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We consider the finite element solution of the vector Laplace equation on a domain in
two dimensions. For various choices of boundary conditions, it is known that a mixed
finite element method, in which the rotation of the solution is introduced as a second
unknown, is advantageous, and appropriate choices of mixed finite element spaces lead
to a stable, optimally convergent discretization. However, the theory that leads to these
conclusions does not apply to the case of Dirichlet boundary conditions, in which both
components of the solution vanish on the boundary. We show, by computational example,
that indeed such mixed finite elements do not perform optimally in this case, and we
analyze the suboptimal convergence that does occur. As we indicate, these results have
implications for the solution of the biharmonic equation and of the Stokes equations
using a mixed formulation involving the vorticity.
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1. Introduction

We consider the vector Laplace equation (Hodge Laplace equation for 1-forms) on
a two-dimensional domain Ω. That is, given a vector field f on Ω, we seek a vector
field u such that

curl rotu − graddiv u = f in Ω. (1.1)

(Notations are detailed at the end of this Introduction.) A weak formulation of
a boundary value problem for this equation seeks the solution u in a subspace
H ⊂ H(rot) ∩H(div) satisfying

(rotu, rotv) + (div u, div v) = (f ,v), v ∈ H. (1.2)

If H is taken to be H̊(rot) ∩ H(div), the variational formulation implies Eq. (1.1)
together with the electric boundary conditions

u · s = 0, div u = 0 on ∂Ω. (1.3)

Magnetic boundary conditions, u · n = 0, rotu = 0, result if instead the subspace
H in the weak formulation is taken to be H(rot)∩ H̊(div). (The terms electric and
magnetic are derived from the close relation of the Hodge Laplacian and Maxwell’s
equations.) If the domain Ω is simply-connected, both these boundary value prob-
lems are well-posed. (Otherwise,H contains a finite-dimensional subspace consisting
of vector fields which satisfy the boundary conditions and have vanishing rotation
and divergence with dimension equal to the number of holes in the domain, and
each problem can be rendered well-posed by replacing H with the orthogonal com-
plement of this space.)

Even when the domain is simply connected, finite element methods based on
(1.2) are problematic. For example, on a non-convex polygon, approximations using
continuous piecewise linear functions converge to a function different from the solu-
tion of the boundary value. See §2.3.2 of Ref. 2 for more details. A convergent finite
element method can be obtained by discretizing a mixed formulation with a stable
choice of elements. The mixed formulation for the electric boundary value problem
seeks σ ∈ H1, u ∈ H(div) such that

(σ, τ) − (u, curl τ) = 0, τ ∈ H1,

(curlσ,v) + (div u, div v) = (f ,v), v ∈ H(div).

On a simply connected domain, this problem has a unique solution for any L2

vector field f ; u solves (1.1) and (1.3) and σ = rotu. To discretize, we choose finite
element spaces Σh ⊂ H1, Vh ⊂ H(div), indexed by a sequence of positive numbers
h tending to 0, and determine σh ∈ Σh, uh ∈ Vh by

(σh, τ) − (uh, curl τ) = 0, τ ∈ Σh, (1.4)

(curlσh,v) + (div uh, div v) = (f ,v), v ∈ Vh. (1.5)
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In order to obtain a stable numerical method, the finite element spaces Σh and Vh

must be chosen appropriately. A stable method is obtained by choosing Σh to be the
Lagrange elements of any degree r ≥ 1 and Vh to be the Raviart–Thomas elements
of the same degree r (where the case r = 1 refers to the lowest-order Raviart–
Thomas elements). In the notation of finite element exterior calculus,2 Σh × Vh =
PrΛ0 ×P−

r Λ1, and the hypotheses required by that theory (the spaces belong to a
subcomplex of the Hilbert complex H1 curl−−→ H(div) div−−→ L2 with bounded cochain
projections) are satisfied. From this it follows that the mixed finite element method
is stable and convergent. Similar considerations apply to the magnetic boundary
value problem, where the finite element spaces are Σ̊h = Σh ∩ H̊1 and V̊h =
Vh ∩ H̊(div) and the relevant Hilbert complex is H̊1 curl−−→ H̊(div) div−−→ L2. Another
possible choice is to take Σh to be Lagrange elements of degree r > 1 and Vh to be
Brezzi–Douglas–Marini elements of degree r − 1 (i.e. Σh × Vh = PrΛ0 × Pr−1Λ1).
This case is similar, and will not be discussed further here.

We turn now to the main consideration of the current paper, which is Eq. (1.1)
with Dirichlet boundary conditions u = 0 on ∂Ω. This problem may of course be
treated in the weak formulation (1.2) with H = H̊1(Ω; R2). In this case we may
integrate by parts and rewrite the bilinear form in terms of the gradient (which,
when applied to a vector, is matrix-valued):

(rotu, rotv) + (div u, div v) = (gradu, gradv), u,v ∈ H̊1(Ω; R2).

Thus the weak formulation (1.2) is just

(gradu, gradv) = (f ,v), v ∈ H̊1(Ω; R2), (1.6)

for which the discretization using Lagrange or similar finite elements is completely
standard.

However, one might consider using a mixed method analogous to (1.4) and
(1.5) for the Dirichlet boundary value problem in the hope of getting a better
approximation of σ = rotu, or when Dirichlet boundary conditions are imposed on
part of the boundary and electric and/or magnetic boundary conditions are imposed
on another part of the boundary. In fact, as we discuss in Secs. 4 and 5, a mixed
approach to the vector Laplacian with Dirichlet boundary conditions is implicitly
used in certain approaches to the solution of the Stokes equations which introduce
the vorticity, and in certain mixed methods for the biharmonic equation. In the
mixed formulation of the Dirichlet problem for the vector Laplacian, the vanishing
of the normal component is an essential boundary condition, while the vanishing
of the tangential component arises as a natural boundary condition. No boundary
conditions are imposed on the variable σ. Thus, we define V̊h = Vh ∩ H̊(div), and
seek σh ∈ Σh, uh ∈ V̊h satisfying

(σh, τ) − (uh, curl τ) = 0, τ ∈ Σh, (1.7)

(curlσh,v) + (div uh, div v) = (f ,v), v ∈ V̊h. (1.8)
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Note that curlΣh � V̊h, so there is no Hilbert complex available in this case, and
the theory of Ref. 2 does not apply. This suggests that there may be difficulties
with stability and convergence of the mixed method (1.7) and (1.8). In the next
section, we exhibit computational examples demonstrating that this pessimism is
well founded. The convergence of the mixed method for the Dirichlet boundary
value problem is severely suboptimal (while it is optimal for electric and magnetic
boundary conditions). Thus, the difficulties arising from the loss of the Hilbert
complex structure are real, not an artifact of the theory.

However, the computations indicate that even for Dirichlet boundary conditions,
the mixed method does converge, albeit in a suboptimal manner. While we do not
recommend the mixed formulation for the Dirichlet problem, in Sec. 3 we prove
convergence at the suboptimal rates that are observed and, in so doing, clarify the
sources of the suboptimality. Theorem 3.1 summarizes the main results of our anal-
ysis, and the remainder of the section develops the tools needed to establish them.

This analysis of the mixed finite element approximation of the vector Laplacian
has implications for the analysis of mixed methods for other important problems:
for the biharmonic equation using the Ciarlet–Raviart mixed formulation, and for
the Stokes equations using a mixed formulation involving the vorticity, velocity,
and pressure, or, equivalently, using a stream function-vorticity formulation. As a
simple consequence of our analysis of the vector Laplacian, we are able to analyze
mixed methods for these problems, elucidating the suboptimal rates of convergence
observed for them, and establishing convergence at the rates that do occur. Some
of the estimates we obtain are already known, while others improve on existing
estimates. The biharmonic problem is addressed in Sec. 4 and the Stokes equations
in Sec. 5.

We end this Introduction with a summary of the main notations used in the
paper. For sufficiently smooth scalar-valued and vector-valued functions σ and u,
respectively, we use the standard calculus operators

gradσ =
(
∂σ

∂x
,
∂σ

∂y

)
, curlσ =

(
∂σ

∂y
,−∂σ

∂x

)
, div u =

∂u1

∂x
+
∂u2

∂y
,

rotu =
∂u2

∂x
− ∂u1

∂y
.

