Differentiate:

1.
$$\frac{x^2 + 3}{5 - 9x^4}$$

2. $\sin\left(\frac{1}{x^3}\right)$
3.. $\sqrt{2x^5 + 9x}$
4. $\ln(3 + 4e^x)$
5.. $\arctan(3e^{5x})$
6. $x^2 \cos(1 + 2x)$
7. $(1 + x^n)^{1/n}$ (Here "n" is supposed to be a constant.)
8. $\arcsin(e^x) - e^{\arcsin(x)}$
9. $(\cos(x^5))^7$
10. $\sqrt{1 + \sqrt{2 + \sqrt{3 + x^5}}}$
11. $3 + \sec\left(\frac{5 + 2x}{x^2}\right)$
12. $\tan(-5x^3)$

x	f(x)	f'(x)	g(x)	g'(x)
-1	6	3	1	4
0	1	3	2	3
1	5	-2	2	-3
2	1	0	3	1
3	2	5	3	2

Here is information about the functions f and g and their derivatives.

1. If F(x) = f(g(x)), compute F(2) and F'(2).

2. If $G(x) = g(x^2)$, compute G(-1) and G'(-1).

3. If $H(x) = g(x)^{-5}$, compute H(0) and H'(0).

4. If $K(x) = \frac{f(x)}{g(3x-1)}$, compute K(1) and K'(1).

Suppose $r(x) = (5 + x^2)^{5/2}$.

5. Compute r(2) and r'(2).

6. Use a linear approximation to estimate r(2.03) and r(1.98). (You need <u>not</u> carry out the arithmetic!)

7. Are these estimates likely to be larger or smaller than the true values? (Hint: compute r''(2) [or at least the sign of r''(2)!]).

Here are some points on the graph of a function, W.

1. Is W' ever negative? Is W' ever positive?

2. Find a specific negative number, n, so that W'(x) = n. Where is your x located, as precisely as possible? Find a specific positive number, p, so that W'(x) = p. Where is your x located, as precisely as possible?

$$(-5,6) \qquad \qquad y \qquad (-2,4) \qquad (4,3) \qquad (1,2) \qquad x \qquad (-3,-1) \qquad (7,-1)$$

3. Repeat question 1, with W'' in place of W'. Also explain why.

4. Find or describe as precisely as you can, the 5^{th} derivative of

a) $A(x) = \cos(2x)$ b) $B(x) = x^{12} - 7x^2$ c) $C(x) = \sqrt{1+x}$.

- 5. Find or describe as precisely as you can, the 105th derivative of
- a) $A(x) = \cos(2x)$ b) $B(x) = x^{12} 7x^2$ c) $C(x) = \sqrt{1+x}$.

Problems 1-12 can be checked with Maple, although sometimes the answers are written in a form different from what you might expect. For example, the answer Maple gives for problem 10 is

$$\frac{5}{8} \frac{x^4}{\sqrt{1 + \sqrt{2 + \sqrt{3 + x^5}}}\sqrt{2 + \sqrt{3 + x^5}}\sqrt{3 + x^5}}$$

while "by hand" my answer is

$$\frac{1}{2}\left(1+\sqrt{2+\sqrt{3+x^5}}\right)^{-1/2}\frac{1}{2}\left(2+\sqrt{3+x^5}\right)^{-1/2}\frac{1}{2}\left(3+x^5\right)^{-1/2}(5x^4)$$

and these are certainly the same but they initially look a bit different.

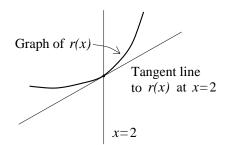
For problems 1–5, you must use the Chain Rule (and other differentiation algorithms) carefully. The numerical answers follow:

 $1.\ 2$ and 5.

- $2.\ 2\ \mathrm{and}\ 6$
- 3. $\frac{1}{32}$ and $-\frac{15}{64}$.
- 4. $-\frac{2}{3}$ and $-\frac{21}{9}$.
- 5. r(2) = 243 and r'(2) = 270.

6. Using $r(x+h) \approx r(x) + r'(x)h$ with h = +.03 first, we get $r(2.03) \approx 243 + (.03)(270)$. If h is then -.02, $r(1.98) \approx 243 - (.02)(270)$.

7. Since $r''(x) = 5(5x^2)^{3/2} + 5x\left(\frac{3}{2}\right)(5+x^2)2x$, plugging in x = 2 shows that r''(2) > 0.



That means r(x) is concave <u>up</u> near 2. Therefore the estimates above are <u>below</u> the true values.

.

1. Yes and yes.

2. The MVT (Mean Value Theorem) predicts that there is an x_1 between -5 and -3 with $W'(x_1) = \frac{6-(-1)}{-5-(-3)} = -\frac{7}{2}$ (so this is an n). Similarly, there is x_2 between -3 and -2 with $W'(x_2) = \frac{4-(-1)}{-2-(-3)} = 5$ (so this is a p).

3. Yes and yes. Since $x_1 < -3 < x_2$ and $W'(x_1) = -\frac{7}{2} < 3 = W'(x_2)$ by applying the MVT to W', there is x_3 between x_1 and x_2 so that $W''(x_3) = \frac{W(x_2) - W(x_1)}{x_2 - x_1}$. But $x_2 - x_1 > 0$ and $W(x_2) - W(x_1) = 3 - -\frac{7}{2} = \frac{13}{2}$. So $W''(x_3) = \frac{\frac{13}{2}}{\text{positive number}}$, which is positive. You can get x_4 with $W''(x_4)$ <u>negative</u> by using (-3, -1), (-2, 4), and (1, 2).

4. a)
$$A^{(5)}(x) = 2^5 (-\sin(2x)).$$

b) $B^{(5)}(x) = 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8x^7.$
c) $C^{(5)}(x) = \frac{1}{2} \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{5}{2}\right) \left(-\frac{7}{2}\right) (1+x)^{-9/2}$
5. a) $A^{(105)}(x) = 2^{105} (-\sin(2x)).$
b) $B^{(105)}(x) = 0.$
c) $C^{(105)}(x) = \frac{(\text{Product of all odd integers from 1 to 207})}{2^{105}} (1+x)^{-209/2}$