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ANALYSIS OF A ONE-DIMENSIONAL VARIATIONAL MODEL
OF THE EQUILIBRIUM SHAPEL OF A DEFORMABLE CRYSTAL ∗

Eric Bonnetier
1
, Richard S. Falk

2
and Michael A. Grinfeld

3

Abstract. The equilibrium configurations of a one-dimensional variational model that combines terms
expressing the bulk energy of a deformable crystal and its surface energy are studied. After elimination
of the displacement, the problem reduces to the minimization of a nonconvex and nonlocal functional
of a single function, the thickness. Depending on a parameter which strengthens one of the terms
comprising the energy at the expense of the other, it is shown that this functional may have a stable
absolute minimum or only a minimizing sequence in which the term corresponding to the bulk energy
is forced to zero by the production of a crack in the material.
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1. Introduction

The morphological instabilities of interfaces is a topic of primary interest in physics (e.g., see [4]). Currently,
many branches of the natural sciences, including low temperature physics, fracture, crystal growth, epitaxy of
nano-scale films, metallurgy, geology, and materials science show a rapidly growing interest in the so called
stress driven rearrangement instabilities (SDRI) of surfaces and interfaces in solids. Several examples of the
SDRI have been predicted on the basis of Gibbs thermodynamics [5] of heterogeneous systems by studying the
positive definiteness of the second energy variations [7] of relevant functionals. At present, some of the predicted
instabilities have been confirmed experimentally and found applications in the above mentioned areas.

The thermodynamics of deformable solids with rearrangement leads to certain multi-dimensional variational
problems with unknown boundaries and with different specific constraints. Despite its quite simple formulation,
the problem in all its entirety is quite complex, and the study of its different features with the help of simpler
examples seems quite desirable. Many mathematical aspects of the general problem of thermodynamics of solids
with rearrangement can be studied in the framework of the problem of equilibrium shape of deformable crystals
formulated in [7, 8]. This problem is of a certain physical interest on its own in the theory of nano-scale solid
crystals [10]. Probably, it is the simplest mathematical problem possessing all of the crucial features of the most
general situation. From a mathematical point of view, the problem of the equilibrium shape of a deformable
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crystal is the natural synthesis of two classical problems of mathematical physics: (i) the problem of equilibrium
shape of a rigid crystal of fixed total volume [11,12] and (ii) the problem of the equilibrium of an elastic solid with
fixed geometry. The symbiosis, however, gives some qualitatively new features absent in the ingredients. Some
valuable analytical facts for this problem can be established with the help of Nozieres’s results [13]. Because of
the existing difficulties of the general 3D-problem, it is expedient to analyze first its simpler one-dimensional
version which is studied in this and in a forthcoming paper. The one-dimensional problem has been formulated
in [9] and it allows us to describe some phenomena in elastic shells and strips with movable defects. Below,
we present without derivation some facts relating to this problem. Mathematically it is formulated as the
minimization of the functional E depending on two unknown functions: an elastic displacement u(x) and a strip
thickness h(x) of one variable x:

E =
∫ L

0

[
(G/2)h(x)[u′(x)]2 + σ

√
1 + [h′(x)]2

]
dx

where G > 0 is the elastic modulus, σ > 0 is the surface energy, u′(x) is the elastic deformation, and√
1 + [h′(x)]2 dx is the length element of an outer boundary of the strip.
We assume that the elastic displacements u(x) and the thickness h(x) are fixed at the end-points, i.e.,

u(0) = U0, u(L) = UL, h(0) = h0, h(L) = hL

and that the total volume of the strip is also fixed, i.e.,∫ L

0

h(x) dx = A.

For simplicity, we consider the case when

L = 1, U0 = 0, UL = 1, h0 = 1, hL = 1, A = 1, σ = 1, G = 2N.

We are thus led to the minimization problem: Find

inf
u∈V,h∈H

E(u, h) = inf
u∈V,h∈H

N

∫ 1

0

h(x)[u′(x)]2 dx+
∫ 1

0

√
1 + [h′(x)]2 dx. (1.1)

The set of admissible displacements is V = {u ∈ H1(0, 1) : u(0) = 0, u(1) = 1}, and the admissible thicknesses
lie in the set H of piecewise C1 functions on [0, 1] satisfying

h(x) > 0 in [0, 1], h(0) = h(1) = 1,
∫ 1

0

h(x) dx = 1. (1.2)

For a given thickness h ∈ H, one can easily check that

u′h(x) =
(∫ 1

0

[h(x)]−1 dx
)−1

1
h(x)

minimizes E(u, h) in V . Thus the displacement can be eliminated in (1.1) and the original problem reduces to
minimizing over h ∈ H the functional

I(h) =
N∫ 1

0
[h(x)]−1 dx

+
∫ 1

0

√
1 + [h′(x)]2 dx. (1.3)



ANALYSIS OF A ONE-DIMENSIONAL VARIATIONAL MODEL OF THE EQUILIBRIUM SHAPEL 575

It is a standard feature in such problems of the calculus of variations, that I may not attain its infimum on the
space of C1 functions. Generally, minimizing sequences may develop oscillations if I does not have the right
properties of convexity. In the case at hand, the second term of I is convex since

∂2

∂f2

√
1 + f2 =

(
1 + f2

)−3/2
> 0,

but the first term is concave, so the standard direct method is not applicable. Minimizing sequences may also
tend to functions which lie outside the initial set of candidates and which are usually less regular. To ensure
well-posedness, the problem must be relaxed: a larger class of admissible designs must be allowed and the
functional must be extended accordingly [3].