We use the standard Lebesgue and Sobolev spaces Lp(Ω), H l(Ω), W l
p(Ω), and also

the spaces H(div,Ω) and H(rot,Ω) consisting of L2 vector fields u with div u in L2

or rotu ∈ L2, respectively. Since the domain Ω will usually be clear from context,
we will abbreviate these spaces as Lp, H l, H(div), etc. For vector-valued functions
in a Lebesgue or Sobolev space, we may use notations like H l(Ω; R2), although
when there is little chance of confusion we will abbreviate this to simply H l. The
closure of C∞

0 (Ω) in H1, H(div), andH(rot), are denoted H̊1, H̊(div), H̊(rot). Note
that if u ∈ H(div), then the normal trace u · n ∈ H−1/2(∂Ω) and H̊(div) = {u ∈
H(div) |u · n = 0 on ∂Ω}. Similarly, H̊(rot) = {u ∈ H(rot) |u · s = 0 on ∂Ω}. We
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write (·, ·) for the L2(Ω) inner product (of either scalar- or vector-valued functions)
and ‖ · ‖ for the corresponding norm.

We shall also need the dual space of H̊(div), the space H̊(div)′, normed by

‖v‖H̊(div)′ := sup
w∈H̊(div)

(v,w)
‖w‖H(div)

. (1.9)

Clearly,

L2(Ω; R2) ⊂ H̊(div)′ ⊂ H−1(Ω; R2) (1.10)

with continuous inclusions.

2. Some Numerical Results

We begin by considering the solution of the Hodge Laplacian (1.1) with electric
boundary conditions (1.3) using the mixed method (1.4), (1.5). For the space Σh,
we use Lagrange finite elements of degree r ≥ 1 and for the space Vh, Raviart–
Thomas elements of degree r (consisting locally of certain polynomials of degree
≤r, including all those of degree ≤r − 1). These are stable elements and a complete
analysis has been given in Ref. 2. Assuming that the solution is smooth, it follows
from Theorem 3.11 of that reference that the following rates of convergence, each
optimal, hold:

‖u− uh‖ = O(hr), ‖div(u− uh)‖ = O(hr),

‖σ − σh‖ = O(hr+1), ‖grad(σ − σh)‖ = O(hr).

Table 1 shows the results of a computation with r = 2. Note that the computed rates
of convergence are precisely as expected. In the test problem displayed, the domain
is Ω = (0, 1) × (0, 1) and the exact solution is u = (cos πx sinπy, 2 sinπx cos πy).
The meshes used for computation were obtained by dividing the square into n× n

subsquares, n = 1, 2, 4, . . . , 128, and dividing each subsquare into two triangles with
the positively sloped diagonal. Only the result for the four finest meshes are shown.
Very similar results were obtained for the case of magnetic boundary conditions,
and for a sequence of nonuniform meshes, and also for other values of r ≥ 1.

The situation in the case of Dirichlet boundary conditions is very dif-
ferent. In Table 2 we consider the problem with exact solution u =
(sinπx sinπy, sinπx sinπy). The finite element spaces are as for the computation of

Table 1. L2 errors and convergence rates for degree 2 mixed finite element approximation
of the vector Laplacian with electric boundary conditions.

‖u − uh‖ Rate ‖div(u − uh)‖ Rate ‖σ − σh‖ Rate ‖curl(σ − σh)‖ Rate

2.14e-03 1.99 1.17e-02 1.99 2.16e-04 3.03 2.63e-02 1.98
5.37e-04 1.99 2.93e-03 2.00 2.70e-05 3.00 6.60e-03 1.99
1.34e-04 2.00 7.33e-04 2.00 3.37e-06 3.00 1.65e-03 2.00
3.36e-05 2.00 1.83e-04 2.00 4.16e-07 3.02 4.14e-04 2.00
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Table 2. L2 errors and convergence rates for degree 2 mixed finite element approximation
of the vector Laplacian with Dirichlet boundary conditions.

‖u − uh‖ Rate ‖div(u − uh)‖ Rate ‖σ − σh‖ Rate ‖curl(σ − σh)‖ Rate

1.22e-03 2.01 1.55e-02 1.58 1.90e-02 1.62 2.53e+00 0.63
3.05e-04 2.00 5.33e-03 1.54 6.36e-03 1.58 1.68e+00 0.60
7.63e-05 2.00 1.85e-03 1.52 2.18e-03 1.54 1.14e+00 0.56
1.91e-05 2.00 6.49e-04 1.51 7.58e-04 1.52 7.89e-01 0.53

Table 1, except that the boundary condition of vanishing normal trace is imposed
in the Raviart–Thomas space Vh. Note that the L2 rate of convergence for σ is
not the optimal value of 3, but rather roughly 3/2. The L2 rate of convergence of
curlσ (i.e. the H1 rate of convergence of σ) is also suboptimal by roughly 3/2: it
converges only as h1/2. For u, the L2 convergence rate is the optimal 2, but the
convergence rate for div u is suboptimal by 1/2.

We have carried out similar computations for r = 3 and 4 and for nonuniform
meshes and the results are all very similar: degradation of the rate of convergence
by 3/2 for σ and curlσ, and by 1/2 for div u. However, the case r = 1 is different.
There we saw no degradation of convergence rates for uniform meshes, but for
nonuniform meshes σ converged in L2 with rate suboptimal by 1 and curlσ did not
converge at all.

The moral of this is that the mixed finite element method using the standard
elements is indeed strongly tied to the underlying Hilbert complex structure which
is not present for the vector Laplacian with Dirichlet boundary conditions, and
the method is not appropriate for this problem. Nonetheless the experiments sug-
gest that the method does converge, albeit at a degraded rate. In the next section,
we develop the theory needed to prove that this is indeed so, and also to indi-
cate where the lack of Hilbert complex structure leads to the suboptimality of the
method.

3. Error Analysis

Theorem 3.1, which is the primary result of this section, establishes convergence of
the mixed method for the Dirichlet problem at the suboptimal rates observed in
the previous section. In it we assume that Ω is a convex polygon endowed with
a shape-regular and quasi-uniform family of triangulations of mesh size h. We
continue to denote by Σh ⊂ H1 and Vh ⊂ H(div) the Lagrange and Raviart–
Thomas finite element spaces of some fixed degree r ≥ 1, respectively, with V̊h =
Vh ∩ H̊(div).

Theorem 3.1. Let u denote the solution of the vector Laplace equation (1.1) with
Dirichlet boundary condition u = 0, and let σ = rotu. There exist unique σh ∈ Σh,

uh ∈ V̊h satisfying the mixed method (1.7) and (1.8). If the polynomial degree
r ≥ 2, then the following estimates hold for 2 ≤ l ≤ r (whenever the norms on the
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right-hand side are finite):

‖u− uh‖ ≤ Chl‖u‖l,

‖div(u− uh)‖ + ‖σ − σh‖ + h‖curl(σ − σh)‖

≤ Chl−1/2(|lnh|‖u‖W l∞ + ‖u‖l+1/2).

If r = 1, the estimates are:

‖u− uh‖ ≤ Ch|lnh|2(|lnh|‖u‖W 1∞ + ‖u‖2),

‖div(u − uh)‖ + ‖σ − σh‖ + h‖curl(σ − σh)‖ ≤ Ch1/2(|lnh|‖u‖W 1∞ + h1/2‖u‖2).

Note that the error estimate for u is optimal order (modulo the logarithm when
r = 1), while (again modulo the logarithm), the estimate for div u is suboptimal by
1/2 order, and the estimates for σ and curlσ are suboptimal by 3/2 order. This is
as observed in the experiments reported above. Above and throughout, we use C
to denote a generic constant independent of h, whose values may differ at different
occurrences.

The proof of this theorem is rather involved. Without the Hilbert complex struc-
ture, the numerical method is not only less accurate, but also harder to analyze.
The analysis will proceed in several steps. First, in Sec. 3.2, we will establish the
well-posedness of the continuous problem, not in the space H1× H̊(div), but rather
using a larger space than H1 with weaker norm for σ. Next, in Sec. 3.3, we mimic
the well-posedness proof on the discrete level to obtain stability of the discrete
problem, but with a mesh-dependent norm on Σh. This norm is even weaker than
the norm used for the continuous problem, which may be seen as the cause of the
loss of accuracy. To continue the analysis, we then introduce projection operators
into V̊h and Σh and develop bounds and error estimates for them in Sec. 3.4. In
Sec. 3.5 we combine these with the stability result to obtain basic error estimates
for the scheme, and we improve the error estimate for uh in Sec. 3.6 using duality.

