK

is bounded from Hr+1(K) to L2(K) with bound depending only on the bound for π̂
and the shape constant for K. The map u �→ u−πKu is then similarly bounded and
moreover vanishes on Pr(K). Therefore,

‖u − πKu‖L2(K) ≤ ‖I − πK‖L(Hr+1(K),L2(K)) inf
p∈Pr(K)

‖u − p‖Hr+1(K).

Now the Bramble–Hilbert lemma states that the last infimum can be bounded by
c|u|Hr+1(K), where c depends only on r and the shape regularity of K (see, e.g., [2,
Lemma 4.3.8]). The estimate (4.4) then follows for hK = 1 with C = c‖I −
πK‖L(Hr+1(K),�2(K)).

To complete the proof, let K be an arbitrary convex quadrilateral, and denote
by M : K → K̃ := h−1

K K the dilation M(x) = h−1
K x. Then the bilinear maps FK

and F K̃ of the reference element K̂ onto K and K̃, respectively, are related by the
equation F K̃ = M ◦FK , from which it follows easily that πK̃ = PM ◦πK ◦P−1

M . Of
course, PM has a very simple form:

PMu(x̃) = hKu(hK x̃).

Now for any u ∈ Hr+1(K), let ũ = PMu ∈ Hr+1(K̃). It is then easy to check that

‖u − πKu‖L2(K) = ‖P−1
M (ũ − πK̃ũ)‖L2(K) = ‖ũ − πK̃ũ‖L2(K̃)

≤ C|ũ|Hr+1(K̃) = Chr+1
K |u|Hr+1(K),

where we obtained the inequality from the already established result for elements of
unit diameter.

Proof of Theorem 4.2. As for the previous theorem, it suffices to prove a local
result:

‖div u − div πKu‖L2(K) ≤ Chr+1
K |div u|Hr+1(K)

(4.5)
∀u ∈ Hr+1(K) with div u ∈ Hr+1(K),

where C depends only on the bounds for π̂ and Π̂ and the shape constant of K.
Define ΛK : L2(K) → L2(K) by

ΛKp(x) = JF (x̂)−1Π̂[JF · (p ◦ F )](x̂),(4.6)

i.e., ΛKp = {JF−1 · Π̂[JF · (p ◦ F )]} ◦ F−1. Then

div πKu(x) = div(P FK
π̂P−1

FK
u)(x) = JF (x̂)−1 d̂iv(π̂P−1

FK
u)(x̂)

= JF (x̂)−1Π̂(d̂iv P−1
FK

u)(x̂) = JF (x̂)−1Π̂[JF · (div u) ◦ F ](x̂).

That is, div πKu = ΛK(div u). Thus,

‖div u − div πKu‖L2(K) = ‖div u − ΛK(div u)‖L2(K)

and (4.5) will hold if we can prove that

‖p− ΛKp‖L2(K) ≤ Chr+1
K |p|Hr+1(K) ∀p ∈ Hr+1(K).(4.7)

The proof of (4.7) is again given first in the case of elements of unit diameter. Then
ΛK is bounded uniformly from Hr+1(K) to L2(K) for elements K with uniformly
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Fig. 2. Element diagrams indicating the degrees of freedom for ABF0 and ABF1.

bounded shape constant. Now, as noted in the proof of Lemma 4.4, if p ∈ Pr(K),

then JF · (p ◦ F ) ∈ Rr ⊆ d̂iv V̂ . Since Π̂ is a projection onto d̂iv V̂ , it follows that
ΛKp = p for p ∈ Pr(K). Thus the Bramble–Hilbert lemma implies (4.7) under the
restriction hK = 1. To extend to elements of arbitrary diameter, we again use a
dilation.

5. Construction of spaces with optimal order H(div, Ω) approxima-
tion. We have previously shown that none of the standard finite element approxi-
mations of H(div,Ω) (i.e., the Raviart–Thomas, Brezzi–Douglas–Marini, or Brezzi–
Douglas–Fortin–Marini spaces) maintain the same order of approximation on general
convex quadrilaterals as they do on rectangles. In this section, we use the condi-
tions determined in the previous sections to construct finite element subspaces of
H(div,Ω) which do have this property. To obtain approximation of order r + 1
in H(div,Ω) on general convex quadrilaterals, we require that the space of ref-

erence shape functions V̂ ⊇ Sr and d̂iv V̂ ⊇ Rr. A space with this property is
ABFr := Pr+2,r(K̂) × Pr,r+2(K̂), for which d̂ivABFr = Rr.

