1. Suppose $5x^3y - 3xy^2 + y^3 = 6$. The point (1,2) is on this curve. Is the curve concave up or concave down at (1,2)?

Explicit way to go y can be solved as a function of x.* Then you can differentiate the formula twice and evaluate when x = 1.

Implicit way to go Find $\frac{dy}{dx}$ implicitly and then differentiate again to get $\frac{d^2y}{dx^2}$. Evaluate everything at (1,2).

2. Find the magical circle which is largest and which just fits "inside" the parabola $y = x^2$.

The parabola $y = x^2$ and some inside circles tangent at (0,0)

- 3. a) Compute $(1.5)^{1/(1.5)}$, $2^{1/2}$, $(2.5)^{1/(2.5)}$, $3^{1/3}$, and $(3.5)^{1/(3.5)}$.
- b) Now consider the function $V(x) = x^{1/x}$, whose domain is $(0, \infty)$. Compute V'(x) and find any critical points of V. Either compute V'' or study V' more closely to conclude information about the nature of the critical point(s?) of V.
- c) Compare your results from a) and b).
- d) What happens to V(x) as $x \to \infty$? What happens to V(x) as $x \to 0^+$? Carefully evaluate these limits using appropriate methods from the course.
- e) How many inflection points do you think that the graph of y = V(x) has?

$$y = \left(-\frac{5}{2}x^4 + 3 + x^3 + \frac{1}{18}\sqrt{1500x^9 - 675x^8 - 4860x^4 + 2916 + 1944x^3}\right)^{1/3} - \frac{\frac{5}{3}x^3 - x^2}{\left(-\frac{5}{2}x^4 + 3 + x^3 + \frac{1}{18}\sqrt{1500x^9 - 675x^8 - 4860x^4 + 2916 + 1944x^3}\right)^{1/3} + x.$$

Does this help?