3.1. Preliminaries

First we recall two forms of the Poincaré–Friedrichs inequality:

‖τ‖ ≤ CP ‖curl τ‖, τ ∈ H̊1, ‖ψ‖ ≤ CP ‖gradψ‖, ψ ∈ Ĥ1. (3.1)

Here Ĥ1 denotes the subspace of functions in H1 with zero mean. Similarly, we will
use L̂2 to denote the zero mean subspace of L2.

Next we recall the Hodge decomposition. The space L2(Ω; R2) admits a decom-
position into the orthogonal closed subspaces curlH1 and grad H̊1, or, alternatively,
into the subspaces curl H̊1 and gradH1. The decomposition of a given v ∈ L2

according to either of these may be computed by solving appropriate boundary value
problems. For example, we may compute the unique ρ ∈ H̊1 and φ ∈ Ĥ1 such that

v = curl ρ+ gradφ, (3.2)
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by a Dirichlet problem and a Neumann problem for the scalar Poisson equation,
respectively:

(curl ρ, curl τ) = (v, curl τ), τ ∈ H̊1,

(gradφ, gradψ) = (v, gradψ), ψ ∈ Ĥ1.
(3.3)

Clearly, ‖gradφ‖ ≤ ‖v‖. If v ∈ H̊(div), then φ satisfies the Neumann problem

∆φ = div v in Ω,
∂φ

∂n
= 0 on ∂Ω,

∫
Ω

φdx = 0,

so, by elliptic regularity, ‖φ‖2 ≤ C‖div v‖ if the domain is convex, and ‖φ‖1 ≤
C‖div v‖ for any domain.

We shall need analogous results on the discrete level. To this end, let Sh denote
the space of piecewise polynomials of degree at most r − 1, with no imposed inter-
element continuity. Then the divergence operator maps Vh onto Sh and also maps
V̊h onto Ŝh, the codimension one subspace consisting of functions with mean value
zero. The former pair of spaces is used to solve the Dirichlet problem for the Poisson
equation, and the latter is used to solve the Neumann problem. Each pair forms
part of a short exact sequence:

0 → Σ̂h
curl−−→ Vh

div−−→ Sh → 0 and 0 → Σ̊h
curl−−→ V̊h

div−−→ Ŝh → 0, (3.4)

respectively.
The usual Raviart–Thomas approximate solution to the Poisson equation ∆φ =

g with Dirichlet boundary condition φ = 0 is then: find vh ∈ Vh, φh ∈ Sh such that

(vh,w) + (div w, φh) = 0, w ∈ Vh, (div vh, ψ) = (g, ψ), ψ ∈ Sh.

Define the operator gradh : Sh → Vh by

(gradh φ,w) = −(φ, div w), φ ∈ Sh, w ∈ Vh.

From the stability of the mixed method, we obtain the discrete Poincaré inequality
‖φ‖ ≤ C̄P ‖gradh φ‖, φ ∈ Sh, with C̄P independent of h. The solution (vh, φh) ∈
Vh × Sh of the mixed method may be characterized by

(gradh φh, gradh ψ) = −(g, ψ), ψ ∈ Sh

and vh = gradh φh.
Corresponding to the first sequence in (3.4), we have the discrete Hodge

decomposition

Vh = curl Σh + gradh Sh, (3.5)

and corresponding to the second, the alternate discrete Hodge decomposition

V̊h = curl Σ̊h + grad◦
hSh, (3.6)

where grad◦
h : Sh → V̊h is defined by(

grad◦
hφ,w

)
= −(φ, div w), φ ∈ Sh, w ∈ V̊h.
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Both of the discrete Hodge decompositions can be characterized by finite element
computations. For example, in analogy to (3.3), for given v ∈ V̊h we may compute
the unique ρh ∈ Σ̊h and φh ∈ Ŝh such that v = curl ρh +grad◦

hφh from the following
finite element systems (one primal, one mixed):

(curl ρh, curl τ) = (v, curl τ), τ ∈ Σ̊h,(
grad◦

hφh, grad◦
hψ

)
= (v, grad◦

hψ), ψ ∈ Ŝh.

3.2. Well-posedness of the continuous formulation

As a first step towards analyzing the mixed method, we obtain well-posedness
of a mixed formulation of the continuous boundary value problem for the vector
Laplacian. To do so, we need to introduce a larger space than H1 for the scalar
variable, namely

Σ = {τ ∈ L2 : curl τ ∈ H̊(div)′},

with norm ‖τ‖2
Σ = ‖τ‖2 + ‖curl τ‖2

H̊(div)′
(see (1.9)). The space Σ has appeared

before in studies of the vorticity-velocity-pressure and stream function-vorticity
formulations of the Stokes problem,10 and an equivalent space (at least for
domains with C1,1 boundary) has been used.4 The bilinear form for the mixed
formulation is

B(ρ,w; τ,v) = (ρ, τ) − 〈curl τ,w〉 + 〈curl ρ,v〉 + (div w, div v),

where 〈·, ·〉 denotes the pairing between H̊(div)′ and H̊(div) (or more generally
between a Hilbert space and its dual). Often, we will tacitly use the fact that if τ
is in H1, then 〈curl τ,w〉 = (curl τ,w). Clearly,

|B(ρ,w; τ,v)| ≤ 2
(
‖ρ‖2

Σ + ‖w‖2
H(div)

)1/2(‖τ‖2
Σ + ‖v‖2

H(div)

)1/2
,

ρ, τ ∈ Σ, w,v ∈ H̊(div),

so B is bounded on (Σ× H̊(div))× (Σ× H̊(div)). For τ ∈ Σ, we define τ0 ∈ H̊1 by

(curl τ0, curlψ) = 〈curl τ, curlψ〉, ψ ∈ H̊1.

Taking ψ = τ0 shows that

‖curl τ0‖ ≤ ‖curl τ‖H̊(div)′ ≤ ‖τ‖Σ, τ ∈ Σ. (3.7)

It is also true that

‖τ‖Σ ≤ C(‖τ‖ + ‖curl τ0‖), τ ∈ Σ. (3.8)

To see this, define φ ∈ L̂2 by

(φ, div v) = 〈curl τ,v〉 − (curl τ0,v), v ∈ H̊(div). (3.9)
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This is well-defined, since div H̊(div) = L̂2, and, if div v vanishes, then v = curlψ
for some ψ ∈ H̊1, so the right-hand side vanishes as well. Clearly,

〈curl τ,v〉 = (curl τ0,v) + (φ, div v) ≤ (‖curl τ0‖ + ‖φ‖)‖v‖H(div), v ∈ H̊(div).

Choosing v ∈ H̊1 in (3.9) with div v = φ and ‖v‖1 ≤ C‖φ‖, we get ‖φ‖ ≤
C‖curl(τ − τ0)‖−1. This implies ‖curl τ‖H̊(div)′ ≤ C(‖τ‖ + ‖curl τ0‖), thus estab-
lishing (3.8). We conclude from (3.7) and (3.8) that the norm τ 
→ ‖τ‖ + ‖curl τ0‖
is an equivalent norm on Σ.

Assuming that f ∈ L2 (or even H̊(div)′), we now give a mixed variational
formulation of the continuous problem. We seek σ ∈ Σ, u ∈ H̊(div), such that

(σ, τ) − 〈curl τ,u〉 = 0, τ ∈ Σ,

〈curlσ,v〉 + (div u, div v) = (f ,v), v ∈ H̊(div).

We note that, if u ∈ H̊1(Ω; R2) is the solution of the standard variational formula-
tion (1.6) and σ = rotu, then σ, u solve this mixed variational formulation. Indeed,
u ∈ H̊1(Ω; R2) ⊂ H̊(div), σ ∈ L2, and, for v ∈ H̊1(Ω; R2)

〈curlσ,v〉 = (σ, rotv) = (rotu, rotv) = (f ,v) − (div u, div v).