As degrees of freedom for ABFr on the reference element, we take

∫
ê

û · n̂q̂ dŝ, q̂ ∈ Pr(ê) for each edge ê of K̂(5.1) ∫
K̂

û · φ̂ dx̂, φ̂ ∈ Pr−1,r(K̂) × Pr,r−1(K̂),(5.2) ∫
K̂

d̂iv ûx̂r+1
1 x̂i

2 dx̂,

∫
K̂

d̂iv ûx̂i
1x̂

r+1
2 dx̂, i = 0, . . . , r.(5.3)

Note that (5.1) and (5.2) are the standard degrees of freedom for the Raviart–Thomas
elements on the reference square. In all we have specified 4(r+1)+2r(r+1)+2(r+1) =
2(r + 3)(r + 1) = dimABFr degrees of freedom. Since the new degrees of freedom,
with respect to the standard Raviart–Thomas elements, are local, we remark that the
implementation of the new space ABFr should not be more expensive than that of
RT r. Figure 2 indicates the degrees of freedom for the first two cases r = 0 and 1.

In order to see that these choices of V̂ and degrees of freedom determine a finite
element subspace of H(div,Ω), we need to show that the degrees of freedom are
unisolvent, and that if the degrees of freedom on an edge ê vanish, then û · n̂ vanishes
on e (this will ensure that the assembled finite element space belongs to H(div,Ω)).
The second point is immediate. On any edge ê of K̂, u · n ∈ Pr(ê), so the vanishing
of the degrees of freedom (5.1) associated to ê does indeed ensure that û · n̂ ≡ 0.

We now verify unisolvence by showing that if û ∈ ABFr and all the quanti-
ties (5.1)–(5.3) vanish, then û = 0. If q̂ ∈ Qr(K̂), then q̂|ê ∈ Pr(ê) for any edge ê of
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2442 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

K̂, and ∇̂q̂ ∈ Pr−1,r(K̂) × Pr,r−1(K̂). Therefore,∫
K̂

d̂iv ûq̂ dx̂ =

∫
∂K̂

û · n̂q̂ ds−
∫
K̂

û · ∇̂q̂ dx̂ = 0, q̂ ∈ Qr(K̂).

In view of (5.3) we then have that∫
K̂

d̂iv ûq̂ dx̂ = 0, q̂ ∈ Rr.

Since d̂iv û ∈ Rr we conclude that d̂iv û = 0. Now we may write

û =

r∑
i=0

[ai(x̂
r+2
1 x̂i

2, 0) + bi(0, x̂
i
1x̂

r+2
2 )] + v̂

with v̂ ∈ RT r. Since

0 = d̂iv û =

r∑
i=1

(r + 2)(aix̂
r+1
1 x̂i

2 + bix̂
i
1x̂

r+1
2 ) + d̂iv v̂,

and d̂iv v̂ ∈ Qr, it follows that ai = bi = 0 and so û = v̂ ∈ RT r. Since (5.1), (5.2)
are unisolvent degrees of freedom for RT r [4, Proposition III.3.4], we conclude that
û = 0.

We also note that a small variant of the first part of this argument establishes
the commutativity property (4.2) with π̂ : H1(K̂) → ABFr the projection deter-
mined by the degrees of freedom (5.1)–(5.3) and Π̂ the L2-projection onto Rr =

d̂ivABFr. Thus, all the hypotheses of Theorems 4.1 and 4.2 are satisfied and the
estimates (4.1) and (4.3) hold on general quadrilateral meshes for finite element spaces
based on ABFr.

6. Application to mixed finite element methods. One of the main applica-
tions of finite element subspaces of H(div,Ω) is to the approximation of second order
elliptic boundary value problems by mixed finite element methods. For the model
problem ∆p = f in Ω, p = 0 on ∂Ω, the mixed formulation is the following: Find
u ∈ H(div,Ω) and p ∈ L2(Ω) such that

(u,v) + (p,div v) = 0 ∀v ∈ H(div,Ω),

(div u, q) = (f, q) ∀q ∈ L2(Ω),

where (·, ·) denotes the L2(Ω) inner product. For Sh ⊆ H(div,Ω) and Wh ⊆ L2(Ω),
the mixed finite element approximation seeks uh ∈ Sh and ph ∈ Wh such that

(uh,v) + (ph,div v) = 0 ∀v ∈ Sh,

(div uh, q) = (f, q) ∀q ∈ Wh.

The pair (Sh,Wh) is said to be stable if the following conditions are satisfied:

(v,v) ≥ c‖v‖2
H(div,Ω) ∀v ∈ Zh = {v ∈ Sh : (div v, q) = 0 ∀q ∈ Wh},(6.1)

sup
v∈Sh

(div v, q)

‖v‖H(div,Ω)
≥ c‖q‖L2(Ω) ∀q ∈ Wh.(6.2)
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QUADRILATERAL H(div) FINITE ELEMENTS 2443

By Brezzi’s theorem [3], if (Sh,Wh) is a stable pair, then the quasioptimality estimate

‖u − uh‖H(div,Ω) + ‖p− ph‖L2(Ω) ≤ C
(

inf
v∈Sh

‖u − v‖H(div,Ω) + inf
q∈Wh

‖p− q‖L2(Ω)

)(6.3)

holds with C depending only on Ω and the constant c entering into the stability
conditions.