The uniform thickness h0 ≡ 1 will be called the trivial solution. The value of its energy is N + 1. One
readily checks that h0 satisfies the Euler-Lagrange equation associated to (1.3) (however, this is not a sufficient
condition for h0 to be the absolute minimum!). Many other examples of variational problems whose minimizers
do not satisfy the Euler-Lagrange equation can be found in [1]. Because of the nonlocal nature of the term
corresponding to the bulk energy in the functional I(h), the problem discussed here falls outside of the classical
theory.

The main results of the paper are the following. In the next section, we consider the standard linearized
stability analysis and show that the second variation of the energy for smooth perturbations about the thickness
h0 ≡ 1 is positive for N ≤ 2π2. However, this does not guarantee that h0 ≡ 1 is a minimizer even for N in
this range. In Section 3, we show that there exists an N0 > 0 (≈ 1.159) such that for all N ≤ N0, h0 ≡ 1 is an
absolute minimizer of the functional I. In Section 4, we prove that for N ≥ 2, infh∈H I(h) ≥ 2 + π/4. Then,
in the following section, we explicitly construct a minimizing sequence hε ∈ H such that I(hε) → 2 + π/4 as
ε→ 0, which proves that infh∈H I(h) = 2 + π/4. For this minimizing sequence, the term corresponding to the
bulk elastic energy tends to 0, and the functional reduces to a measure of the length of the curve defined by
hε. The disappearance of the bulk energy term is achieved by the production of a crack in the specimen and
the energy cost for this is equal to twice the extra length induced by the crack. This is shown explicitly by the
construction of a non-parametric curve H∗, the length of which equals 2 + π/4, such that hε converges to H∗
a.e. Finally, Section 6 states a relaxation result: since minimizing sequences for I satisfy natural bounds in the
space BV of functions of bounded variation, we define an extension J of I on a compact set of BV functions
and show that this extension is lower semi-continuous with respect to BV .

2. Stability for the linearized problem

In this section, we consider the standard linearized stability analysis for the trivial solution h0 ≡ 1 and
establish the following result.

Lemma 2.1. If N ≤ 2π2, and k is a smooth function satisfying
∫ 1

0
k dx = 0, then

D2I(h0)k ⊗ k > 0.

Before proving this result, we note that we shall show in Section 4 that h0 ≡ 1 is not a minimum for values
of N which are much lower than 2π2. This is not contradictory with the lemma, since the linearized analysis
only gives information about smooth perturbations.
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Proof. If an admissible function h is smooth, bounded away from 0, and if k is a smooth function such that∫ 1

0
k dx = 0, then

I(h+ εk) = I(h) + ε

∫ 1

0

h′(x)k′(x)√
1 + [h′(x)]2

dx+Nε

∫ 1

0

k(x)
[h(x)]2

dx
(∫ 1

0

[h(x)]−1 dx
)−2

+Nε2
(∫ 1

0

k(x)
[h(x)]2

dx
)2(∫ 1

0

[h(x)]−1 dx
)−3

−Nε2
∫ 1

0

[k(x)]2

[h(x)]3
dx
(∫ 1

0

[h(x)]−1 dx
)−2

+
ε2

2

∫ 1

0

[k′(x)]2

(1 + [h′(x)]2)3/2
dx+O(ε3).

In particular, for the function h0 ≡ 1, the above becomes

I(h0 + εk) = I(h0) +
ε2

2

∫ 1

0

(
[k′(x)]2 − 2N [k(x)]2

)
dx+O(ε3).

Hence h0 ≡ 1 has a lower energy than a smooth perturbation, provided that

∫ 1

0

(
[k′(x)]2 − 2N [k(x)]2

)
dx ≥ 0 ∀ k ∈ H1

0 (0, 1) such that
∫ 1

0

k dx = 0. (2.1)

Now the functions en(x) = sin(nπx), n ≥ 1, form a basis of H1
0 (0, 1) and satisfy

∫ 1

0

(e′n)2(x) dx = n2π2

∫ 1

0

e2
n(x) dx = n2π2/2,∫ 1

0

e2n(x) dx = 0,
∫ 1

0

e2n+1(x) dx =
1

2n+ 1
2
π
·

Let k(x) =
∑
n≥1 anen(x). The condition that the average of k vanishes yields

a2
1 =

(
π/2

∫ 1

0

[k(x)− a1e1(x)] dx
)2

= π2/4

∫ 1

0

∑
p≥1

a2p+1e2p+1(x) dx

2

= π2/4

∑
p≥1

a2p+1
1

2p+ 1
2
π

2

≤
∑
p≥1

a2
2p+1

∑
p≥1

1
(2p+ 1)2

=
(
π2

8
− 1
)∑
p≥1

a2
2p+1.

Condition (2.1) reduces to

∑
n≥1

a2
n(n2π2 − 2N) ≥ 0.
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Obviously, this condition is fulfilled if 2N ≤ π2. Using (2.1) directly, we see that N must be smaller than 2π2,
since the second eigenfunction e2 has a zero average. However, if π2 − 2N < 0, the estimate on a1 yields∑

n≥1

a2
n(n2π2 − 2N) ≥

∑
p≥1

a2
2p+1[(2p+ 1)2π2 − 2N + (π2 − 2N)(π2/8− 1)]

+
∑
p≥1

a2
2p(4p

2π2 − 2N).

Since the factor in the first sum of the expression on the right hand side is positive for N ≤ 2π2, we conclude
that D2I(h0)k ⊗ k is positive for N in this range.

3. Stability of the trivial solution

In this section, the trivial solution h0 ≡ 1 is shown to be the unique minimum of I, if N is sufficiently small.
Specifically, we prove the following.

Theorem 3.1. The trivial solution h0 ≡ 1 is a stable minimum with respect to perturbations of magnitude
k < 1, provided that N ≤ ψ(k) ≡ (

√
1 + 4k2 − 1)(1 − k + k2)/k2. Also, h0 is an absolute minimum if

N ≤ N0 ≡ inf0<k≤1 ψ(k) ≈ 1.16.