This implies that curlσ ∈ H̊(div)′, so σ ∈ Σ, and, extending to v ∈ H̊(div) by
density, that the second equation above holds. Finally

(σ, τ) = (rotu, τ) = 〈u, curl τ〉

for all τ ∈ L2, so the first equation holds.
In the next theorem, we establish well-posedness of the mixed variational prob-

lem by proving the inf–sup condition for B, following the approach of Ref. 1. Note
that the theorem establishes well-posedness of the more general problem where the
zero on the right-hand side of the first equation is replaced by the linear functional
〈g, τ〉, where g ∈ Σ′, and we allow f ∈ H̊(div)′.

Theorem 3.2. There exist constants c > 0, C < ∞ such that, for any (ρ,w) ∈
Σ × H̊(div), there exists (τ,v) ∈ Σ × H̊(div) with

B(ρ,w; τ,v) ≥ c
(
‖ρ‖2

Σ + ‖w‖2
H(div)

)
, (3.10)

‖τ‖Σ + ‖v‖H(div) ≤ C(‖ρ‖Σ + ‖w‖H(div)). (3.11)

Moreover, if w ∈ curl H̊1, then we may choose v ∈ curl H̊1.

Proof. Define ρ0 ∈ H̊1 by (curl ρ0, curlψ) = 〈curl ρ, curlψ〉, ψ ∈ H̊1. Next, use the
Hodge decomposition to write w in the form w = curlµ+gradφ, with µ ∈ H̊1 and
φ ∈ Ĥ1, and recall that

‖gradφ‖ ≤ C‖div w‖. (3.12)
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We then choose

τ = ρ− δµ, v = w + curl ρ0,

where δ is a constant to be chosen. Hence,

B(ρ,w; τ,v) = ‖ρ‖2 − δ(ρ, µ) − 〈curl ρ,w〉 + δ(curlµ,w)

+ 〈curl ρ,w〉 + 〈curl ρ, curlρ0〉‖divw‖2

= ‖ρ‖2 + δ‖curlµ‖2 − δ(ρ, µ) + ‖curlρ0‖2 + ‖divw‖2.

Recalling the constant CP in the Poincaré inequality (3.1) and choosing δ suffi-
ciently small, we obtain

B(ρ,w; τ,v) ≥ 1
2
‖ρ‖2 + (δ − δ2C2

P /2)‖curlµ‖2 + ‖curlρ0‖2 + ‖div w‖2

≥ c
(
‖ρ‖2

Σ + ‖w‖2
H(div)

)
,

where we have used the facts that ‖w‖2 = ‖curlµ‖2 + ‖gradφ‖2, (3.12), and (3.8)
in the last step. This establishes (3.10).

To establish (3.11), we observe that

‖v‖H(div) ≤ ‖w‖H(div) + ‖curlρ0‖ ≤ ‖w‖H(div) + ‖ρ‖Σ

by (3.7), while

‖τ‖Σ ≤ ‖ρ‖Σ + δ‖µ‖Σ ≤ ‖ρ‖Σ + δ‖µ‖1 ≤ C(‖ρ‖Σ + ‖w‖),

since ‖µ‖1 ≤ C‖curlµ‖ ≤ C‖w‖.
To establish the final claim, we observe that if w ∈ curl H̊1, then obviously

v = w + curl ρ0 ∈ curl H̊1.

Remark 3.1. Had we posed the weak formulation using the space H1 × H̊(div)
instead of Σ × H̊(div), we would not have obtained a well-posed problem.

3.3. Stability of the discrete formulation

In this section, we establish the stability of the mixed method (1.7) and (1.8), guided
by the arguments used for the continuous problem in the preceding subsection.
Analogous to the norm on Σ, we begin by defining a norm on Σh by ‖τ‖2

Σh
=

‖τ‖2 + ‖curl τ‖2
V̊ ′

h

, τ ∈ Σh, where

‖v‖V̊ ′
h

:= sup
w∈V̊h

(v,w)
‖w‖H(div)

.
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The bilinear form is bounded on the finite element spaces in this norm:

|B(ρ,w; τ,v)| ≤ 2
(
‖ρ‖2

Σh
+ ‖w‖2

H(div)

)1/2(‖τ‖2
Σh

+ ‖v‖2
H(div)

)1/2
,

ρ, τ ∈ Σh, w,v ∈ V̊h.

For τ ∈ Σh, we define τ0 ∈ Σ̊h by

(curl τ0, curlψ) = (curl τ, curlψ), ψ ∈ Σ̊h.

The discrete analogue of (3.7) again follows by choosing ψ = curl τ0:

‖curl τ0‖ ≤ ‖curl τ‖V̊ ′
h
≤ ‖τ‖Σh

, τ ∈ Σh.

Next we establish the discrete analogue of (3.8), that is,

‖τ‖Σh
≤ C(‖τ‖ + ‖curl τ0‖), τ ∈ Σh. (3.13)

To see this, define φ ∈ Ŝh by

(φ, div v) = (curl τ,v) − (curl τ0,v), v ∈ V̊h.

This is well-defined, since div V̊h = Ŝh, and, if div v vanishes, then v = curlψ for
some ψ ∈ Σ̊h, so the right-hand side vanishes as well. It follows that ‖curl τ‖V̊ ′

h
≤

‖curl τ0‖ + ‖φ‖. To bound ‖φ‖, as in the continuous case, we choose v ∈ H̊1

with div v = φ and ‖v‖1 ≤ C‖φ‖. In the discrete case, we also introduce ΠV
h v,

the canonical projection of v into the Raviart–Thomas space V̊h (see (3.22)), so
div ΠV

h v = PSh
div v = φ and ‖v − ΠV

h v‖ ≤ Ch‖v‖1. Then

‖φ‖2 =
(
φ, div ΠV

h v
)

=
(
curlτ,ΠV

h v
)
−

(
curlτ0,ΠV

h v
)

=
(
curlτ,ΠV

h v − v
)

+
(
curlτ,v

)
−

(
curlτ0,ΠV

h v
)

≤ Ch(‖τ‖1 + ‖curl τ‖−1 + ‖curl τ0‖)‖v‖1.

Using the inverse inequality ‖τ‖1 ≤ Ch−1‖τ‖ and the fact that ‖v‖1 ≤ ‖φ‖, gives
the bound ‖φ‖ ≤ C(‖τ‖ + ‖curl τ0‖), and implies (3.13).

With this choice of norm, stability of the finite element approximation scheme
is established by an argument precisely analogous to that used in the proof of
Theorem 3.2, simply using the Σh norm, the discrete gradient operator grad◦

h, the
discrete Hodge decomposition (3.6), the estimate (3.13), and the discrete Poincaré
inequality, instead of their continuous counterparts.

Theorem 3.3. There exist constants c > 0, C < ∞, independent of h, such that,
for any (ρ,w) ∈ Σh × V̊h, there exists (τ,v) ∈ Σh × V̊h with

B(ρ,w; τ,v) ≥ c
(
‖ρ‖2

Σh
+ ‖w‖2

H(div)

)
,

‖τ‖Σh
+ ‖v‖H(div) ≤ C(‖ρ‖Σh

+ ‖w‖H(div)).

Moreover, if w ∈ curl Σ̊h, then we may choose v ∈ curl Σ̊h.
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Remark 3.2. Note that ‖τ‖Σh
≤ ‖τ‖Σ for τ ∈ Σh, but, in general equality does

not hold. Had we used the Σ norm instead of the Σh norm on the discrete level, we
would not have been able to establish stability.

3.4. Projectors

Our error analysis will be based on the approximation and orthogonality properties
of certain projection operators into the finite element spaces:

PSh
: L2 → Sh, PΣh

: H1 → Σh, PΣ̊h
: H̊1 → Σ̊h, PV̊h

: H̊(div) → V̊h.

For PSh
, we simply take the L2 projection. By standard approximation theory,

‖s− PSh
s‖Lp ≤ Chl‖s‖W l

p
, 0 ≤ l ≤ r, 1 ≤ p ≤ ∞.

For PΣh
and PΣ̊h

, we use elliptic projections. Namely, for any τ ∈ H1,

(curlPΣh
τ , curlρ) = (curl τ, curlρ), ρ ∈ Σh, (PΣh

τ , 1) = (τ, 1)

and, for any τ ∈ H̊1

(
curlPΣ̊h

τ, curl ρ
)

= (curl τ, curl ρ), ρ ∈ Σ̊h.