For the space Sh we will take V (Th)∩H(div,Ω), where Th is an arbitrary quadri-
lateral mesh and V (Th) is constructed as described at the start of section 3 starting

from a space of reference shape functions V̂ on the unit square. To specify the corre-
sponding space Wh, we first define a space of reference shape functions Ŵ = d̂iv V̂ ,
next define the space of shape functions on K by WK = {ŵ ◦ F−1

K | ŵ ∈ Ŵ}, and
then set

Wh = {w ∈ L2(Ω) | w|K ∈ WK}.

Now suppose that V̂ is any one of the previously considered spaces RT r, BDMr,
BDFMr+1, or ABFr. Associated with each of these spaces is a unisolvent set
of degrees of freedom. These are given in (5.1) and (5.2) for RT r, by (5.1)–(5.3)

for ABFr, and, for BDMr and BDFMr+1, by (5.1) and
∫
K̂

û · φ̂ dx̂ with φ̂ in

Pr−2(K̂) or Pr−1(K̂), respectively. These degrees of freedom determine the pro-

jection π̂ : H1(K̂) → V̂ and then, by the construction described at the start of
section 4, the projection πh : H1(Ω) → Sh. Moreover, the degrees of freedom ensure
the commutativity property (4.2) where Π̂ is the L2(K̂) projection onto Ŵ . From
these observations it is straightforward to derive the stability conditions (6.1) and
(6.2), as we shall now do.

Given v ∈ Zh and K ∈ Th, let v̂ = P−1
FK

(v|K) ∈ V̂ , q̂ = d̂iv v̂ ∈ Ŵ , and

q = q̂ ◦ F−1
K ∈ WK . Then (div v, q)L2(K) = 0 (because we can extend q to Ω by

zero and obtain a function in Wh and div v is orthogonal to Wh since v ∈ Zh).

But (div v, q)L2(K) = (d̂iv v̂, q̂)L2(K̂) = ‖ d̂iv v̂‖2
L2(K), so d̂iv v̂ = 0 and therefore

div v = [(JFK)−1 d̂iv v̂]◦F−1
K = 0. Thus, if v ∈ Zh, then div v = 0, and (6.1) follows

immediately with c = 1.
To prove (6.2), we shall show that for any given q ∈ Wh there exists v ∈ Sh with

(div v, q) = ‖q‖L2(Ω)(6.4)

and

‖v‖H(div,Ω) ≤ C‖q‖L2(Ω).(6.5)

As usual, we start by noting that there exists u ∈ H1(Ω) with div u = q and
‖u‖H1(Ω) ≤ C‖q‖L2(Ω) and letting v = πhu. Now (div πhu, q) = (div u, q) when-
ever q ∈ Wh, as follows directly from the construction of πh, the commutativity
property (4.2), and the properties of the Piola transform. Therefore (6.4) holds.

To prove (6.5) we note that in each case V̂ ⊇ S0, so Theorem 4.1 gives the esti-
mate ‖u − πhu‖L2(Ω) ≤ Ch‖u‖H1(Ω), and so, by the triangle inequality, ‖v‖L2(Ω) ≤
C‖q‖L2(Ω). Also, on any element K, div v = div πKu = ΛK(div u) = ΛKq, where ΛK

is defined by (4.6), which implies that ‖div v‖L2(Ω) ≤ C‖q‖L2(Ω). This establishes
(6.5) and completes the proof of stability.
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2444 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

Remark. Note that we do not have Wh = div Sh on general quadrilateral meshes,
although this is the case on rectangular meshes. With that choice of Wh it would be
easy to prove (6.1) but the proof of (6.2) would not be clear.

We now turn our attention to error estimates for mixed methods. Having estab-
lished stability, we can combine the quasioptimality estimate (6.3) with the bounds
for the approximation error given by Theorems 4.1 and 4.2 (and Theorem 1 of [1]
for the approximation error for p) to obtain error bounds. For the ABFr method
this gives

‖u − uh‖H(div,Ω) + ‖p− ph‖L2(Ω) ≤ Chr+1(|u|Hr+1(Ω) + |div u|Hr+1(Ω) + |p|Hr+1(Ω)).

But for the RT r method it gives only an O(hr) bound, and no convergence at all for
r = 0, because of the decreased approximation for the divergence (and the approxi-
mation orders are even lower for BDMr and BDFMr+1).