Proof. We begin by seeking a lower bound for the elastic energy that is quadratic in terms of the maximal and
minimal values of h, for any admissible thickness h ∈ H. Since I is translation invariant, we can always assume
that

h(x) = 1 +K(x) ≥ 1 on [0, α], h(x) = 1− k(x) ≤ 1 on [α, 1].

The volume constraint on h becomes ∫ α

0

K(x) dx−
∫ 1

α

k(x) dx = 0. (3.1)

Let 1 + K0 and 1 − k0 denote the maximum and minimum of h, 0 ≤ K0, 0 ≤ k0 < 1. Straightforward
computations show that if λ0 = (1− k0)−1,

1
1 +K

≤ 1−K +K2 ∀ 0 ≤ K ≤ K0,
1

1− k ≤ 1 + k + λ0k
2 ∀ 0 ≤ k ≤ k0.

Using (3.1), it follows that∫ 1

0

[h(x)]−1 dx =
∫ α

0

[1 +K(x)]−1 dx+
∫ 1

α

[1− k(x)]−1 dx

≤
∫ α

0

[1−K(x) +K2(x)] dx+
∫ 1

α

[1 + k(x) + λ0k
2(x)] dx

≤ 1 + αK2
0 + (1− α)λ0k

2
0.

Thus, the elastic part of the energy can be estimated by

N∫ 1

0
[h(x)]−1 dx

≥ N

1 + αK2
0 + (1− α)λ0k2

0

· (3.2)
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On the other hand, a term such as
∫ α

0

√
1 + (h′)2 dx is the length of a curve that joins the points (0, 1) to (α, 1),

and that rises up to the level 1 +K0. Suppose that h(γα) = 1 +K0 for some 0 < γ < 1. The Jensen inequality
applied to the convex function

√
1 + x2 yields

∫ γα

0

√
1 + (h′)2 dx ≥ γα

(
1 +

[∫ γα

0

h′(x)
dx
γα

]2
)1/2

=
√
γ2α2 +K2

0 .

Similarly, on the piece [γα, α], we have∫ α

γα

√
1 + (h′)2 dx ≥

√
(1− γ)2α2 +K2

0 .

Using the convexity of
√
α2 + x2,

√
γ2α2 +K2

0 +
√

(1− γ)2α2 +K2
0 = γ

√
α2 +

(
K0

γ

)2

+ (1− γ)

√
α2 +

(
K0

(1− γ)

)2

≥
√
α2 + 4K2

0 .

Hence we obtain ∫ α

0

√
1 + (h′)2 dx ≥

√
α2 + 4K2

0 .

A similar estimate holds on the portion [α, 1], with a lower bound
√

(1− α)2 + 4k2
0. Again, by convexity, adding

these two estimates yields ∫ 1

0

√
1 + (h′)2 dx ≥

√
1 + 4(K0 + k0)2. (3.3)

Adding (3.2) and (3.3), we obtain

I(h) ≥ N

1 + αK2
0 + (1− α)λ0k2

0

+
√

1 + 4(K0 + k0)2.

As a function of α, the first term on the right hand side is increasing if K2
0 < λ0k

2
0. In this case, the lowest

value corresponds to α = 0 so that

I(h) ≥ N(1− k0)
1− k0 + k2

0

+
√

1 + 4k2
0.

Thus, I(h) ≥ I(h0), provided N is less than

ψm(k0) =

√
1 + 4k2

0 − 1
k2

0

(1− k0 + k2
0).

If, on the other hand, K2
0 ≥ λ0k

2
0, then the lowest value of the bound corresponds to α = 1, and then

I(h) ≥ N

1 +K2
0

+
√

1 + 4K2
0 .



ANALYSIS OF A ONE-DIMENSIONAL VARIATIONAL MODEL OF THE EQUILIBRIUM SHAPEL 579

The trivial solution achieves the smallest bound, provided N is smaller than

ψM (K0) =

√
1 + 4K2

0 − 1
K2

0

(1 +K2
0 ).

The first statement of the theorem then follows from the observation that ψm(k) < ψM (k) for k ∈ (0, 1). This
together with some straightforward computations which show that ψM is an increasing function of k and that
inf0<k≤1 ψ(k) ≈ 1.16 establish the second statement.

4. A generalized minimizer for N ≥ 2

In this section, we compute the infimum of (1.3) for values of N ≥ 2 and show that it corresponds to the
length of a parametric curve representing a generalized thickness.

Theorem 4.1. If N ≥ 2, then infh∈H I(h) ≥ 2 + π/4. In addition, if H∗ is the parametric curve defined by
the functions

h∗(x) = 1− π/8 +
√

(x+ x∗)(1− x− x∗) if 0 ≤ x < 1− x∗,
h∗(x) = 1− π/8 +

√
(x+ x∗ − 1)(2− x− x∗) if 1− x∗ ≤ x ≤ 1,

and the segment x = 1− x∗, 0 < y < 1− π/8, with x∗ = (4−
√

16− π2)/8, then the infimum of I corresponds
to the length of H∗, where the length of the vertical part of H∗ is counted twice.

Proof. To establish this result, we rewrite the minimization problem in the following form.

inf
h∈H
I(h) = inf

0<ε≤1

(
inf
h∈Hε

I(h)
)
, (4.1)

where Hε is the set of piecewise C1 functions satisfying the constraints (1.2) and

min
x∈[0,1]

h(x) = ε.

