
f(x)dx. Integrate, not forgetting the constant C of integration. Use the initial condition (x, y) = (x0, y0) to find C.
EX: For dy/dx = x + xy, with y = 2, when x = 0, then dy/dx = x(1 + y), or dy/(1 + y) = xdx. Integrating,
ln(1+y) = x2/2+C. So 1+y = ex2/2+C , or y = Aex2/2−1, with A = eC . Set x = 0, y = 2, 2 = A−1 and y = 3ex2/2−1.
Exponential population growth: P = P0e

kt, where P0 is the initial population and k is a constant.

lim
n→∞

na

bn
= 0, if b > 1; lim

n→∞
an

n!
= 0; f, g poly., lim

n→∞
f(n)
g(n)

= lim
n→∞

anj + lower terms
bnk + lower terms

=
{

a/b, if j = k;
0, if j < k; ±∞, if j > k.

lim
n→∞ c1/n = 0, if c > 0; lim

n→∞n1/n = 0; lim
n→∞ (1 + (1/n))n = e. Use L’Hospital’s Rule to verify these results.

Geometric series
∑∞

n=0 xn = 1/(1− x), if |x| < 1.
∑∞

n=1 1/np converges if p > 1, diverges if p ≤ 1.
Divergence Test: The series

∑
an diverges if either limn→∞ an does not exist or exists and is not 0.

Integral Test: Suppose that f is a positive, continuous, decreasing function. Let an = f(n) for each positive integer n.
Then the integral

∫∞
1 f(x) dx and the series

∑∞
n=1 an converge or diverge together. Use for

∑
1/np,

∑
1/(n(lnn)p).

EX: For
∑∞

n=2
1

n
√

ln n
, find

∫∞
2

dx
x
√

ln x
=

∫∞
ln 2

du√
u

= 2
√

u
∣∣∞
2

= ∞, using u = ln x, du = dx
x . The series diverges.

Comparison Test: Assume 0 ≤ an ≤ bn. If
∑

bn converges, so does
∑

an. If
∑

an diverges, so does
∑

bn.
EX: Note that 1

n2 ln n ≤ 1
n2 , if n ≥ 3, as ln n ≥ 1, if n ≥ 3. Since

∑ 1
n2 converges, so does

∑ 1
n2 ln n .

Limit Comparison: If an, bn > 0, limn→∞(an/bn) = L, with L 6= 0,∞,
∑

an and
∑

bn both converge or diverge.
EX: Compare

∑ √
n

n+1 to
∑ 1√

n
, since

( √
n

n+1

)/(
1√
n

)
= n

n+1 → 1, as n →∞. Since
∑ 1√

n
diverges, both diverge.

Alternating Series: If
∑∞

n=0 (−1)nan is a series with an ≥ 0, an+1 ≤ an for all n and limn→∞ an = 0, the series converges.

Absolute Convergence: The series
∑

an converges absolutely if
∑ |an| converges. Then

∑
an converges also.

Conditional Convergence: The series
∑

an converges conditionally if
∑

an converges but
∑ |an| diverges.

Ratio Test: Suppose limn→∞ |an+1/an| = L. If L < 1,
∑

an converges. If L > 1,
∑

an diverges. If L = 1, the test fails.
Often useful for series involving an or n!. Root Test: Similar but with limn→∞ |an|1/n = L. These tests can be used to
find radius of convergence for power series.
EX: For

∑
3n

n! ,
|an+1|
|an| = 3n+1

(n+1)! · n!
3n = 3

n+1 → 0, as n →∞. As L = 0 < 1, the series converges absolutely.

Series Test∑
1

n(lnn)4 Integral∑
n2

(n+1)2n Ratio∑ (−1)nn
n2+1 Alter. Ser.

Series Test∑ (n!)2

(2n)! Ratio∑ n2+1
n2+n Divergence∑
n2+n
n4+1 Lim. Comp. to

∑
1

n2

Series Test∑
1

(ln n)2n Comp:
∑

1
(ln n)2n ≤

∑
1
2n∑ ln n

n Comp:
∑ 1

n ≤
∑ ln n

n∑ sin n
n2 Comp:

∑ | sin n|
n2 ≤ ∑ 1

n2

Estimating Sums with the Integral Test: The error in approximating
∑∞

n=1 an with
∑N

n=1 an is at most
∫∞

N
f(x)dx.