It is possible to improve on this by following the approach of [6] and [5], as
we now do. First we define ΠK : L2(K) → WK by ΠKp = (Π̂p̂) ◦ F−1

K with p̂ =
p ◦ FK , and then we define Πh : L2(Ω) → Wh by Πhp|K = ΠK(p|K). It follows that

(p− ΠKp,div v)L2(K) = (p̂− Π̂p̂, d̂iv P−1
FK

v)L2(K), so

(p− Πhp,div v) = 0 ∀v ∈ Sh.

We then have the following error estimates.
Theorem 6.1.

‖u − uh‖L2(Ω) ≤ ‖u − πhu‖L2(Ω),

‖div uh‖L2(Ω) ≤ C‖div u‖L2(Ω),

‖div(u − uh)‖L2(Ω) ≤ C‖div(u − πhu)‖L2(Ω),

‖Πhp− ph‖2
L2(Ω) = (u − uh,U − πhU) + (div[u − uh], P − ΠhP ),

where P is the solution to the Dirichlet problem −∆P = Πhp − ph in Ω, P = 0 on
∂Ω and U = gradP .

Proof. Using the error equations

(u − uh,v) + (p− ph,div v) = 0 ∀v ∈ Sh, (div[u − uh], q) = 0 ∀q ∈ Wh,

we obtain

(u − uh,πhu − uh) = (p− ph,div[uh − πhu]) = (Πhp− ph,div[uh − πhu])

= (Πhp− ph,div[uh − u]) = 0.

Hence, ‖u − uh‖2
L2(Ω) = (u − uh,u − πhu) and it easily follows that

‖u − uh‖L2(Ω) ≤ ‖u − πhu‖L2(Ω).

To estimate ‖div(u − uh)‖L2(Ω), we observe that if v ∈ Sh and we define

q(x) =

{
|JFK(x̂)|div v(x), x ∈ K,

0, x ∈ Ω \K,

then q ∈ Wh. Therefore, from the error equation we have

(div(u − uh), |JFK |div v)K = 0.
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QUADRILATERAL H(div) FINITE ELEMENTS 2445

Choosing v = uh, it easily follows that

‖|JFK |1/2 div uh‖L2(K) ≤ ‖|JFK |1/2 div u‖L2(K),

and so ‖div uh‖L2(K) ≤ C‖div u‖L2(K) with C depending on the shape constant for
K. Choosing v = πhu − uh, it also follows that

‖|JFK |1/2 div(u − uh)‖L2(K) ≤ ‖|JFK |1/2 div(u − πhu)‖L2(K),

so ‖div(u − uh)‖L2(K) ≤ C‖div(u − πhu)‖L2(K). Summing over all quadrilaterals,
we obtain

‖div uh‖L2(Ω) ≤ C‖div u‖L2(Ω), ‖div(u − uh)‖L2(Ω) ≤ C‖div(u − πhu)‖L2(Ω).

To estimate ‖p − ph‖L2(Ω), we define P as the solution to the Dirichlet problem
∆P = Πhp− ph in Ω, P = 0 on ∂Ω, and set U = gradP . Then

‖Πhp− ph‖2
L2(Ω) = (div U ,Πhp− ph) = (div πhU ,Πhp− ph) = −(u − uh,πhU)

= (u − uh,U − πhU) − (u − uh,U)

= (u − uh,U − πhU) + (div[u − uh], P )

= (u − uh,U − πhU) + (div[u − uh], P − ΠhP ).

To obtain order of convergence estimates, one needs to apply the approximation
properties of a particular space. For the Raviart–Thomas elements of index r we
obtain the following estimates.

Theorem 6.2. Suppose (uh, ph) is the mixed method approximation to (u, p)

obtained when V̂ is the Raviart–Thomas reference space of index r and suppose that
the domain Ω is convex. Then for p ∈ Hr+2(Ω),

‖u − uh‖L2(Ω) ≤ Chr+1‖u‖Hr+1(Ω),

‖div(u − uh)‖L2(Ω) ≤ Chr‖div u‖Hr(Ω),

‖p− ph‖L2(Ω) ≤
{
Chr+1‖p‖Hr+1(Ω) (r ≥ 1),
Ch‖p‖H2(Ω) (r = 0).

Proof. It follows from [7, section I.A.2] that ‖p − Πhp‖L2(Ω) ≤ Chk+1‖p‖k+1,Ω,
0 ≤ k ≤ r, and it follows from Theorems 4.1 and 4.2 that, for 0 ≤ k ≤ r,

‖u − πhu‖L2(Ω) ≤ Chk+1‖u‖Hk+1(Ω), ‖div[u − πhu]‖L2(Ω) ≤ Chk‖div u‖Hk(Ω).