For h ∈ Hε, 1/h ≤ 1/ε, so the first term in I is bounded from below by Nε. Thus, we get

inf
h∈Hε

I(h) ≥ Nε+ inf
h∈Hε

L(h), (4.2)

where L(h) ≡
∫ 1

0

√
1 + [h′(x)]2 dx is the length of the curve h. The second term in the above expression is the

minimal length of a curve that takes the value 1 at its end points, reaches the value ε as its minimum, and
bounds an area equal to 1.

Let Fε be the set of piecewise C1 curves satisfying

f(x) ≥ ε in [0, 1], f(0) = f(1) = ε,

∫ 1

0

f(x) dx = 1.

To each element f of Fε, we associate an element h of Hε in the following way. If 0 < ε < 1, the area constraint
forces f to take the value 1. Let x1 be the first point where f = 1. Set

h(x) = f(x+ x1) for 0 ≤ x ≤ 1− x1, h(x) = f(x− 1 + x1) for 1− x1 < x ≤ 1.
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Since the volume constraint and the length of the curve are translation invariant, the function h lies in Hε. In
a similar fashion, we can associate to a function h ∈ Hε, a function f ∈ Fε: if xε is the first point where h
achieves the value ε, we set

f(x) = h(x+ xε) for 0 ≤ x ≤ 1− xε, f(x) = h(x− 1 + xε) for 1− xε ≤ x ≤ 1.

It follows that the infimum of L can be computed either on Hε or on Fε. The latter is a case of the isoperimetric
problem. Its solution is described in the next proposition, the proof of which is given in the Appendix.

Proposition 4.2. If (1−π/8) ≤ ε ≤ 1, the curve of minimal length, with value ε at its end points, lying above
the value ε, and bounding an area equal to 1, is the arc of circle of radius Rε given by

1− ε = −
√

4R2
ε − 1/4 +R2

ε arcsin(1/[2Rε]). (4.3)

Moreover, the corresponding length is inff∈Fε L(f) = 2Rε arcsin(1/[2Rε]).
If 0 ≤ ε < 1 − π/8, the infimum of L(f) is attained by the curve consisting of the vertical straight lines

[0, y], ε ≤ y ≤ 1−π/8 and [1, y], ε ≤ y ≤ 1−π/8, and the half-circle of radius 1/2 joining the point (0, 1−π/8)
to the point (1, 1− π/8). The minimal length is then

inf
f∈Fε

L(f) = 2(1− ε) + π/4.

Returning to (4.2), we can bound the energy from below by

I1(ε) = Nε+ 2Rε arcsin(1/[2Rε]) if 1− π/8 ≤ ε ≤ 1,

I2(ε) = (N − 2)ε+ 2 + π/4 if 0 ≤ ε < 1− π/8,

and it follows from (4.1) that

inf
h∈H
I(h) ≥ min

(
inf

1−π/8≤ε≤1
I1(ε), inf

0<ε<1−π/8
I2(ε)

)
. (4.4)

We next show that for N ≥ 2, the infimum in (4.4) is attained at ε = 0. Differentiating I1 with respect to ε, we
get

∂I1
∂ε

= N + 2

(
arcsin(1/[2Rε])−

1√
4R2

ε − 1

)
∂Rε
∂ε
·

On the other hand, the definition (4.3) of Rε yields

1 = 2

(
Rε√

4R2
ε − 1

−Rε arcsin(1/[2Rε])

)
∂Rε
∂ε
·

Eliminating ∂Rε/∂ε between these two relations shows that

∂I1
∂ε

= N − 1
Rε
≥ N − 2,

since Rε ≥ 1/2. Thus, for N ≥ 2, I1 is an increasing function of ε. On the other hand, I2 is also increasing in
this case, which establishes the result.
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Figure 1. Plot of F∗(x) along with y = 1 and corresponding plot of H∗(x).

It is then easily checked that I2(0) = 2 + π/4 is the length of the curve F∗ defined by the function

f∗(x) = 1− π/8 +
√
x(1− x) if 0 < x < 1

and by the two vertical lines

x = 0, 0 ≤ y ≤ 1− π/8, x = 1, 0 ≤ y ≤ 1− π/8.

To go back to the original boundary conditions, let x∗ = (4−
√

16− π2)/8, let

h∗(x) = f∗(x+ x∗) if 0 ≤ x ≤ 1− x∗, h∗(x) = f∗(x+ x∗ − 1) if 1− x∗ < x ≤ 1, (4.5)

and let H∗(x) be the curve defined by h∗ and the segment x = x∗, 0 ≤ y ≤ 1− π/8. Then H∗(x) satisfies the
conclusion of the theorem.

The curve F∗(x) and corresponding “generalized thickness” H∗(x) are shown in Figure 1. As is easily seen,
h∗ is obtained as a rearrangement of f∗ by first taking the part of f∗ lying above y = 1 and then appending the
part lying below y = 1.

The theorem shows that to minimize I, it is advantageous to cancel the bulk elastic energy term, which is
achieved by breaking the specimen. However, the length of the crack has to be accounted for in the remaining
surface energy term.
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5. Approximation of the generalized thickness

By constructing a minimizing sequence, we now show that the value 2 + π/4, given in the previous section
as a lower bound for infh∈H I(h), is in fact the value of this quantity.

For 0 < ε < 1 − π/8, δ > 0, ρ > 0, we consider the function fε,δ which is continuous on [0, 1], linear on
[0, δ]∪ [1− δ, 1], with value ε at x = 0, 1 and slope sε,δ = ±(1−π/8 +ρ− ε+

√
δ(1− δ))/δ, and for x ∈ [δ, 1− δ],

fε,δ(x) = 1− π/8 + ρ+
√
x(1− x).

