- 1. Sketch the first quadrant region bounded by the parabola $y = x^2$, the tangent to the parabola at (1,1), and the x-axis, and calculate the area of this region.
- 2. Suppose $f(x) = x^3$.
- a) Find the equation of the tangent line to the graph $y = f(x) = x^3$ at the point (1,1).
- b) Find the finite area bounded by $y = x^3$ and the tangent line to $y = x^3$ at the point (1,1).
- 3. Sketch the area A defined by y = x(1-x) and the x-axis.
- a) Compute the volume obtained when this area is revolved around the line y = -2.
- b) Compute the volume obtained when this area is revolved around the line x = -2.
- 4. A sort of raindrop is obtained by revolving the profile curve

$$y = \sqrt{x}(x - C)^2$$
 for $0 \le x \le C$

about the x-axis. Here C is a positive constant.

- a) Sketch the profile curve and the solid of revolution.
- b) For which value of C will the raindrop have volume 1? What are the rough dimensions (length and diameter) of this raindrop?
- 5. A wedge is cut from a cylindrical tree of radius 1. One cut is parallel to the ground. The other cut is at an angle θ with the ground, and the two cuts meet at the central axis of the tree.
- a) What is the area of the shaded triangular slice in terms of θ and x?
- b) What is the volume of the wedge?

