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Differentiate:

x?+3
"5 — 9zt

2. sin (i)
3
3..v/22% + 9z
4. In(3 + 4e”)
5.. arctan(3e°”)
6. 2% cos(1 + 2z)
7. (1 +2™)Y™ (Here “n” is supposed to be a constant.)

8. arcsin(e®) — e2resin(@)

9. (cos(x5))7

10. \/1+\/2+\/3+x5

5—1—233)

11.3+sec( 5
x

12. tan(—5z*)
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Here is information about the functions f and ¢ and their derivatives.

z o flx)  fx) g(x) g'(x)
-1 6 3 1 4

0 1 3 2 3

1 5 —2 2 -3

2 1 0 3 1

3 2 5 3 2

1. If F(x) = f(g9(z)), compute F(2) and F’(2).
2. If G(z) = g(2?), compute G(—1) and G'(—1).

3. If H(z) = g(z)~°, compute H(0) and H'(0).

4. 1t K(z) = g(%bi)l)’ compute K (1) and K'(1).

Suppose r(x) = (5 + x2)%/2.

5. Compute 7(2) and 7/(2).

6. Use a linear approximation to estimate r(2.03) and r(1.98). (You need not carry out
the arithmetic!)

7. Are these estimates likely to be larger or smaller than the true values? (Hint: compute
r"(2) [or at least the sign of /(2)!]).
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Here are some points on the graph of a
function, W. ('5 ,6) y
1. Is W’ ever negative? Is W’ ever posi- (',2’4)
tive?

(4,3)
12 -
2. Find a specific negative number, n, so
that W’(x) = n. Where is your x located,
as precisely as possible? Find a specific . .
positive number, p, so that W'(x) = p. (-3,-1) (7,-1)
Where is your x located, as precisely as
possible?

3. Repeat question 1, with W in place of W’. Also explain why.

4. Find or describe as precisely as you can, the 5" derivative of

a) A(x) = cos(2z) b) B(x) = x'? — 722 c) C(x) =V1+x.

5. Find or describe as precisely as you can, the 105" derivative of

a) A(z) = cos(2z) b) B(z) = x'? — 722 c) C(z) =v1+uz.
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Problems 1-12 can be checked with Maple, although sometimes the answers are written
in a form different from what you might expect. For example, the answer Maple gives for
problem 10 is

0 vt
V12 VBt oV2t VBt 3T

while “by hand” my answer is

~1/2 ~1/2 _
%(1—}—\/2—1—\/3—1—1:5) %(2—}—\/3—1—1:5) %(3+x5) 2 (52%)

and these are certainly the same but they initially look a bit different.




Page A2

For problems 1-5, you must use the Chain Rule (and other differentiation algorithms)
carefully. The numerical answers follow:

1. 2 and 5.
2.2 and 6

1 15
3. 35 and ~64-

4. —% and —2L,

5. r(2) = 243 and r'(2) = 270.

6. Using 7(z + h) = r(x) + r'(x)h with

h = +.03 first, we get r(2.03) ~ 243 + (.03)(270).

If h is then —.02, 7(1.98) ~ 243 — (.02)(270).

7. Since r"(z) = 5(522)%/% + 52 (3) (5 + 22)2z, plugging in x = 2 shows that r(2) > 0.

Graph of r(x)—|

Tangent line

7 to r(X) at x=2

X=2

That means r(z) is concave up near 2. Therefore
the estimates above are below the true values.
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1. Yes and yes.
2. The MVT (Mean Value Theorem) predicts that there is an 1 between —5 and —3 with

W' (xy) = % = —I (so this is an n). Similarly, there is 5 between —3 and —2 with
W' (xg) = 742%(113)) =5 (so this is a p).

3. Yes and yes. Since 21 < —3 < 22 and W/ (1) = —% < 3 = W/(z2) by applying the MVT

to W', there is x5 between 1 and zo so that W (z3) = Frp—

and W(xQ) - W(xl) =3 - _% = 1_23 So W”(m?’) — Dositive number’

can get x4 with W’ (x4) negative by using (-3, —1), (—2,4), and (1, 2).

ol

which is positive. You

4. a) A®)(z) = 2° (—sin(2z)).
b) B®) () =12-11-10-9 - 82”.
) CO@) =4 (-4) (=) (-3) () 1+ 2) "

5. a) A1) (x) = 2195 (—sin(2z)).

N

b) B(195)(z) — 0.

(Product of all odd integers from 1 to 207)
9105

c) CU9)(g) = (14 2)=209/2,