The constant ρ is selected so that fε,δ satisfies the volume constraint∫ 1

0

fε,δ = 2
∫ δ

0

[sε,δx+ ε] dx+
∫ 1−δ

δ

[
1− π/8 + ρ+

√
x(1− x)

]
dx

= δ
[
1− π/8 + ρ− ε+

√
δ(1− δ)

]
+ (1− 2δ)(1− π/8 + ρ)

+
√
δ(1− δ)(1− 2δ)/2 + arcsin(1− 2δ)/4 + 2δε.

The volume constraint yields

ρ =
δ(1− ε) + π/8(1− δ)−

√
δ(1− δ)/2− arcsin(1− 2δ)/4

1− δ ·

Expanding ρ as a series in δ yields ρ = (1− π/8− ε)δ +O(δ3/2), so that ρ is positive and tends to 0 as δ → 0.
Thus, when δ is small enough, fε,δ is an admissible function.

Let us now compute the energy I(fε,δ). For the surface energy, we have∫ 1

0

√
1 + (f ′ε,δ)2 dx = K1 +K2,

where K1 is the length of the linear part, i.e.,

K1 = 2
∫ δ

0

√
1 + s2

ε,δ dx = 2

√
δ2 +

[
1− π/8 + ρ− ε+

√
δ(1− δ)

]2
and K2 is the length of the arc of the circle, i.e.,

K2 =
∫ 1−δ

δ

√
1 + (f ′ε,δ)2 dx = π/2− arccos(1− 2δ).

For the elastic part, let ∫ 1

0

1
fε,δ

= J1 + J2,

where J1 corresponds to the linear part, i.e.,

J1 = 2
∫ δ

0

1
sε,δx+ ε

dx

=
2δ

1− π/8 + ρ− ε+
√
δ(1− δ)

log

(
1 +

1− π/8 + ρ− ε+
√
δ(1− δ)

ε

)
.
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Figure 2. Plot of y = fε,δ(x) along with y = 1 and corresponding plot of y = hε,δ(x).

The term J2 is the contribution of the arc of the circle

0 ≤ J2 =
∫ 1−δ

δ

1
fε,δ

dx ≤ 1
1− π/8 ·

Thus, the total energy is

I(fε,δ) = π/2− arccos(1− 2δ) + 2

√
δ2 +

[
1− π/8 + ρ− ε+

√
δ(1− δ)

]2
+N

[
J2 +

2δ
1− π/8 + ρ− ε+

√
δ(1− δ)

log

(
1 +

1− π/8 + ρ− ε+
√
δ(1− δ)

ε

)]−1

where J2 is bounded. When ρ, ε, and δ tend to 0, this quantity behaves like

I(fε,δ) ∼ π/2 + 2(1− π/8) +N

[
J2 +

2δ
1− π/8 log

(
1− π/8

ε

)]−1

.

The choice δ = [log(1/ε)]−1/2 shows that I(fε,δ) → 2 + π/4 = I2(0), the length of F∗(x), when ε → 0. On the
other hand, the sequence fε,δ converges pointwise to f∗. Therefore, it follows from Theorem 4.1 that fε,δ is a
minimizing sequence, when N ≥ 2.
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From (fε,δ), it is then straightforward to construct a minimizing sequence hε,δ that satisfies the boundary
conditions. Let hε,δ be defined by

hε,δ(x) = fε,δ(x+ x∗) if 0 ≤ x ≤ 1− x∗,
hε,δ(x) = fε,δ(x+ x∗ − 1) if 1− x∗ ≤ x ≤ 1.

The function (fε,δ) and corresponding function hε,δ are shown in Figure 2 for the choice ε = 10−160 and
δ = log(1/ε)−1/2 ≈ 0.05.

For N ≥ 2, the curve H∗ (i.e., h∗ defined by (4.5) and a crack) is thus a “generalized minimizer” for our
original problem.

6. A relaxed form of the energy

In the result of stability for values of N ≥ 2, we constructed a sequence of piecewise C1 functions hn,
the energies of which converge to the value of the infimum 2 + π/4. This number is also the length of the
non-parametric curve H∗, defined in Theorem 4.1. The sequence {hn}, satisfies the estimates

‖hn‖L1 = 1,
∫ 1

0

|h′n|dx ≤
∫ 1

0

√
1 + (h′n)2 dx ≤M

for some constant M . In other words, {hn} is a sequence in the space BV of functions of bounded variation [6],
which is bounded in the norm in BV . It follows that {hn} is precompact in BV [6], i.e., that upon extracting
a subsequence, {hn} converges to the BV function h∗ defined by (4.5):

h∗(x) = 1− π/8 +
√

(x+ x∗)(1− x− x∗) for 0 ≤ x ≤ 1− x∗ = (4 +
√

16− π2)/8,

h∗(x) = 1− π/8 +
√

(x+ x∗ − 1)(2− x− x∗) for 1− x∗ < x ≤ 1.

The convergence holds in the following sense:

hn −→ h∗ strongly in L1(0, 1),

lim inf
n→∞

∫ 1

0

√
1 + (h′n)2 dx ≥

∫ 1

0

√
1 + (h′∗)2 dx.

We would like to cast the problem of minimizing (1.3) in a setting that ensures well-posedness. In other words,
we would like to consider a functional, which is lower semi-continuous in the natural norm, and which is defined
on a compact set of admissible thicknesses.

The space BV seems to be the natural space and for h ∈ BV , strictly positive, the definition of I(h) in (1.3)
makes sense. The closure of this subset of BV functions however, contains functions that vanish, for which we
need to extend the definition of I. Clearly, the trouble comes from the term (

∫ 1

0 [h(x)]−1 dx)−1 that reflects
the fact that no uniform coercive estimates on the displacements are available in the original minimization
problem (1.1).