Then, by standard estimates,

‖σ − PΣh
σ‖ + h‖σ − PΣh

σ‖1 ≤ Chl‖σ‖l, 1 ≤ l ≤ r + 1. (3.14)

Moreover,

(curl[σ − PΣh
σ],v) ≤ Ch‖curl(σ − PΣh

σ)‖‖divv‖, v ∈ Vh, σ ∈ H1. (3.15)

To prove this last estimate, we use the discrete Hodge decomposition (3.5) to write
v = curl γh + gradh ψh, with γh ∈ Σ̂h and ψh ∈ Sh. As explained in Sec. 3.1, the
pair (gradh ψh, ψh) ∈ Vh × Sh is the mixed approximation of (gradψ, ψ) where
ψ ∈ H̊1 solves ∆ψ = div v in Ω. Since Ω is convex, ‖ψ‖2 ≤ C‖div v‖. Therefore,

(curl[σ − PΣh
σ],v) = (curl[σ − PΣh

σ], curl γh + gradh ψh)

= (curl[σ − PΣh
σ], gradh ψh)

= (curl[σ − PΣh
σ], gradh ψh − gradψ)

≤ Ch‖curl(σ − PΣh
σ)‖‖ψ‖2 ≤ Ch‖curl(σ − PΣh

σ)‖‖divv‖.

For PΣ̊h
τ , τ ∈ H̊1, we will use the W 1

p estimate (due to Nitsche15 for r ≥ 2 and
Rannacher and Scott16 for r = 1; cf. also Theorem 8.5.3 of Ref. 5):

‖τ − PΣ̊h
τ‖W 1

p
≤ Chl−1‖τ‖W l

p
, 1 ≤ l ≤ r + 1, 2 ≤ p ≤ ∞, (3.16)

which holds with constant C independent of p as well as h.
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We define the fourth projection operator, PV̊h
: H̊(div) → V̊h, by the equations

(
PV̊h

v, curl τ + grad◦
hs

)
= (v, curl τ) − (div v, s), τ ∈ Σ̊h, s ∈ Sh.

In view of the discrete Hodge decomposition (3.6), PV̊h
v ∈ V̊h is well-defined for

any v ∈ H̊(div). It may be characterized as well by the equations

(
v − PV̊h

v, curl τ
)

= 0, τ ∈ Σ̊h, (3.17)(
div

[
v − PV̊h

v
]
, s

)
= 0, s ∈ Sh. (3.18)

Similar projectors have been used elsewhere.7 The properties of PV̊h
are summarized

in the following theorem.

Theorem 3.4. For v ∈ H̊(div) and U ∈ H̊1,

divPV̊h
v = PSh

div v, PV̊h
curlU = curlPΣ̊h

U. (3.19)

Moreover, the following estimates hold

∥∥v − PV̊h
v
∥∥

Lp ≤ Cphl‖v‖W l
p
, 1 ≤ l ≤ r, 2 ≤ p <∞, (3.20)

∥∥div(v − PV̊h
v)

∥∥ ≤ Chl‖divv‖l, 0 ≤ l ≤ r, (3.21)

whenever the norm on the right-hand side is finite.

Proof. The first commutativity property in (3.19) is immediate from (3.18), and
the divergence estimate (3.21) follows immediately. For the second commutativity
property, we note that curlPΣ̊h

U ∈ V̊h and that, if we set v = curlU and replace
PV̊h

v by curlPΣ̊h
U , then the defining Eqs. (3.17) and (3.18) are satisfied.

To prove the Lp estimate (3.20), we follow the proof of corresponding results for
mixed finite element approximation of second-order elliptic problems by Durán.11

First, we introduce the canonical interpolant ΠV
h : H1(Ω; R2) → Vh into the

Raviart–Thomas space, defined through the degrees of freedom

v 
→
∫

e

v · nwds, w ∈ Pr−1(e), v 
→
∫

T

v ·wdx, w ∈ Pr−2(T ), (3.22)

where e ranges over the edges of the mesh and T over the triangles. Then

∥∥v − ΠV
h v

∥∥
Lp ≤ Chl‖v‖W l

p
, 1 ≤ l ≤ r, 1 ≤ p ≤ ∞, (3.23)

and, since div ΠV
h v = PSh

div v,

∥∥div
(
v − ΠV

h v
)∥∥

Lp ≤ Chl‖div v‖W l
p
, 0 ≤ l ≤ r, 1 ≤ p ≤ ∞. (3.24)
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Writing v − PV̊h
v =

(
v − ΠV

h v
)

+
(
ΠV

h v − PV̊h
v
)
, it thus remains to bound the

second term. From (3.19), div
(
PV̊h

v−ΠV
h v

)
= 0, so PV̊h

v−ΠV
h v = curl ρh for some

ρh ∈ Σ̊h. Applying the decomposition (3.2), we have v−ΠV
h v = curl ρ+ gradψ for

some ρ ∈ H̊1 and ψ ∈ Ĥ1. From (3.17),

(curl ρh, curl τ) = (curlρ, curl τ), τ ∈ Σ̊h.

Thus, ρh = PΣ̊h
ρ and so satisfies the bound ‖curlρh‖Lp ≤ C‖curlρ‖Lp given above

in (3.16).
Since

(curl ρ, curl τ) =
(
v − ΠV

h v, curl τ
)

=
(
rot

(
v − ΠV

h v
)
, τ

)
, τ ∈ H̊1,

ρ ∈ H̊1 satisfies −∆ρ = rot
(
v − ΠV

h v
)
. Using the elliptic regularity result of

Corollary 1 of Ref. 13, we have for 1 < p <∞ that

‖ρ‖W 1
p
≤ Cp

∥∥rot
(
v − ΠV

h v
)∥∥

W−1,p ≤ Cp

∥∥v − ΠV
h v

∥∥
Lp .

Following the proof of that result, the dependence of the constant Cp on p arises
from the use of the Marcinkiewicz interpolation theorem for interpolating between
a weak L1 and an L2 estimate. Using the explicit bound on the constant in this
theorem found in Theorem VIII.9.2 of Ref. 8, it follows directly that Cp ≤ Cp,
where C is a constant independent of p. We remark that this regularity result
requires the assumed convexity of Ω, and does not hold for all 1 < p < ∞
if Ω is only Lipschitz.14 Estimate (3.20) follows by combining these results and
applying (3.23).

Theorem 3.5 below gives one more property of PV̊h
, inspired by an idea of

Scholz.17 To prove it we need a simple lemma.

Lemma 3.1. Let ρ be a piecewise polynomial function with respect to some trian-
gulation which is nonzero only on triangles meeting ∂Ω. Then for any 1 ≤ q ≤ 2,

‖ρ‖Lq ≤ Ch1/q−1/2‖ρ‖L2,

where the constant C depends only on the polynomial degree and the shape regularity
of the triangulation.

Proof. By scaling and equivalence of norms on a finite-dimensional space, we have

‖ρ‖Lq(T ) ≤ Ch2/q−1‖ρ‖L2(T ), ρ ∈ Pr(T ),

where the constant C depends only on the polynomial degree r and the shape
constant for the triangle T . Now, let T ∂

h denote the set of triangles meeting ∂Ω.
Then

‖ρ‖q
Lq(Ω) =

∑
T∈T ∂

h

‖ρ‖q
Lq(T ) ≤ Ch2−q

∑
T∈T ∂

h

‖ρ‖q
L2(T ).
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Applying Hölder’s inequality we have

∑
T∈T ∂

h

‖ρ‖q
L2(T ) ≤ (#T ∂

h )(2−q)/2


 ∑

T∈T ∂
h

‖ρ‖2
L2(T )




q/2

and #T ∂
h ≤ Ch−1 by the assumption of shape regularity. Combining these results

gives the lemma.

Theorem 3.5. Let 2 ≤ p ≤ ∞. Then
(
v − PV̊h

v, curl τ
)
≤ Ch−1/2−1/p

∥∥v − PV̊h
v
∥∥

Lp‖τ‖, τ ∈ Σh,

v ∈ H̊(div) ∩ Lp. (3.25)

Proof. Define τ̊ ∈ Σ̊h by taking the Lagrange degrees of freedom to be the same
as those for τ , except setting equal to zero those associated to vertices or edges
in ∂Ω. Then ‖τ̊‖ ≤ C‖τ‖ and τ − τ̊ is nonzero only on triangles meeting ∂Ω. By
(3.17),

(
v − PV̊h

v, curl τ
)

=
(
v − PV̊h

v, curl[τ − τ̊ ]
)
.

