1. A program called Macsyma can find many indefinite integrals. It is a bit old, but it can do 4 of the following 5 integrals in a total of less than 5 seconds of CPU time. Please do 3 of these integrals. (You choose which ones!)

a)
$$\int x \sin(x^2) dx$$

b)
$$\int x (\sin x)^2 dx$$

c)
$$\int x^2 \sin x \, dx$$

a)
$$\int x \sin(x^2) dx$$
 b) $\int x (\sin x)^2 dx$ c) $\int x^2 \sin x dx$ d) $\int x^2 (\sin x)^2 dx$ e) $\int x^2 \sin(x^2) dx$

e)
$$\int x^2 \sin(x^2) dx$$

2. a) When D is very large, show that the integral $\int_{1}^{2} e^{-Dx} dx$ is very small. (You may wish to draw a picture, but other verification is also necessary.)

b) When D is very large, show that the integral $\int_{1}^{2} xe^{-Dx} dx$ is very small. (You may wish to draw a picture, but other verification is also necessary.)

c) When D is very large, show that the integral $\int_{1}^{2} \frac{1}{1+5x^{48}} e^{-Dx} dx$ is very small*. (You may wish to draw a picture, but other verification is also necessary.)

3. Consider the function $G(x) = e^x \sin Nx$ on the interval [0, 1].

a) With a sketch or otherwise, describe this function when N=3 and when N=10 and when $N = 10^{10}$.

b) Compute
$$\int_{0}^{1} G(x) dx$$
 if $N = 10^{10}$.

c) Explain b)'s result in relation to a).

4. Find the average value of f(x) = |x| on the interval [-1, 3].

5. Use the information about the function T and its first two derivatives, given in the table to the right, to calculate each of the following definite integrals.

\boldsymbol{x}	T(x)	T'(x)	$T^{\prime\prime}(x)$
1	2	-2	2
2	3	6	5
3	7	4	-4

a)
$$\int_{1}^{3} T'(x) dx$$

b)
$$\int_{1}^{3} T''(x) dx$$

a)
$$\int_{1}^{3} T'(x) dx$$
 b) $\int_{1}^{3} T''(x) dx$ c) $\int_{2}^{3} T(x)T'(x) dx$ d) $\int_{1}^{3} xT''(x) dx$

d)
$$\int_{1}^{3} x T''(x) dx$$

6. Calculate each of the indefinite integrals:

a)
$$\int \sec^4 x \, dx$$

b)
$$\int \sec^3 x \tan x \, dx$$

a)
$$\int \sec^4 x \, dx$$
 b) $\int \sec^3 x \tan x \, dx$ c) $\int \sec^2 x \tan^2 x \, dx$ d) $\int \sec x \tan^3 x \, dx$

d)
$$\int \sec x \tan^3 x d$$

It isn't always necessary or even possible to compute every integral exactly. But if an estimate can be made . . .