Inserting these results in Theorem 6.1, we immediately obtain the first two estimates
of Theorem 6.2. From the last estimate of Theorem 6.1, we also obtain

‖Πhp− ph‖L2(Ω) ≤ C(h‖u − uh‖L2(Ω) + hmin(1+r,2)‖div(u − uh)‖L2(Ω)).

Here we have used elliptic regularity, which holds under the assumption that Ω
is convex, to bound ‖U‖H1(Ω) = ‖P‖H2(Ω) by ‖Πhp− ph‖L2(Ω). Hence, for r ≥ 1 and
0 ≤ k ≤ r, we obtain

‖Πhp− ph‖L2(Ω) ≤ Chk+2(‖u‖Hk+1(Ω) + ‖div u‖Hk(Ω)) ≤ Chk+2‖u‖Hk+1(Ω).

Choosing k = r − 1 and k = r, we obtain for r ≥ 1

‖Πhp− ph‖L2(Ω) ≤ Chr+1‖u‖Hr(Ω), ‖Πhp− ph‖L2(Ω) ≤ Chr+2‖u‖Hr+1(Ω),

and for r = 0, ‖Πhp− ph‖L2(Ω) ≤ Ch‖u‖1,Ω. The final estimates of the theorem now
follow directly by the triangle inequality.
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2446 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

7. Application to least squares methods. A standard finite element least
squares approximation of the Dirichlet problem ∆p = f in Ω, p = 0 on ∂Ω seeks
ph ∈ Wh ⊆ H1

0 (Ω) and uh ∈ Sh ⊆ H(div,Ω) minimizing

J(q,v) = ‖v − grad q‖2
L2(Ω) + ‖div v + f‖2

L2(Ω)

over Wh×Sh. For any choices of subspaces this satisfies the quasioptimality estimate
(cf. [10])

‖p− ph‖H1(Ω) + ‖u − uh‖H(div,Ω) ≤ C
(

inf
p∈Wh

‖p− q‖H1(Ω) + inf
v∈Sh

‖u − v‖H(div,Ω)

)
.

If we take Wh to be the standard H1 finite element space based on reference shape
functions Qr+1 and use the ABFr space for Sh, we immediately obtain

‖p− ph‖H1(Ω) +‖u−uh‖H(div,Ω) ≤ Chr+1(‖p‖Hr+1(Ω)+‖u‖Hr+1(Ω)+‖div u‖Hr+1(Ω)).

However, the quasioptimality estimate suggests that if we choose the same Wh but use
the RT r elements for Sh, the lower rate of approximation of div u may negatively
influence the approximation of both variables.

Next, we use a duality argument to obtain a second estimate, which provides
improved convergence for p in L2 when the ABF spaces are used, but again suggests
difficulties for the RT spaces. We shall henceforth assume that the domain Ω is
convex so that we have 2-regularity for the Dirichlet problem for the Laplacian. Define
w ∈ H(div,Ω) and r ∈ H1

0 (Ω) as solution of the dual problem∫
Ω

(w −∇r) · v dx +

∫
Ω

div w div v dx = 0 ∀v ∈ H(div,Ω),(7.1) ∫
Ω

(w −∇r) · ∇q dx = −
∫

Ω

(p− ph)q dx ∀q ∈ H1
0 (Ω).(7.2)

This problem has a unique solution, since if p− ph were to vanish, then we could take
v = w and q = r, subtract the equations, and conclude that w = ∇r, div w = 0 with
r ∈ H1

0 (Ω), which implies that w and r vanish. For general p − ph, the solution of
the dual problem may be written as w = ∇(r+ g) where g ∈ H2(Ω)∩H1

0 (Ω) satisfies
∆g = p− ph and r ∈ H2(Ω) ∩H1

0 (Ω) satisfies ∆r = g − p + ph (so div w = g). Note
that ‖r‖H2(Ω) + ‖w‖H1(Ω) + ‖div w‖H2(Ω) ≤ C‖p − ph‖L2(Ω). Choosing q = p − ph,
v = u − uh, subtracting (7.2) from (7.1), and using the error equations∫

Ω

(u − uh −∇[p− ph]) · v dx +

∫
Ω

div(u − uh) div v dx = 0 ∀v ∈ Sh,∫
Ω

(u − uh −∇[p− ph]) · ∇q dx = 0 ∀q ∈ Wh,

one obtains the estimate

‖p−ph‖2
L2(Ω) ≤ C(‖r−rI‖H1(Ω)+‖w−wI‖H(div,Ω))(‖p−ph‖H1(Ω)+‖u−uh‖H(div,Ω))

for all wI ∈ Sh and rI ∈ Wh. This estimate will furnish an improved order of
convergence for p in L2 as compared to H1 if Sh has good approximation properties
in H(div,Ω). For the ABFr space (still with Wh based on Qr+1) we obtain