Let q = p/(p− 1), so 1 ≤ q ≤ 2. Applying Hölder’s inequality, the lemma, and an
inverse inequality, we obtain

(
v − PV̊h

v, curl(τ − τ̊)
)
≤

∥∥v − PV̊h
v
∥∥

Lp‖curl(τ − τ̊ )‖Lq

≤ C
∥∥v − PV̊h

v
∥∥

Lph
1/2−1/p‖curl(τ − τ̊ )‖L2

≤ C
∥∥v − PV̊h

v
∥∥

Lph
−1/2−1/p‖τ − τ̊‖L2,

from which the result follows.

3.5. Error estimates by an energy argument

Using the projection operators defined in the last subsection and the stability result
of the preceding section, we now obtain a basic error estimate (which is not, however,
of optimal order).

Theorem 3.6. Let r ≥ 1 denote the polynomial degree. There exists a constant C
independent of the mesh size h and of p ∈ [2,∞), for which

‖σ − σh‖ + h‖σ − σh‖1 + ‖u− uh‖H(div)

≤ C



hl−1/2−1/p

(
p‖u‖W l

p
+ ‖u‖l+1/2−1/p

)
, 2 ≤ l ≤ r, if r ≥ 2,

h1/2−1/p
(
p‖u‖W 1

p
+ h1/2+1/p‖u‖2

)
, if r = 1,

whenever the norms on the right-hand side are finite.
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Proof. We divide the errors into the projection and the remainder:

σ − σh = (σ − PΣh
σ) + (PΣh

σ − σh), u − uh = (u − PV̊h
u) + (PV̊h

u− uh).

Since,

‖σ − PΣh
σ‖ + h‖σ − PΣh

σ‖1 ≤ Cht‖σ‖t ≤ Cht‖u‖t+1, 1 ≤ t ≤ r + 1,

and, by Theorem 3.4,

‖u− PV̊h
u‖H(div) ≤ Cht‖u‖t+1, 1 ≤ t ≤ r,

the projection error satisfies the necessary bounds (without the p‖u‖W l
p

term on
the right-hand side).

Therefore, setting ρ = σh − PΣh
σ and w = uh − PV̊h

u, it suffices to show that
for 2 ≤ p <∞,

‖ρ‖ + ‖w‖H(div) ≤ C(‖σ − PΣh
σ‖ + h‖σ − PΣh

σ‖1 + h−1/2−1/p‖u− PV̊h
u‖Lp).

(3.26)

Indeed, both cases of the theorem follow from (3.26), Theorem 3.4, and the inverse
inequality Ch‖ρ‖1 ≤ ‖ρ‖. By the stability result of Theorem 3.3, there exists
(τ,v) ∈ Σh × V̊h satisfying

B(ρ,w; τ,v) ≥ c(‖ρ‖2
Σh

+ ‖w‖2
H(div)),

‖τ‖Σh
+ ‖v‖H(div) ≤ C(‖ρ‖Σh

+ ‖w‖H(div)).

By Galerkin orthogonality,

B(ρ,w; τ,v) = B(σ − PΣh
σ,u − PV̊h

u; τ,v)

= (σ − PΣh
σ, τ) − (u − PV̊h

u, curl τ) + (curl(σ − PΣh
σ),v),

where we used the definition of B and (3.19) in the last step. Applying the Cauchy–
Schwarz inequality, Theorem 3.5, and (3.15), we then obtain

B(ρ,w; τ,v) ≤ C
(
‖σ − PΣh

σ‖2 + h2‖curl(σ − PΣh
σ)‖2

+ h2(−1/2−1/p)‖u− PV̊h
u‖2

Lp

)1/2(‖τ‖2 + ‖v‖2
H(div))

1/2.

Together, these imply (3.26) and so the proof of the theorem is complete.

Choosing p = |lnh| in the theorem gives a limiting estimate.

Corollary 3.1. The following estimates hold whenever the right-hand side norm
is finite:

‖σ − σh‖ + h‖σ − σh‖1 + ‖u− uh‖H(div)

≤ C



hl−1/2(|lnh|‖u‖W l∞ + ‖u‖l+1/2), 2 ≤ l ≤ r, if r ≥ 2,

h1/2(|ln h|‖u‖W 1∞ + h1/2‖u‖2), if r = 1.
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For smooth solutions, choosing the maximum value of l = r in the corollary
gives suboptimal approximation of σ by order h3/2, and suboptimal approximation
of u and div u by order h1/2 (ignoring logarithms). In the next section, we show how
to improve the L2 error estimate for u to optimal order. The other estimates are
essentially sharp, as demonstrated by the numerical experiments already presented.

3.6. Improved estimates for u − uh

Using duality, we can prove the following estimate for u − uh in L2, which is of
optimal order (modulo logarithms for r = 1).

Theorem 3.7. These estimates hold whenever the right-hand side norm is finite:

‖u− uh‖ ≤ C



hl‖u‖l, 2 ≤ l ≤ r, if r ≥ 2,

h
(
|lnh|5/2‖u‖W 1∞ + ‖u‖2

)
, if r = 1.

Proof. Define φ ∈ Σ, w ∈ H̊(div) by

B(τ,v;φ,w) = (v,u − uh), τ ∈ Σ, v ∈ H̊(div).

Thus w solves the Poisson equation −∆w = u−uh in Ω with homogeneous Dirich-
let boundary conditions, and φ = −rotw. Under our assumption that Ω is a convex
polygon, we know that w ∈ H2, φ ∈ H1, and ‖φ‖1 + ‖w‖2 ≤ C‖u− uh‖.

Choosing τ = σ − σh and v = u − uh and then using Galerkin orthogonality,
we obtain

‖u− uh‖2 = B(σ − σh,u− uh;φ,w) = B(σ − σh,u − uh;φ− PΣh
φ,w − PV̊h

w).

The right-hand side is the sum of following four terms:

T1 = (σ − σh, φ− PΣh
φ), T2 = −(u − uh, curl[φ− PΣh

φ]),

T3 =
(
curl[σ − σh],w − PV̊h

w
)
, T4 =

(
div[u− uh], div

[
w − PV̊h

w
])
.

We have replaced 〈·, ·〉 by the L2-inner products because φ ∈ H1 and σ = rotu is
in H1 whenever the right-hand side norm in the theorem is finite. For T1, we use
the Cauchy–Schwarz inequality, the bound ‖φ − PΣh

φ‖ ≤ Ch‖φ‖1 ≤ Ch‖u − uh‖
for the elliptic projection, and the estimate of Theorem 3.6 with p = 2 to obtain

|T1| ≤ C



hl‖u‖l‖u− uh‖, 2 ≤ l ≤ r, if r ≥ 2,

h(‖u‖1 + h‖u‖2)‖u − uh‖, if r = 1.

Similar considerations give the same bound for T4.
To bound T2, we split it as

(
PV̊h

u − u, curl[φ − PΣh
φ]

)
and T ′

2 =
(
uh −

PV̊h
u, curl[φ−PΣh

φ]
)
. The first term is clearly bounded by Chl‖u‖l‖u−uh‖, while,
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for the second, we use (3.15) to find that

|T ′
2| ≤ Ch‖curl(φ− PΣh

φ)‖
∥∥div

(
uh − PV̊h

u
)∥∥.

Bounding div
(
uh − PV̊h

u
)

via Theorem 3.6 and (3.21), we get

|T ′
2| ≤ Chl‖u‖l‖u− uh‖, 2 ≤ l ≤ r,

|T ′
2| ≤ Ch(‖u‖1 + h‖u‖2)‖u− uh‖, r = 1.

Finally, we bound T3. If r ≥ 2, then we simply use the Cauchy–Schwarz inequality,
the bound

∥∥w − PV̊h
w

∥∥ ≤ Ch2‖w‖2 ≤ Ch2‖u− uh‖, (3.27)

and the p = 2 case of Theorem 3.6 to obtain

|T3| ≤ Chl‖u‖l‖u− uh‖, 2 ≤ l ≤ r.