EX: How large should N be to insure that
∑N

n=1 ne−n2
is within 1/1010 of

∑∞
n=1 ne−n2

? We need
∫∞

N
xe−x2

dx ≤ 1/1010.
Integrating, e−N2

/2 ≤ 1/1010, or 1010/2 ≤ eN2
, or 10 ln 10 + ln 2 ≤ N2, or

√
10 ln 10 + ln 2 ≤ N , N an integer.

With Alternating Series: The error in approximating
∑∞

n=0 (−1)nan with
∑N

n=0 (−1)nan has absolute value at most an+1.
Radius of convergence: For the power series,

∑
cn(x− a)n, there is a number R ≥ 0 so that if |x − a| < R, the series

converges absolutely and if |x − a| > R, the series diverges. If |x − a| = R, the series may converge or diverge. Find R
with the ratio test. The interval of convergence I is the set of points where the series converges. I contains the interval
(a−R, a + R) and may or may not contain the boundary points a−R and a + R.
EX: For

∑ nx2n

3n ,
∣∣∣an+1

an

∣∣∣ = (n+1)|x|2n+2

3n+1 · 3n

n|x|2n =
(

n+1
n

)· |x|23 → |x|2
3 , as n →∞. The series converges absolutely if |x|2/3 < 1,

or |x|2 < 3, or |x| < √
3. If |x| = √

3, the series is
∑

n and diverges. Then, R =
√

3 and I = (−√3,
√

3).
EX: Use power series integration to find the power series of arctanx at a = 0. Setting x = −t2 in the geometric series:

1
1+t2 =

∑∞
n=0 (−1)nt2n and arctanx =

∫ x

0
dt

1+t2 =
∫ x

0

∑∞
n=0 (−1)nt2n dt =

∑∞
n=0 (−1)n

∫ x

0 t2n dt =
∑∞

n=0
(−1)nx2n+1

2n+1 .
Taylor Polynomials: The n-th Taylor poly. of f is Tn(x) = f(a)+ f ′(a)(x−a)+ f ′′(a)(x−a)2/2!+ · · ·+ fn(a)(x−a)n/n!,
assuming f has n derivatives at a. Also f(x) = Tn(x)+Rn(x), |Rn(x)| ≤ M |x−a|n+1/(n+1)!, with M an upper bound of
|fn+1(t)| with t in the interval with endpoints a and x. EX: Find T2(x) of f(x) = (1+x)1/2 at a = 0. Estimate |R2(x)|
with x in [0, .1]. Here, f(x) = (1+x)1/2, f ′(x) = (1/2)(1+x)−1/2, f ′′(x) = (−1/4)(1+x)−3/2, f ′′′(x) = (3/8)(1+x)−5/2.
Then, f(0) = 1, f ′(0) = 1/2, f ′′(0) = −1/4. Thus, T2(x) = 1 + x/2 − x2/8. Also, |R2(x)| ≤ M |x|3/3!, with M an upper
bound of |f ′′′(t)| = (3/8)(1 + t)−5/2, with t in [0, .1]. Since 1 + t is increasing, (3/8)(1 + t)−5/2 is decreasing on [0, .1] and
its maximum value occurs at t = 0 and is 3/8. Thus, M = 3/8, |x| ≤ .1, and |R2(x)| ≤ (3/8)(.1)3/6 = (.1)3/16.
ex =

∑∞
n=0 xn/n!; sinx =

∑∞
n=0 (−1)nx2n+1/(2n+1)!; cosx =

∑∞
n=0 (−1)nx2n/(2n)!; ln(1+x) =

∑∞
n=0 (−1)nxn+1/(n+1)

Parametric curves: If x = f(t), y = g(t), then the slope of the tangent line is given by dy
dx =

(
dy
dt

)/(
dx
dt

)
= g′(t)

f ′(t) . The arc

length from t = a to t = b is
∫ b

a

√(
dx
dt

)2 +
(
dy
dt

)2
dt =

∫ b

a

√
(f ′(t))2 + (g′(t))2 dt. Polar Coordinates: x = r cos θ, y = r sin θ.

r =
√

x2 + y2, θ = arctan(y/x). The area bounded by y = f(θ), θ = a, θ = b is
∫ b

a
1
2r2 dθ =

∫ b

a
1
2 (f(θ))2 dθ.