‖p− ph‖L2(Ω) ≤ Chr+2(‖p‖Hr+1(Ω) + ‖u‖Hr+r(Ω) + ‖div u‖Hr+1(Ω)).
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QUADRILATERAL H(div) FINITE ELEMENTS 2447

But for the RT 0 space we obtain no convergence whatsoever. Numerical computa-
tions reported in the next section verify these findings for both the scalar and the
vector variable: with Wh taken to be the usual four node H1 elements based on Q1

and Sh based on ABF0, we obtain convergence of order 1 for u in H(div,Ω) and of
order 2 for p in L2(Ω), but if we use RT 0 elements instead there is no L2 convergence
for u or p.

The numerical computations of the next section also exhibit second order conver-
gence for div u in L2(Ω) when approximated by the ABF0 method on square meshes.
We close this section by showing that

‖div(u − uh)‖L2(Ω) = O(hr+2)

when the ABFr elements are used on rectangular meshes. Now define w ∈ H(div,Ω)
and r ∈ H1

0 (Ω) by∫
Ω

(w −∇r) · v dx +

∫
Ω

div w div v dx =

∫
Ω

div(u − uh) div v dx ∀v ∈ H(div,Ω),∫
Ω

(w −∇r) · ∇q dx = 0 ∀q ∈ H1
0 (Ω).

Then ∆r = div(u − uh) and w = ∇r, and so ‖r‖H2(Ω) + ‖w‖H1(Ω) ≤ C‖div(u −
uh)‖L2(Ω). Taking v = u − uh, q = p− ph and using the error equations, we obtain

‖div(u − uh)‖2
L2(Ω) =

∫
Ω

(w − wI −∇[r − rI ]) · (u − uh −∇[p− ph]) dx

+

∫
Ω

div(w − wI) div(u − uh) dx

for any wI ∈ Sh and rI ∈ Wh. Taking wI = πhw and rI a standard interpolant of r,
the first integral on the right-hand side is bounded by

Ch‖div(u − uh)‖L2(Ω)(‖p− ph‖H1(Ω) + ‖u − uh‖H(div,Ω))

≤ Chr+2‖div(u − uh)‖L2(Ω)(‖p‖Hr+1(Ω) + ‖u‖Hr+1(Ω) + ‖div u‖Hr+1(Ω)).

To bound the second integral, we note that, in the rectangular case, div πhw =
Πh div w with Πh the L2-projection into div V h, and also, in the rectangular case,
div V h contains all piecewise polynomials of degree at most r+1, so ‖q−Πhq‖L2(Ω) ≤
Chr+2‖q‖Hr+2(Ω) for all q. Therefore,∫

Ω

div(w − wI) div(u − uh) dx =

∫
Ω

div w[div u − Πh(div u)] dx

≤ C‖div(u − uh)‖L2(Ω)h
r+2‖div u‖Hr+2(Ω).

Combining these estimates, we conclude that

‖div(u − uh)‖L2(Ω) ≤ Chr+2(‖p‖Hr+1(Ω) + ‖u‖Hr+1(Ω) + ‖div u‖Hr+2(Ω)).

8. Numerical results. In this section, we illustrate our results with several nu-
merical examples using two sequences of meshes. The first is a uniform mesh of the
unit square into n2 subsquares and the second is a mesh of trapezoids as shown in Fig-
ure 1(b) (with the notation of Theorem 3.1, here α = 1 and β = 1/3). In the first of
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Table 1

Errors and orders of convergence for the piecewise H(div,Ω) projection into discontinuous
BDM1 and discontinuous BDFM2.

Piecewise H(div,Ω) projection into BDM1 on square meshes

‖u − πhu‖L2(Ω) ‖ div(u − πhu)‖L2(Ω)

n err. % order err. % order

2 1.94e−02 13.010 2.11e−01 30.151
4 5.08e−03 3.405 1.9 1.15e−01 16.428 0.9
8 1.28e−03 0.861 2.0 5.86e−02 8.375 1.0

16 3.22e−04 0.216 2.0 2.94e−02 4.207 1.0
32 8.05e−05 0.054 2.0 1.47e−01 2.106 1.0
64 2.01e−05 0.013 2.0 7.36e−03 1.053 1.0

Piecewise H(div,Ω) projection into BDM1 on trapezoidal meshes

‖u − πhu‖L2(Ω) ‖ div(u − πhu)‖L2(Ω)

n err. % order err. % order

2 2.57e−02 17.243 2.63e−01 37.646
4 7.89e−03 5.291 1.7 1.83e−01 26.109 0.5
8 2.80e−03 1.879 1.5 1.50e−01 21.430 0.3