If r = 1, then (3.27) does not hold. Instead we split T3 as
(
curl[σ − PΣh

σ],w −
PV̊h

w
)
+

(
curl[PΣh

σ−σh],w−PV̊h
w

)
. Since

∥∥w−PV̊h
w

∥∥ ≤ Ch‖w‖1 ≤ Ch‖u−uh‖,
the first term is bounded by Ch‖σ‖1‖u− uh‖ ≤ Ch‖u‖2‖u− uh‖. For the second,
we apply Theorem 3.5 and (3.20) to obtain
∣∣(curl[PΣh

σ − σh],w − PV̊h
w

)∣∣ ≤ Ch−1/2−1/p
∥∥w − PV̊h

w
∥∥

Lp‖PΣh
σ − σh‖

≤ Ch1/2−1/pp‖w‖W 1
p
‖PΣh

σ − σh‖, 2 ≤ p <∞.

By the Sobolev inequality, ‖w‖W 1
p
≤ Kp‖w‖W 2

q
, where q = 2p/(2 + p) < 2. More-

over, from Ref. 18 and a simple extension argument the constant Kp ≤ Cp1/2. Since
‖w‖W 2

q
≤ C‖w‖2 with C depending only on the area of the domain, we obtain

∣∣( curl[PΣh
σ−σh],w−PV̊h

w
)∣∣ ≤ Ch1/2−1/pp3/2‖PΣh

σ−σh‖‖u−uh‖, 2 ≤ p <∞.

By (3.14) and Theorem 3.6 with r = 1,

‖PΣh
σ − σh‖ ≤ ‖σ − PΣh

σ‖ + ‖σ − σh‖ ≤ C(h1/2−1/pp‖u‖W 1
p

+ h‖u‖2).

Thus we obtain

|T3| ≤ C
(
h1−2/pp5/2‖u‖W 1

p
+ h3/2−1/pp3/2‖u‖2

)
‖u− uh‖, 2 ≤ p <∞,

and, by choosing p = |lnH | and noting that h1/2|lnh|3/2 is bounded,

|T3| ≤ Ch
(
|lnh|5/2‖u‖W 1∞ + ‖u‖2

)
‖u− uh‖.

The theorem follows easily from these estimates.
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4. The Ciarlet–Raviart Mixed Method for the Biharmonic

In this section, we show that the above analysis immediately gives estimates for the
Ciarlet–Raviart mixed method for the biharmonic, including some new estimates
which improve on those available in the literature.

Given g ∈ H−2(Ω) = (H̊2(Ω))′, the standard weak formulation of the Dirichlet
problem for the biharmonic seeks U ∈ H̊2 such that

(∆U,∆V ) = (g, V ), V ∈ H̊2.

Letting σ := −∆U ∈ L2, we have ∆σ = −g. Assuming that g ∈ H−1(Ω), as we
henceforth shall, for Ω a convex polygon, we have that U ∈ H3(Ω), σ ∈ H1(Ω) and

‖U‖3 + ‖σ‖1 ≤ C‖g‖−1.

Hence (σ, U) ∈ H1 × H̊1 satisfy

(σ, τ) − (curlU, curl τ) = 0, τ ∈ H1,

(curlσ, curlV ) = (g, V ), V ∈ H̊1.

We note that a mixed formulation in these variables, but with spaces that are less
regular, can also be given for this problem,4 but we shall not pursue this approach
here.

The Ciarlet–Raviart mixed method6 for the approximation of the Dirichlet prob-
lem for the biharmonic equation using Lagrange elements of degree r, seeks σh ∈ Σh,
Uh ∈ Σ̊h such that

(σh, τ) − (curlUh, curl τ) = 0, τ ∈ Σh,

(curlσh, curlV ) = (g, V ), V ∈ Σ̊h.

This discretization has been analyzed in many papers under the assumption that
Ω is a convex polygon. It has been proven3,12 that for r ≥ 2,

‖U − Uh‖1 ≤ Chr‖U‖r+1, ‖σ − σh‖ ≤ Chr−1‖U‖r+1.

The former estimate is optimal, while the estimate for ‖σ − σh‖ is two orders
suboptimal. In the case r = 1, it has been proven17 that

‖U − Uh‖1 ≤ Ch3/4|lnh|3/2‖U‖4, ‖σ − σh‖ ≤ Ch1/2|lnh|‖U‖4.

These estimates are suboptimal by 1/4 and 3/2 orders respectively (modulo loga-
rithms) and require H4 regularity of U . (As has been noted,17 the same technique
could be applied for r ≥ 2 to obtain a 3/2 suboptimal estimate on ‖σ − σh‖.)
Below we improve the estimate on ‖U − Uh‖1 for r = 1 to an optimal order esti-
mate (modulo logarithms), with decreased assumptions on the regularity of the
solution U .
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We now show how to obtain all of these results from the analysis of the previous
section, with only minor modifications. Let u = curlU . Then

B(σ,u; τ, curl V ) = (g, V ), (τ, V ) ∈ H1 × H̊1.

Similarly, with uh = curlUh,

B(σh,uh; τ, curlV ) = (g, V ), (τ, V ) ∈ Σh × Σ̊h.

As above, set ρ = σh − PΣh
σ ∈ Σh, w = uh − PV̊h

u ∈ V̊h. Note that w =
curlUh − curlPΣ̊h

U ∈ curl Σ̊h. Subtracting the above equations and writing v for
curlV , we have

B(ρ,w; τ,v) = B
(
σ − PΣh

σ,u − PV̊h
u; τ,v

)
, (τ,v) ∈ Σh × curl Σ̊h.

Since the stability result of Theorem 3.3 holds over the space Σh × curl Σ̊h, as
stated in the last sentence of the theorem, we can argue exactly as in proof of
Theorem 3.6 and conclude that the estimates proved in that theorem for the Hodge
Laplacian hold as well in this context with one improvement. To estimate the term∥∥u − PV̊h

u
∥∥

Lp in (3.26), instead of using (3.20), we note that
∥∥u − PV̊h

u
∥∥

Lp =∥∥curl(U − PΣ̊h
U)

∥∥
Lp and invoke (3.16). In this way we avoid a factor of p. The

improved estimates of Theorem 3.7 also translate to this problem, with essentially
the same proof and a similar improvement. The dual problem is, of course, now
taken to be: Find φ ∈ Σ,w ∈ curl H̊1 such that

B(τ,v;φ,w) = (v,u − uh), τ ∈ Σ, v ∈ curl H̊1.

Thus w = curlW , where W solves the biharmonic problem ∆2W = rot(u − uh) ∈
H−1 with Dirichlet boundary conditions, and φ = ∆W . The relevant regularity
result, valid on a convex domain, is

‖w‖2 + ‖φ‖1 ≤ C‖W‖3 ≤ C‖rot(u − uh)‖−1 ≤ C‖u− uh‖.

The remainder of the proof goes through as before, with the simplification that
now the terms T4 and T ′

2 are zero, and the term
∥∥w − PV̊h

w
∥∥

Lp can be bounded
without introducing a factor of p as just described. The suppressed factors of p lead
to fewer logarithms in the final result. Stating this result in terms of the original
variable U instead of u = curlU , we have the following theorem.

Theorem 4.1. Let U solve the Dirichlet problem for the biharmonic equation,
σ = −∆U, and let Uh ∈ Σ̊h, σh ∈ Σh denote the discrete solution obtained by the
Ciarlet–Raviart mixed method with Lagrange elements of degree r ≥ 1. If r ≥ 2 and
2 ≤ l ≤ r, then the following estimates, requiring differing amounts of regularity,
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hold whenever the norms on the right-hand side are finite:

‖σ − σh‖ + h‖σ − σh‖1 ≤ C



hl−1‖U‖l+1

hl−1/2
(
‖U‖W l+1∞

+ ‖U‖l+3/2

)
,

‖U − Uh‖1 ≤ Chl‖U‖l+1.

If r = 1, the estimates are:

‖σ − σh‖ + h‖σ − σh‖1 ≤ C




(‖U‖2 + h‖U‖3),

h1/2(‖U‖W 2∞ + h1/2‖U‖3),

‖U − Uh‖1 ≤ Ch
(
|lnh|1/2‖U‖W 2∞ + ‖U‖3

)
.