Let H∗ denote the set of positive BV functions, satisfying the boundary conditions and the volume constraint
of (1.2). In H∗, we define

J (h) = min

(
2 min(h),

N∫ 1

0
[h(x)]−1 dx

)
+
∫ 1

0

√
1 + (h′)2 dx, if min(h) > 0,

J (h) =
∫ 1

0

√
1 + (h′)2 dx, otherwise.
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Proposition 6.1. The functional J extends the functional I in the following sense:
(i) If h ∈ H∗ is bounded away from 0, i.e., h(x) ≥ α > 0 a.e. in [0, 1], then I(h) ≥ J (h).
(ii) If {hn} is a sequence of functions in H∗ that converges to h ∈ H∗ in L1(0, 1), such that each hn is bounded
away from 0, then lim infn→∞ I(hn) ≥ J (h).

Proof. The first statement is a trivial consequence of the definition of J . To prove the second point, we consider
a sequence {hn} ⊂ H∗, such that for each n, min(hn) = mn > 0, and hn(x)→ h in L1(0, 1). By density, we can
always assume that the functions hn are C1 on [0, 1] [6].

Case 1. If min(h) = 0, then

lim inf
n→∞

I(hn) ≥ lim inf
n→∞

∫ 1

0

√
1 + (h′n)2 dx ≥

∫ 1

0

√
1 + (h′)2 dx = J (h),

where the last inequality follows from the lower semi-continuity of
∫ 1

0

√
1 + (h′)2 dx (i.e., the length of h) in

BV [6].

Case 2. If min(h) = m > 0 and lim infn→∞mn > 0, then, h−1 ∈ L1(0, 1) and for a subsequence

hn → h a.e., h−1
n → h−1 a.e.

From the Lebesgue Dominated Convergence Theorem, it follows that

N∫ 1

0
h−1
n dx

→ N∫ 1

0
h−1 dx

·

Thus, using again the lower semi-continuity of the length in BV , we obtain

lim inf
n→∞

I(hn) ≥ N∫ 1

0 h
−1 dx

+
∫ 1

0

√
1 + (h′)2 dx ≥ J (h).

Case 3. If min(h) = m > 0 and lim infn→∞mn = 0, then we can always assume that the whole sequence hn
tends to h a.e. and that

mn → 0. (6.1)

Let ε > 0 be such that m − ε > m/2 > 0. For n larger than some N0, mn + ε < m − ε. Let φn(x) =
sup(m− ε, hn(x)). Since hn ≤ φn ≤ sup(h, hn) a.e.,

φn → h a.e.

Moreover, since hn is continuous, for n > N0 there exists an interval [xn, yn], of length dn, such that

hn(xn) = hn(yn) = m− ε, min(hn) = mn in [xn, yn], hn ≤ m− ε in [xn, yn].

The length of hn on [xn, yn] is greater than the length of two straight lines connecting the points (xn,m −
ε), ([xn + yn]/2,mn), (yn,m− ε). Hence,∫ yn

xn

√
1 + (h′n)2 dx ≥

√
d2
n + 4(m− ε−mn)2.
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On the other hand, since the length of φn on that segment is simply dn, we get∫ 1

0

√
1 + (h′n)2 dx ≥

∫ 1

0

√
1 + (φ′n)2 dx+

√
d2
n + 4(m− ε−mn)2 − dn.

We claim that

dn → 0 as n→∞. (6.2)

Indeed, if dn → α > 0, we could find a subsequence such that xn → x , yn → y, and for n large enough,

xn − α/5 < x < xn + α/5 < yn − α/5 < y < yn + α/5,

so that we would have hn ≤ m − ε on [x + α/5, y − α/5] for n large enough. This contradicts the fact that
hn → h a.e.

Finally, using (6.1–6.2) and the semi-continuity of the length in BV , we have

lim inf
n→∞

I(hn) ≥ lim inf
n→∞

∫ 1

0

√
1 + (h′n)2 dx

≥ lim inf
n→∞

[∫ 1

0

√
1 + (φ′n)2 dx+

√
d2
n + 4(m− ε−mn)2 − dn

]
≥
∫ 1

0

√
1 + (h′)2 dx+ 2(m− ε).

Letting ε tend to 0, we obtain lim infn→∞ I(hn) ≥ J (h).

Proposition 6.2. The functional J is lower semi-continuous on H∗.

Proof. Let {hn} ⊂ H∗ be such that hn → h in L1(0, 1) and
∫ √

1 + (h′n)2 dx is bounded. We want to show that

lim inf
n→∞

J (hn) ≥ J (h). (6.3)

We can always assume that the functions hn are C1 [6].
If min(h) = 0, then (6.3) is satisfied trivially. If min(h) = m > 0 and min(hn) = mn tends to some value

m∗ ≥ m, then

min

(
2mn,

N∫ 1

0
[hn]−1 dx

)
→ min

(
2m∗,

N∫ 1

0
h−1 dx

)
≥ min

(
2m,

N∫ 1

0
h−1 dx

)
,

and (6.3) follows from the lower semi-continuity of the length.
If m∗ < m, then let ε > 0 be such that m∗ + ε < m − ε and let φn(x) = sup(m − ε, hn(x)). Then, by the

same arguments as those of Proposition 6.1,

lim inf
n→∞

∫ 1

0

√
1 + (h′n)2 dx ≥ lim inf

n→∞

[∫ 1

0

√
1 + (φ′n)2 dx+

√
d2
n + 4(m− ε−mn)2 − dn

]
≥
∫ 1

0

√
1 + (h′)2 dx+ 2(m− ε−m∗).

If m∗ = 0, since lim infn→∞ J (hn) is larger than the right-hand side of the above inequality, (6.3) is obtained
by letting ε→ 0.
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If m∗ > 0, then we get

lim inf
n→∞

[
2mn +

∫ 1

0

√
1 + (h′n)2 dx

]
≥ J (h)− 2ε.