16 1.21e−03 0.811 1.2 1.40e−01 20.031 0.1
32 5.78e−04 0.387 1.1 1.37e−01 19.662 0.0
64 2.85e−04 0.191 1.0 1.37e−01 19.568 0.0

Piecewise H(div,Ω) projection into BDFM2 on square meshes

‖u − πhu‖L2(Ω) ‖ div(u − πhu)‖L2(Ω)

n err. % order err. % order

2 1.52e−02 10.206 5.27e−02 7.538
4 3.80e−03 2.552 2.0 1.32e−02 1.884 2.0
8 9.51e−04 0.638 2.0 3.29e−03 0.471 2.0

16 2.38e−04 0.159 2.0 8.24e−04 0.118 2.0
32 5.94e−05 0.040 2.0 2.06e−04 0.029 2.0
64 1.49e−05 0.010 2.0 5.15e−05 0.007 2.0

Piecewise H(div,Ω) projection into BDFM2 on trapezoidal meshes

‖u − πhu‖L2(Ω) ‖ div(u − πhu)‖L2(Ω)

n err. % order err. % order

2 1.86e−02 12.502 6.85e−02 9.791
4 5.07e−03 3.399 1.9 3.52e−02 5.040 1.0
8 1.38e−03 0.926 1.9 1.77e−02 2.538 1.0

16 4.29e−04 0.288 1.7 8.89e−03 1.271 1.0
32 1.66e−04 0.111 1.4 4.45e−03 0.636 1.0
64 7.56e−05 0.051 1.1 2.22e−03 0.318 1.0

these examples (see Table 1), we demonstrate the decreased orders of convergence of
the BDM1 and BDFM2 spaces by computing the piecewise H(div,Ω) projection
of a simple smooth function, u = grad[x1(1 − x1)x2(1 − x2)], into the discontinuous
versions of these spaces. On a rectangular mesh, the space BDFM2 gives second
order approximation of both components of the vector and of its divergence. This is
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Table 2

Errors and orders of convergence for the mixed approximation to Poisson’s equation.

RT 0 on square meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 1.84e−02 55.28 6.09e−02 40.83 2.11e−01 30.15
4 1.04e−02 31.07 0.8 3.32e−02 22.24 0.9 1.15e−01 16.43 0.9
8 5.33e−03 15.99 1.0 1.69e−02 11.34 1.0 5.86e−02 8.38 1.0

16 2.68e−03 8.05 1.0 8.49e−03 5.70 1.0 2.94e−02 4.21 1.0
32 1.34e−03 4.03 1.0 4.25e−03 2.85 1.0 1.47e−02 2.11 1.0

RT 0 on trapezoidal meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 1.84e−02 55.08 6.34e−02 42.55 2.67e−01 38.14
4 1.08e−02 32.37 0.8 3.63e−02 24.38 0.8 1.85e−01 26.51 0.5
8 5.60e−03 16.80 0.9 1.91e−02 12.83 0.9 1.53e−01 21.82 0.3

16 2.83e−03 8.48 1.0 9.81e−03 6.58 1.0 1.43e−01 20.42 0.1
32 1.42e−03 4.25 1.0 4.97e−03 3.33 1.0 1.40e−01 20.05 0.0

ABF0 on square meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 2.49e−02 74.59 6.89e−02 64.21 5.27e−02 7.54
4 1.36e−02 40.65 0.9 3.42e−02 22.97 1.0 1.32e−02 1.88 2.0
8 7.03e−03 21.08 1.0 1.70e−02 11.43 1.0 3.29e−03 0.47 2.0

16 3.70e−03 11.10 0.9 8.51e−03 5.71 1.0 8.24e−04 0.12 2.0
32 1.93e−03 5.78 0.9 4.25e−03 2.85 1.0 2.06e−04 0.03 2.0

ABF0 on trapezoidal meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 2.31e−02 69.38 6.59e−02 44.20 6.91e−02 9.89
4 1.33e−02 39.98 0.8 3.58e−02 24.04 0.9 3.58e−02 5.12 0.9
8 7.22e−03 21.66 0.9 1.85e−02 12.41 1.0 1.81e−02 2.58 1.0

16 3.84e−03 11.51 0.9 9.43e−03 6.33 1.0 9.05e−03 1.30 1.0
32 2.00e−03 5.99 0.9 4.77e−03 3.20 1.0 4.53e−03 0.65 1.0

confirmed in the approximation of the piecewise H(div,Ω) projection. On a trape-
zoidal mesh, BDFM2 gives only first order approximation of both components of
the vector and of its divergence, and this is also confirmed in the approximation of
the piecewise H(div,Ω) projection. On a rectangular mesh, the space BDM1 gives
second order approximation of both components of the vector, but only first order
approximation of its divergence. On a trapezoidal mesh these orders of convergence
are reduced to first order for the approximation of both components of the vector
and the approximation of the divergence shows no convergence. These theoretical
convergence orders are also confirmed in the computations. Although we do not in-
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Table 3

Errors and orders of convergence for the least squares approximation to Poisson’s equation.