5. Stationary Stokes Equations

Another application in which the vector Laplacian with Dirichlet boundary condi-
tions arises is the stationary Stokes equations, in which the vector field represents
the velocity, subject to no-slip conditions on the boundary. A standard weak for-
mulation (with viscosity equal to one) seeks u ∈ H̊1(Ω,R2) and p ∈ L̂2 such that

(gradu, gradv) − (p, divv) = (f ,v), v ∈ H̊1(Ω,R2),

(div u, q) = 0, q ∈ L2.

Mixed methods, such as we have considered, have been used to approximate this
problem, based on the vorticity-velocity-pressure formulation. For example, using
the spaces defined in Sec. 3, the following weak formulation has been discussed.10

Find σ ∈ Σ, u ∈ H̊(div), p ∈ L̂2 such that

(σ, τ) − 〈curl τ,u〉 = 0, τ ∈ Σ,

〈curlσ,v〉 − (p, div v) = (f ,v), v ∈ H̊(div),

(div u, q) = 0, q ∈ L2.

This formulation is obtained just as for the vector Laplacian, by writing

(gradu, gradv) = (rotu, rotv) + (div u, div v)

and introducing the variable σ = rotu. When f ∈ L2(Ω; R2) and Ω is a convex
polygon, u ∈ H2(Ω; R2), p ∈ Ĥ1(Ω), and σ = rotu ∈ H1(Ω). Assuming this extra
regularity, and setting u = curlU , and v = curlV , (σ, U) ∈ H1 × H̊1 satisfy the
stream function-vorticity equations:

(σ, τ) − (curlU, curl τ) = 0, τ ∈ H1,

(curlσ, curlV ) = (f , curlV ), V ∈ H̊1.

Taking g = rot f , this formulation coincides with the mixed formulation of the
biharmonic problem discussed in the previous section.
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We consider here the finite element approximation which seeks σh ∈ Σh, uh ∈
V̊h, ph ∈ Ŝh such that

(σh, τ) − (uh, curl τ) = 0, τ ∈ Σh,

(curlσh,v) − (ph, div v) = (f ,v), v ∈ V̊h,

(div u, q) = 0, q ∈ Ŝh,

where the spaces Σh, V̊h and Ŝh are defined as above. The existence and uniqueness
of the solution is easily established by standard methods. When f = 0, we get by
choosing τ = σh, v = uh, q = ph and adding the equations that σh = 0 and
div uh = 0. Hence uh = curlUh, Uh ∈ Σ̊h, and choosing τ = Uh, we see that
curlUh = 0. Since div V̊h = Ŝh, we also get ph = 0.

Error estimates for ‖u− uh‖ and ‖σ − σh‖ are easily obtained by reducing the
problem to its stream function-vorticity form and using the estimates obtained in
the previous section. Letting uh = curlUh, and choosing v = curlV , V ∈ Σ̊h, we
see that (σh, Uh) is the unique solution of the Ciarlet–Raviart formulation of the
biharmonic with g = rot f . Hence, the estimates for σ − σh in Theorem 4.1 remain
unchanged, except that we can replace ‖U‖s by ‖u‖s−1. In particular, we have the
following theorem.

Theorem 5.1. Let (u, p) solve the Dirichlet problem for the Stokes equation, σ =
rotu, and let uh ∈ V̊h, σh ∈ Σh and ph ∈ Ŝh denote the discrete solution obtained
by the vorticity-velocity-pressure mixed method with r ≥ 1 the polynomial degree. If
r ≥ 2 and 2 ≤ l ≤ r, then the following estimates, requiring different amounts of
regularity, hold whenever the norms on the right-hand side are finite:

‖σ − σh‖ + h‖σ − σh‖1 ≤ C



hl−1‖u‖l,

hl−1/2(‖u‖W l∞ + ‖u‖l+1/2),

‖u− uh‖ ≤ Chl‖u‖l.

If r = 1, the estimates are:

‖σ − σh‖ + h‖σ − σh‖1 ≤ C



‖u‖1 + h‖u‖2,

h1/2
(
‖u‖W 1∞ + h1/2‖u‖2

)
,

‖u− uh‖ ≤ Ch
(
|lnh|1/2‖u‖W 1∞ + ‖u‖2

)
.

The only item remaining is to derive error bounds for the approximation of
the pressure. We obtain the following result, which gives error bounds that are
suboptimal by O(h1/2).

Theorem 5.2. If r ≥ 2 and 2 ≤ l ≤ r, then

‖p− ph‖ ≤ C



hl−1(‖u‖l + ‖p‖l−1),

hl−1/2
(
‖u‖W l∞ + ‖u‖l+1/2 + ‖p‖l−1/2

)
.
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If r = 1, the estimates are

‖p− ph‖ ≤ C



‖u‖1 + h‖u‖2 + ‖p‖,

h1/2
(
‖u‖W 1∞ + h1/2‖u‖2 + ‖p‖1/2

)
.

Proof. From the variational formulation, we get the error equation

(ph − PSh
p, div vh) = (p− PSh

p, div vh) + (curl[σh − σ],vh), vh ∈ V̊h.

We choose v ∈ H̊1(Ω; R2) such that div v = ph − PSh
p and ‖v‖1 ≤ C‖ph − PSh

p‖,
and take vh = ΠV

h v. We have that div v = div ΠV
h v and

∥∥ΠV
h v

∥∥
H(div)

≤ C‖v‖1 ≤
C‖ph − PSh

p‖, so

‖ph − PSh
p‖2 =

(
ph − PSh

p, div ΠV
h v

)
=

(
p− PSh

p, div ΠV
h v

)
+

(
curl[σh − σ],ΠV

h v
)
,

= (p− PSh
p, ph − PSh

p) +
(
curl[σh − σ],ΠV

h v − v
)

+ (σh − σ, rotv)

≤ C(‖p− PSh
p‖ + h‖curl(σh − σ)‖ + ‖σh − σ‖)‖ph − PSh

p‖.

It easily follows that

‖p− ph‖ ≤ C(‖p− PSh
p‖ + ‖σh − σ‖ + h‖curl(σh − σ)‖).

The theorem follows directly by applying Theorem 5.1 and standard estimates for
the error in the L2 projection.

A number of papers have been devoted to finite element approximation schemes
of either the vorticity-velocity-pressure or stream-function-vorticity formulation of
the Stokes problem. In particular, the lowest-order (r = 1) case of the method
analyzed here was discussed in Ref. 9 (in which additional references can also be
found). In the case of the magnetic boundary conditions, σ = u ·n = 0, the authors
established stability and first-order convergence, which is optimal, for all variables.
But for the no-slip boundary conditions u = 0, with which we are concerned and
which arise much more commonly in Stokes flow, they observe in numerical exper-
iments stability problems and reduced rates of convergence which are in agreement
with the theory presented above.

We close with a simple numerical example in the case r = 2 that demonstrates
that the suboptimal convergence orders obtained above are sharp even for very
smooth solutions. Our discretization of the vorticity-velocity-pressure mixed formu-
lation of the Stokes problem then approximates the velocity u by the second lowest-
order Raviart–Thomas elements, the vorticity σ by continuous piecewise quadratic
functions, and the pressure p by discontinuous piecewise linear functions. We take Ω
to be the unit square and compute f corresponding to the polynomial solution veloc-
ity field u = (−2x2(x− 1)2y(2y− 1)(y− 1), 2y2(y− 1)2x(2x− 1)(x− 1)), and pres-
sure p = (x−1/2)5 +(y−1/2)5. The computations, summarized in Table 3, indeed
confirm the convergence rates established above, i.e. uh converges with optimal
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Table 3. L2 errors and convergence rates for the mixed finite element approximation of
the Stokes problem for the vector Laplacian with boundary conditions u ·n = 0, u · s = 0
on the unit square.

‖u − uh‖ Rate ‖div(u − uh)‖ Rate ‖σ − σh‖ Rate ‖curl(σ − σh)‖ Rate

3.26e-04 1.9 2.34e-03 1.3 2.70e-03 1.3 1.67e-01 0.2
8.35e-05 2.0 8.05e-04 1.5 9.70e-04 1.5 1.24e-01 0.4
2.10e-05 2.0 2.74e-04 1.6 3.47e-04 1.5 8.96e-02 0.5
5.27e-06 2.0 9.39e-05 1.6 1.24e-04 1.5 6.42e-02 0.5

order 2 to u in L2, while the approximations to σ and curlσ are both suboptimal
by 3/2 order and the approximation to the pressure p is suboptimal by 1/2 order.
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