On the other hand, the Dominated Convergence Theorem and the lower semi-continuity of the length yield

lim inf
n→∞

[
N∫ 1

0 [hn]−1 dx
+
∫ 1

0

√
1 + (h′n)2 dx

]
≥ N∫ 1

0 h
−1 dx

+
∫ 1

0

√
1 + (h′)2 dx ≥ J (h),

and (6.3) follows from these last two inequalities by letting ε tend to 0.
Proposition 6.2 and the precompactness of sequences in H∗ in the norm in BV imply that J achieves a

minimum in H∗. For N ≥ 2,

N∫ 1

0
h−1 dx

≥ N∫ 1

0
[min(h)]−1 dx

≥ 2 min(h)

and thus,

∀h ∈ H∗, J (h) = 2 min(h) +
∫ 1

0

√
1 + (h′)2 dx.

The arguments of Section 4 show not only that I(h) ≥ 2 + π/4, but also that J (h) ≥ 2 + π/4. On the other
hand, the function h∗, defined by (4.5) satisfies

J (h∗) = 2 + π/4 = min J .

7. Appendix

Proof of Proposition 4.2. Assume f ∈ Fe0 , i.e., that f is a piecewise C1 function such that

f(0) = f(1) = e0, f(x) ≥ e0, x ∈ [0, 1],
∫ 1

0

f(x) dx = 1.

Since the minimal length of f ∈ Fe0 depends on the value of e0, we shall consider two cases.
Case 1. 1− π/8 ≤ e0 ≤ 1.
In this case, we first show that there is an arc of a circle which is an admissible curve. To this effect, we seek
y0 and Re0 , such that

f0(x) = y0 +
√
R2
e0 − (x− 1/2)2

defines an arc of a circle that connects the point (0, e0) to (1, e0), that encloses an area equal to 1, and that lies
above the level e0. Expressing these conditions, we get

(e0 − y0) =
√
R2
e0 − 1/4,

1 =
∫ 1

0

[
y0 +

√
R2
e0 − (x− 1/2)2

]
dx = y0 +

√
4R2

e0 − 1
4

+R2
e0 arcsin(1/[2Re0 ]).
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It follows that

e0 = 1 + (1/4)
√

4R2
e0 − 1−R2

e0 arcsin(1/[2Re0 ]). (7.1)

For r ∈ (1/2,∞), let

φ(r) = 1 + (1/4)
√

4 r2 − 1− r2 arcsin(1/[2 r]).

Then φ′(r) = 2rρ(r) where ρ(r) = (4r2 − 1)−1/2 − arcsin(1/[2 r]). Since ρ′(r) = −1/[r(4r2 − 1)3/2] < 0 for
r > 1/2, ρ is a decreasing function. Since ρ tends to zero as r tends to infinity, it follows that ρ and hence φ′(r)
are positive, which implies that φ is a strictly increasing function. It is easy to check that φ maps (1/2,∞) onto
(1− π/8, 1). Thus, for each 1− π/8 < e0 < 1, there is a unique Re0 solution of (7.1). Furthermore, Re0 tends
to 1/2 (resp. ∞) as e0 tends to 1− π/8 (resp. 1).

Let D0 denote the upper half of the disc of radius Re0 , centered at (1/2, y0), and let Γ0 denote the part of
its boundary that lies below e0 and above y0. The domain D enclosed by Γ0, the line y = y0, and the curve
defined by f has the same area as D0. The classical isoperimetric inequality [2] implies that the length of the
boundary of D is greater or equal to the length of the boundary of D0. Thus∫ 1

0

√
1 + (f ′)2 dx ≥

∫ 1

0

√
1 + (f ′0)2 dx = 2Re0 arcsin(1/[2Re0 ]).

Case 2. 0 ≤ e0 < 1− π/8.
We can no longer draw an arc of a circle bounding an area of 1 through the points (0, e0) and (1, e0). The proof
of this case is divided into two steps. In the first one, we replace f by another function f∗ that has length less
than or equal to the length of f . Then in the second step, we obtain a lower bound on the length of f∗.

Step 1:
In addition to the previous hypotheses, assume that f is piecewise linear. We shall subsequently extend the
results obtained by a density argument. Let eM be the maximum of f . For e ∈ [e0, eM ], we define

Ωe = {0 ≤ x ≤ 1 : f(x) ≥ e}, g(e) =
∫

Ωe

(f − e) dx, h(e) = π/8 |Ωe|2.

The function h is the area of a half circle of diameter |Ωe|. It is a right-continuous, decreasing function. The
function g measures the area enclosed by f above the level e. One can readily check that g is decreasing and
continuous: if e < e′,

g(e) =
∫

Ω′e

(f − e) dx+
∫

Ωe\Ω′e
(f − e) dx

≤
∫

Ω′e

(f − e′) dx+
∫

Ω′e

(e′ − e) dx+ (e′ − e) |Ωe \ Ω′e|

≤ g(e′) + (e′ − e).

Also, we have

g(e0) = 1− e0 > π/8 = h(e0). (7.2)

Again, we consider several cases.

Case a: h(e) ≥ g(e) for some value of e ∈ (e0, eM) or h(eM) > g(eM ).
The motonicity and continuity properties of g and h, together with (7.2), imply that h(e∗) = g(e∗), for some
value e∗ ∈ (e0, eM).
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Since the area enclosed by f and the length of f are translation invariant, Ωe∗ can be assumed to be connected
and centered at some point x∗. Then, the function f∗, given by

f∗(x) = f(x) if x ∈ [0, 1] \ Ωe∗ ,

f∗(x) = e∗ +
√
|Ω2
e∗ |/4− (x− x∗)2 if x ∈ Ωe∗

also encloses an area equal to 1. It is a consequence of the standard isoperimetric inequality on Ωe∗ , that f∗
has a smaller length than f .