RT 0 on square meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 2.61e−01 52.28 1.07e+00 48.03 5.78e+00 58.58
4 7.71e−02 15.42 1.8 5.15−01 23.19 1.1 3.09e+00 31.34 0.9
8 2.01e−02 4.01 1.9 2.53e−01 11.41 1.0 1.57e+00 15.94 1.0

16 5.07e−03 1.01 2.0 1.26e−01 5.68 1.0 7.90e−01 8.00 1.0
32 1.27e−03 0.25 2.0 6.30e−02 2.84 1.0 3.95e−01 4.01 1.0
64 3.18e−04 0.06 2.0 3.15e−02 1.42 1.0 1.98e−01 2.00 1.0

RT 0 on trapezoidal meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 2.95e−01 58.96 1.24e+00 55.74 6.03e+00 61.07
4 1.08e−01 21.67 1.4 6.05−01 27.26 1.0 3.68e+00 37.25 0.7
8 4.29e−02 8.58 1.3 3.10e−01 13.97 1.0 2.50e+00 25.37 0.6

16 2.51e−02 5.01 0.8 1.72e−01 7.74 0.9 2.09e+00 21.16 0.3
32 2.06e−02 4.12 0.3 1.13e−01 5.09 0.6 1.97e+00 19.96 0.1
64 1.95e−02 3.89 0.1 9.27e−02 4.17 0.3 1.94e+00 19.64 0.0

ABF0 on square meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 1.42e−01 28.46 1.04e+00 46.77 2.19e+00 22.18
4 3.35e−02 6.70 2.1 5.10e−01 22.98 1.0 5.88e−01 9.96 1.9
8 8.22e−03 1.64 2.0 2.53e−01 11.38 1.0 1.50e−01 1.52 2.0

16 2.04e−03 0.41 2.0 1.26e−01 5.67 1.0 3.76e−02 0.38 2.0
32 5.10e−04 0.10 2.0 6.30e−02 2.84 1.0 8.41e−03 0.10 2.0

ABF0 on trapezoidal meshes

‖p− ph‖L2(Ω) ‖u − uh‖L2(Ω) ‖ div(u − uh)‖L2(Ω)

n err. % order err. % order err. % order

2 1.89e−01 37.74 1.17e+00 52.86 3.0e+00 31.39
4 5.49e−02 10.98 1.8 5.61e−01 25.24 1.1 1.12e+00 11.32 1.5
8 1.45e−02 2.89 1.9 2.80e−01 12.62 1.0 5.00e−01 5.07 1.2

16 3.67e−03 0.73 1.9 1.40e−01 6.32 1.0 2.42e−01 2.45 1.0
32 9.20e−04 0.18 2.0 7.02e−02 3.16 1.0 1.20e−01 1.21 1.0

clude the details of the computations, the same convergence orders are observed in
computations of the L2(Ω), rather than the piecewise H(div,Ω) projection.

The second computation, reported in Table 2, illustrates our results on the conver-
gence orders of RT 0 and ABF0 for the approximation of Poisson’s equation by the
standard mixed finite element method. The exact solution is p = x1(1−x1)x2(1−x2).
As expected, on a trapezoidal mesh, RT 0 gives a first order approximation to the
scalar and vector variable (the same as on a rectangular mesh), but there is no con-
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vergence of the approximation of the divergence of the vector variable in contrast
to the standard first order approximation seen on rectangles. When ABF0 is used
instead, there is an improvement in the convergence order of the divergence of the
vector variable.

Finally, Table 3 shows the difference in the convergence orders of RT 0 and ABF0

coupled with Q1 for the scalar variable for the approximation of Poisson’s equation
by a standard least squares finite element method. Again the exact solution is p =
x1(1 − x1)x2(1 − x2). When RT 0 is used, the poor approximation of the divergence
on trapezoidal meshes results in poor approximation of both the scalar and vector
variable, while on a rectangle the scalar variable is approximated to second order and
the vector variable and its divergence to first order. When ABF0 is used instead, one
achieves second order convergence for the scalar variable and first order convergence
for the vector variable on both rectangular and quadrilateral meshes. The divergence
of the vector variable is approximated to second order on rectangles and to first order
on trapezoids, as predicted by the theory.
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