Case b: h(e) < g(e) for all e ∈ (e0, eM) and h(eM) ≤ g(eM).
First, observe that if ΩeM contains a subset ω where f is flat, then g(eM) = 0, while h(eM ) ≥ π/8 |ω|2 > 0.
Since this cannot occur under the hypothesis of Case b, we conclude that f ′ 6= 0 a.e. in ΩeM . Hence, for e close
enough to eM , Ωe consists of a finite number of intervals

Ωe = ∪1≤i≤N [xi − r−i , xi + r+
i ],

such that f is increasing on [xi− r−i , xi] from f(e) to f(eM) and decreasing on [xi, xi + r+
i ] from f(eM) to f(e).

Again, by translation invariance, Ωe can be assumed to be connected (i.e., xi + r+
i = xi+1 − r−i+1) and centered

at some point x∗. Since f is piecewise linear and has a saw-tooth profile in Ωe, we have∫
Ωe

(f − e) dx = |Ωe|(eM − e)/2. (7.3)

Thus, h(e) < g(e) implies that (eM − e)/2− π/8 |Ωe| is positive. Hence,

e∗ ≡ e+ (eM − e)/2− π/8 |Ωe| = (eM + e)/2− π/8 |Ωe| > e.

Clearly, we also have e∗ < eM . Let f∗(x) be the function defined by

f∗(x) = f(x) if x ∈ [0, 1] \ Ωe,

f∗(x) = e∗ +
√
|Ωe|2/4− (x− x∗)2 if x ∈ Ωe, i.e., |x− x∗| ≤ |Ωe|/2,

and let C∗ be the curve defined by the union of the half circle (x, f∗(x)), |x−x∗| ≤ |Ωe|/2, and the two vertical
segments [x∗ ± |Ωe|/2, y], e ≤ y ≤ e∗.

According to the definition of e∗,∫
Ωe

(f∗ − e) dx =
∫

Ωe

[
(e∗ − e) +

√
|Ωe|2/4− (x− x∗)2

]
dx = (e∗ − e)|Ωe|+ π|Ωe|2/8

= [(eM − e)/2− π|Ωe|/8] |Ωe|+ π|Ωe|2/8 = |Ωe|(eM − e)/2 =
∫

Ωe

(f − e) dx.

Besides, (7.3) gives the following estimate of |Ωe|.

h(e) = π|Ωe|2/8 < g(e) = |Ωe|(eM − e)/2 i.e., π|Ωe|/4 < eM − e. (7.4)
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Now the length of f on Ωe is given by

N∑
i=1

[√
(r−i )2 + (eM − e)2 +

√
(r+
i )2 + (eM − e)2

]

=
N∑
i=1

 r−i
|Ωe|

√
|Ωe|2 +

[
|Ωe|
r−i

(eM − e)
]2

+
r+
i

|Ωe|

√
|Ωe|2 +

[
|Ωe|
r+
i

(eM − e)
]2


≥
√
|Ωe|2 + 4N2(eM − e)2 ≥

√
|Ωe|2 + 4(eM − e)2,

by the convexity of the function
√
a2 + x2. On the other hand, using (7.4), the length of C∗ is

2(e∗ − e) + π|Ωe|/2 = (eM − e) + π|Ωe|/4 ≤ 2(eM − e) <
√
|Ωe|2 + 4(eM − e)2,

and thus is smaller then the length of f .

Step 2:
So far, given a piecewise linear admissible function f , we have constructed another admissible function f∗, which
may have jumps, but whose length, l(f∗), is less than or equal to the length of f . In particular, the constraint
on the area yields

1 =
∫
{f∗≥e∗}

f∗ dx+
∫

[0,1]\{f∗≥e∗}
f∗ dx.

In Case a, Ωe∗ is also the set where f∗ ≥ e∗ and so it follows easily from the above that

1 ≤
∫

Ωe∗

f∗ dx+ e∗(1− |Ωe∗ |) = (π/8)|Ωe∗ |2 + e∗ |Ωe∗ |+ e∗(1− |Ωe∗ |) ≤ (π/8) + e∗.

In Case b, Ωe is the set where f∗ ≥ e∗ and so

1 ≤
∫

Ωe

f∗ dx+ e∗(1− |Ωe|) = (π/8)|Ωe|2 + e∗ |Ωe|+ e∗(1− |Ωe|) ≤ (π/8) + e∗.

Hence, in both cases,

e∗ ≥ 1− π/8.

Let D be the domain that consists of the area enclosed by f∗ above the level e0 and its symmetric image about
the line y = e0. Its area is A(D) = 2(1 − e0), and its length is l(D) = 2l(f∗). Further, by construction, D
contains two discs of radius |Ωe∗ |/2, whose centers are separated by a distance d = 2(e∗− e0). In this situation,
the following isoperimetric inequality holds (see p. 7 in [2]).

l(D)2 ≥ 4πA(D) + 4d2,

i.e.,

l(f∗)2 ≥ 2π(1− e0) + 4(e∗ − e0)2 ≥ 2π(1− e0) + 4(1− π/8− e0)2 = [2(1− e0) + π/4]2.

By density, it follows that for all f ∈ Fe0∫ 1

0

√
1 + (f ′)2 dx ≥ 2(1− e0) + π/4.
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It is easy to check that this value is attained by the curve consisting of a half circle of radius 1/2 centered at
(1/2, e∗) and the two vertical segments [0, y], and [1, y], with e0 ≤ y ≤ e∗, where e∗ = 1− π/8. Note that this
is precisely the curve C∗ in the case when e = e0 (and Ωe = [0, 1]).
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